
Arab J Sci Eng (2015) 40:1359–1373
DOI 10.1007/s13369-015-1607-z

RESEARCH ARTICLE - COMPUTER ENGINEERING AND COMPUTER SCIENCE

A Technique for Metamodeling Diagram Types with Tool Support

Iván García-Magariño · Guillermo Palacios-Navarro

Received: 16 October 2014 / Accepted: 4 February 2015 / Published online: 15 February 2015
© King Fahd University of Petroleum and Minerals 2015

Abstract Some domain-specific modeling languages
(DSMLs) use different diagram types but these are not explic-
itly included in metamodels. The definition of diagram types
is an increasing demand for some computer-aided software
engineering tools for DSMLs. The current work presents
a technique that allows designers to define diagram types
of DSMLs with metamodels in a straightforward and tool-
supported way. This technique also facilitates the processing
of models when some elements appear in several diagrams,
by including a single dictionary of all the entities and their
relationships. The presented technique is supported with a
novel tool called diagram-type editor tool (DTET). DTET
receives input from a DSML metamodel and allows design-
ers to define a set of diagram types with a graphical user
interface. Then, DTET generates a metamodel with these
diagram-type definitions. For the evaluation, 39 testers from
five different countries (Spain, Dominican Republic, Colom-
bia, Ecuador andFrance) experienced the presented approach
and other alternatives, measuring the times of definition and
the numbers of mistakes. The results show that the presented
technique and DTET are faster and less error-prone for the
definition of diagram types than the alternatives with statis-
tically significant differences.

Keywords Model-driven engineering · Metamodel ·
Diagram type · Domain-specific modeling language ·
Computer-aided software engineering tool

I. García-Magariño (B)
Department of Computer Science and Engineering of Systems,
University of Zaragoza, Teruel, Spain
e-mail: ivangmg@unizar.es

G. Palacios-Navarro
Department of Electronic Engineering and Communications,
University of Zaragoza, Teruel, Spain
e-mail: guillermo.palacios@unizar.es

1 Introduction

Domain-specificmodeling languages (DSMLs) are useful for
modeling plenty domain-specific areas, and as much specific
as, for example, the Hajj pilgrimage traffic scenario [1] or the
model predictive control of the speedof a permanent synchro-
nous motor [2]. Each DSML has its own specific modeling
elements. Some DSMLs represent diagrams that share some
modeling elements. Some DSMLs also use different types of
diagrams. In this manner, the diagram types can have restric-
tions on the elements that are allowed to be included and,
consequently, can guide users in designing domain-specific
models. For example, there can be diagram types concern-
ing requirements, structural design, behavioral design, imple-
mentation and testing. Each of these categories of diagram
types can cover a great amount of possibilities. For instance,
there are several diagram types regarding requirements, as
for example the ones necessary for solving the hierarchy of
problems proposed by Memon et al. [3] for requirements
engineering education.

The object management group (OMG) defines the UML-
diagram interchange (UML-DI) [4] specification, which pro-
vides a mechanism for interchanging diagrams of the uni-
fied modeling language (UML). However, UML-DI can-
not be applied to DSMLs because UML-DI is intended
for UML, and most DSMLs use modeling elements that
are different from the UML elements. In addition, UML-
DI uses the cutouts when some diagrams share some ele-
ments. The processing of these cutouts is arguably com-
plex, and there are undetermined situations when, for
example, removing elements of a cutout that is viewed
from another cutout. These cutouts also make it difficult
other operations such as the recognition of design patterns
with their variations like in the proposal of Rasool and
Mäder [5].

123



1360 Arab J Sci Eng (2015) 40:1359–1373

The present approach considers the connection-based
modeling languages, to which most current modeling lan-
guages belong, instead of only supporting UML. A general
entity and a general relationship are considered for each
DSML and can be extended with its specific entities and
relationships. The current approach defines diagrams as the
views of models. The presented technique indicates the ele-
ments that are necessary for defining diagram types, which
can only contain certain element types. The diagram types
are defined in a metamodel different from the one for the
DSML. Moreover, the technique proposes that the designer
defines the DSML diagram types through the graphical user
interface (GUI) of DTET. In this way, the designer indicates
the names of the diagram types and associates these with
certain element types. Then, DTET automatically generates
a metamodel with the diagram types.

The proposed technique and DTET can be applied to most
DSMLs because new metamodels are created for defining
diagram types without altering the metamodels of DSMLs.
The processing of models is facilitated with the present
approach, because all the entities and relationships of awhole
model are included in a global dictionary without duplicates
and interferences with diagram-specific issues. In this man-
ner, entities and relationships can be processed regardless of
their organization into diagrams.

The experimentation of the currentwork shows thatDTET
is faster and more reliable for defining diagram types than
the analyzed alternatives. These experiments are based on the
experience of 36 postgraduate testers and three PhD testers
and concrete measurements such as the duration times and
numbers of mistakes. In particular, this work selects the
Eclipse modeling framework (EMF) editor and a text edi-
tor as alternatives for the experimentation, because these (1)
use the samemetamodeling language as the current approach
and (2) are popular.

The remaining of the paper is structured as follows. The
next section describes themotivation of the current approach.
Section 3 introduces metaobject facility (MOF) and EMF,
as basis for understanding the present approach. Section 4
presents the technique for defining diagram types with meta-
models, and Sect. 5 describes its tool support, i.e., DTET.
Section 6 evaluates the current approach with a quantita-
tive comparison with the alternatives. Section 7 discusses
the results of this work, comparing these with other related
approaches and tools from a qualitative point of view. Finally,
Sect. 8 depicts the conclusions and future work.

2 Motivation

The way of defining diagram types can be relevant for
computer-aided software engineering (CASE) tools related
to modeling languages, because (1) these definitions influ-

ence the way diagrams are interchanged among CASE tools,
(2) the structure of these diagram-type definitions influ-
ence most of the processing in the tools such as the addi-
tion/removal of elements, refactoring of some parts, copy
operations, design patterns recognition [5] and measuring
models (e.g., for predicting their stability [6]), and (3) prac-
titioners can understand how diagrams are managed to fore-
see its implications. As a proof of all these necessities, the
international OMG organization (in charge of several inter-
national standards) provides a standard that defines diagram
types for UML (one of the most widespread modeling lan-
guages), and this standard is called UML-DI.

Nonetheless, there is a gap in the literature regarding the
definition of diagram types of DSMLs that are non-UML lan-
guages. Thus, each CASE tool of these non-UML languages
is usually implemented with its own ad hoc way of defin-
ing diagram types. These ways of defining diagram types are
usually non-public to the best of authors’ knowledge, and
consequently, new developers do not know how to face the
definition of diagram types when defining a new CASE tool
for a DSML. In addition, some CASE tools of the samemod-
eling language cannot interchange diagrams because of the
absence of formal definitions of diagram types among other
obstacles.

In particular, the current approach proposes a tech-
nique and a tool for defining diagram types of connection-
based modeling languages (languages with entities con-
nected through relations), which is one of the main kinds
of modeling languages. The main kinds of modeling lan-
guages are described in the classification of Costagliola et al.
[7]. Thus, the current work provides a solution for defining
diagram types for a group of languages that is not covered
by the existing solution (i.e., UML-DI). This group of lan-
guages is the non-UMLconnection-basedDSMLs. It isworth
being aware that this group is numerous and it is increas-
ing steeply, because of among other things the recommenda-
tions of Model-Driven Engineering (MDE) that encourage
to define new DSMLs.

This group contains DSMLs for domains such as chem-
ical compositions, multi-agent systems (MASs), databases,
software & system processes, electronic circuits and digital
electronic diagrams. Each of these domains has one or sev-
eral languages supported by one or several tools, in which
the current approach can be applied. A few examples of these
tools are MarvinSketch, ChemSketch and ChemDraw (for
chemical compositions), Prometheus Design Tool, Ingenias
Development Kit (IDK), Adelfe and Gaia (for MASs), ER
Diagram Tool and Database Design Toolset (for databases),
Visio, Eclipse SPEM Designer, and APES2, (for software
& systems processes), CircuitLab, NgSpice, LTSpice, Mul-
tiSim and TINA (for electronic circuits), and CircuitLogix,
TopSpice andMicro-Cap 10 (for digital electronic diagrams).
These tools could apply the current approach for defining dia-

123



Arab J Sci Eng (2015) 40:1359–1373 1361

gram types in their next versions, and similar future tools will
be able to apply the current approach.

Moreover, the current approach has some advantages over
UML-DI for UML tools. The first advantage concerns the
facilitation of some processing tasks in the entities and rela-
tions of a model, avoiding redundant operations when some
entities and relations appear in several diagrams. The second
advantage is the avoidance of ambiguous situations of some
processing because of the cutouts of UML-DI. These advan-
tages are further discussed in Sect. 7.1, and consequently,
this discussion is omitted here for the sake of brevity.

As an example of a tool that needs defining diagram types,
Fig. 1 shows a snapshot of the IDK tool [8]. This tool uses
a language specifically designed for modeling MASs. In the
pop-up menu, one can observe that users can add 10 differ-
ent diagram types, and packages for organizing diagrams.
In particular, this figure shows a diagram of the Interaction
Model type. The center palette shows all the kinds of mod-
eling entities that are allowed to be added in these diagram
types with the corresponding buttons. Specifically, the Inter-
action Model diagram type can contain 16 different kinds of
entities (e.g., Roles, InteractionUnits andTasks). The current
approach is useful for efficiently metamodeling all these dia-
gram types, each of which with several kinds of entities and
relationships, in amethodological and tool-supportedway. In
a similar manner, this approach is also useful for overcoming
the same problem in tools for other emergent DSMLs with
several diagram types.

3 Introduction to MOF and EMF

This section introducesMOF specification and EMF as back-
ground of the current work. It also mentions the reasons why
EMF and ECore languagewere selected for defining diagram
types with the current approach.

MOF specification [9] defines a metamodel as the defini-
tion of a modeling language. MOF uses a metadata architec-
ture consisting in four layers. These four layers are M3, M2,
M1 and M0. To begin with, M3 contains meta-metamodels,
which define metamodeling languages. For example, MOF
and ECore languages are defined with meta-metamodels.
M2 contains metamodels, which define modeling languages.
This layer is the main scope of this paper. M1 has mod-
els, which are instances of metamodels. Finally, M0 contains
data, which are instances of models.

EMF [10,11] is a metamodeling framework distributed
with the Eclipse development environment. It uses theECore
metamodeling language. As a brief introduction to the
ECore language, a list of the most relevant ECore elements
follows:

– EClass. It contains EAttributes and EReferences. The
instances of EClass can extend other instances of EClass.
In this paper, EClasses are denoted as classes.

– EAttribute. It has values of primitive types, such as inte-
gers, strings and characters. In this paper, EAttributes are
referred as attributes.

Fig. 1 Snapshot of IDK tool as a motivating example for defining diagram types

123



1362 Arab J Sci Eng (2015) 40:1359–1373

– EReference. It represents a binary relationship between
two EClasses. The instance of the first EClass contains
an instance of the EReference. The second EClass is the
EType of the instance of the EReference. Each ERefer-
ence can be eithermultiple or not. In the former case, the
EReference can be instantiated several times in the M1
layer. The EReferences are denoted as references. There
are two kinds of EReferences:

– containment: In the model, the XML element repre-
senting the container contains a new XML element
that represents the referenced object.

– non-containment: In the model, the XML element
representing the container just contains a path to
theXMLelement representing the referenced object.
The referenced object can be either in another posi-
tion of the document or in another document.

– EPackage. It represents a package of elements of the
metamodel. In this article, EPackages are referred as
packages.

EMFprovides libraries for creatingmetamodels from pro-
gramming code, in particular from the Java programming
language. These libraries are very useful for creating appli-
cations that process or create metamodels. This feature is one
of the main reasons for selecting the ECore language for the
metamodels used by DTET.

In addition, EMF can automatically generate an editor
for a modeling language from its metamodel. For instance,
DTET create a metamodel with a list of diagram-type defini-
tions. Then, EMF can automatically generate an editor from
the metamodel created by DTET. In this manner, the users
can easily have an editor of a modeling language with sev-
eral diagram types defined by the user themselves. In con-
clusion, EMF can generate editors from metamodels. This
fact is another main reason for selecting EMF and ECore
language for the present approach.

4 Technique for Metamodeling Diagram Types

This section presents a technique for metamodeling diagram
types. Section 4.1 presents the architecture for defining dia-
gram types. This architecture relies on the specific tool sup-
port called DTET. Section 4.2 mentions the modeling lan-
guage requirements for being an input of DTET. Section
4.3 introduces a guide for adapting metamodels of modeling
languages to be supported by DTET. Section 4.4 indicates
the basis of the diagram definitions. This basis considers the
diagrams as views of a shared dictionary. Finally, Sect. 4.5
describes the metamodels generated by DTET.

Fig. 2 Architecture of the presented technique

4.1 Architecture of the Technique

Figure 2 shows the architecture of the presented technique for
defining diagram types of modeling languages. The present
architecture is based on DTET. This tool receives input from
a metamodel of a modeling language, which is usually a
DSML. This metamodel is selected by the user from the File
menu. From now on, this metamodel is referred as modeling
language metamodel. This metamodel must use the structure
indicated in Sect. 4.2. Any metamodel can be adapted to this
structure by means of the preadaptation phase described in
Sect. 4.3. DTET loads all the entities and relationships from
the modeling language. This loading of entities and relation-
ships is necessary for showing these to the user afterward.

DTETprovides aGUI, inwhich the user can create several
diagram types. In this section, the diagram types are referred
as diagrams for simplification. The entities and relationships
of the modeling language are presented to the user. Both
entities and relationships are presented with the entities and
relationships hierarchies of the modeling language. The user
must link each diagram with entities and relationships of the
modeling language. After this, the user can save the defin-
itions of the diagrams, which are saved into a metamodel.
From now on, this metamodel is referred as diagram defini-
tions metamodel.

In addition,DTET can also load some diagramdefinitions.
In particular, DTET loads the diagram definitions metamod-
els that were previously created by itself. This feature makes
it easier the maintenance of the diagram definitions. This
maintenance is especially useful for CASE tools that use a
non-stable subset of a modeling language.

Both the modeling language metamodel and the diagram
definitions metamodel together (see Fig. 3) represent one
metamodel. This metamodel contains the two correspond-
ing internal metamodels. This metamodel can be used for
generating a CASE tool. This CASE tool considers both the
modeling language and the diagram definitions.

123



Arab J Sci Eng (2015) 40:1359–1373 1363

Fig. 3 The metamodel for generating the CASE tool

Keeping the twoaforementioned internalmetamodels sep-
arately has the following advantages:

– The modularity increases. The same modeling language
metamodel can be combined with several diagram defi-
nitions metamodels.

– The model processing is facilitated. Since there are two
internal metamodels, the models in M1 layer can also
be defined with two internal models. Each model is an
instance of each metamodel. These models are called
the dictionary and the diagrams model, respectively.
The dictionary can be processed automatically by a
tool ignoring the diagrams. The diagrams are considered
views of themodel in thiswork (read further in Sect. 4.4).

– A new subset of the modeling language can be defined
by means of a new diagram definitions metamodel. In
this case, not all the modeling language elements are
included in the diagrams. Sometimes, some CASE tools
only implement a subset of a modeling language.

4.2 Modeling-Language Requirements

DTET can define diagrams types mainly for connection-
based [7] languages. As our previous work [12] shows, most
current modeling languages belong to this kind. Neverthe-
less, the metamodel structure of the modeling languages
sometimes need to be adapted for being automatically inter-
preted by DTET. As discussed in our previous work [12],
all connection-based modeling languages can be represented
with the required structure (see Fig. 4) bymeans of the guide-
lines mentioned in that work. Basically, the modeling lan-
guage elements are classified into entities and relationships
and placed in the following structure:

– A package named entities. This package must contain a
class for each entity. All the classes in this package must
represent entities of the modeling language. The entities

Fig. 4 The modeling-language metamodel structure

Fig. 5 The Specification class

must be organized into a hierarchy. The classes extend
other classes in a tree hierarchy.

– Apackage named relations. The classeswithin this pack-
age must represent all the relationships organized into a
hierarchy. The classes within this package can only rep-
resent relationships.

– A package named specification. It must contain a class
called Specification (see Fig. 5). The instance of this class
must be the root element of the M1 model. This class
must have twomultiple containment references. One ref-
erence must point to the root of the entity hierarchy, and
the other must point to the root of the relationships hier-
archy. In this manner, the instance of the Specification
class can contain any entity or relationship at M1 level.

– Other packages. These packages can contain classes of
any type. For instance, the example of the Fig. 4 has
an additional package, which is called association_ends.
This package contains a class for each relationship end.
The goal is to define attributes in the relationship ends.
These relationship ends are called roles in themetamodel
literature [13].

It is worth mentioning that, if the spatial positions of
diagram elements are represented in another metamodel,
this technique and DTET can also support Geometric-based
modeling languages [7] (in this case, all the elements are clas-
sified as entities) and hybrid modeling languages between
connection-based and geometric-based.

4.3 Pre-adaptation Phase

For being possible that DTET supports a metamodel of a
CASE tool, it is usually necessary that practitioners have to
perform a preadaptation phase. In this phase, practitioners
must follow the following steps:

123



1364 Arab J Sci Eng (2015) 40:1359–1373

1. Translation to ECore: This step is only necessary in
metamodels that are not alreadydefined inECore. If nec-
essary, practitioner must translate the metamodel from
the corresponding metamodeling language to ECore.
This translation is encouraged to be performed auto-
matically to save effort and time. Our previous work
already shows how to perform translations between dif-
ferent metamodeling languages [14], and it is omitted
here for the sake of brevity.

2. Classification of entities and relations: Based on the
fact that the current approach is applied to connection-
based languages (as stated in Sect. 4.2), by definition the
language should have entities and relations. This step
classifies the existing metamodeling elements between
the categories (1) entities, (2) relations and (3) others.

3. Adaptation of entities: Practitioners observe whether all
the entities are within the same package. In this case, the
package must be safely renamed as entities (by refac-
toring with the EMF Eclipse tool). Otherwise, a new
package called entities must be defined, and all the enti-
ties must be safely moved to this package. Usually, all
the entities are within a hierarchy with a single root. If it
is not the case, practitioners define a new general entity,
and all the entities without parent must be established
as children of this new general entity.

4. Adaption of relations: Similarly to the previous step, if
all the relations belong to the same package, this must
be safely renamed. Otherwise, all the relations must be
safely moved to a new package called relations. If there
is not a hierarchy of relations with a single root, all the
relations without parents must be set as children of a
new general relation.

5. Definition of the specification: Find the element that is
the root in M1 level, and observe whether it has multi-
ple references to the roots of the entity hierarchy and the
relation hierarchy. If not, practitioners must define these
references. Then, this element must be safely renamed
as Specification and placed in a package called specifi-
cation.

Once the aforementioned steps have been followed, prac-
titioners can load the correspondingmetamodel of themodel-
ing language from the Filemenu ofDTET.With this preadap-
tation phase, DTET can assist practitioners in defining the
diagram definitions metamodels for different CASE tools.

4.4 Diagrams Modeled as Views

Models of systems sometimes are huge. Huge models are
usually difficult to be understood by designers. Hence, divi-
sion of models in smaller pieces is quite common in the

CASE tools history (Rational Rose, BoUML, ArgoUML and
Together).

In the current approach, the model of a system is consid-
ered to be an indivisible whole since all their elements are
usually connected between each other. Then, the diagrams
are considered views of the whole but not parts of it.

The view term is used in the database terminology, where
the user can see only some rows of a database table. The view
term is also used in the software design pattern terminol-
ogy. For instance, theModel-View-Controller design pattern
determines that a view is a piece of the model presented in a
particular way.

The idea of having separately the logical model and the
views is especially important in the CASE tools that can
process models. For example, IDK [8,15] generates the pro-
gramming code from a MAS model.

A same element can take place in two different diagrams.
In fact, this element is supposed to be a single element. For a
CASE tool, if themodel was just the set of diagrams, it would
be difficult to process the elements that take place in several
diagrams. For instance, in a CASE tool, when an element
changes in one diagram, it should change automatically in
the other diagram. In addition, when generating code, all
elements of a model should be considered together and once.

In conclusion, the presented technique defines the dia-
grams as views of the model. An instance of a modeling
language metamodel root contains all the entities and rela-
tionships of M1 layer. This instance is denoted as dictio-
nary. In the dictionary, each element (entity or relationship)
is represented only once.An instance of a diagramdefinitions
metamodel has diagrams ofM1 layer. These diagrams do not
contain the elements. Instead, these diagrams point to the ele-
ments of the dictionary. A single element in the dictionary
can be referenced by several diagrams. Thus, the diagrams
are not containers of elements but views of the dictionary.

4.5 The Diagram Definitions Metamodel with the ECore
Language

This section describes how to represent the diagram defini-
tions metamodel with the ECore language. The metamodels
generated by DTET use this representation.

As mentioned in Sect. 4.4, the goal is to define diagrams
as views of the dictionary of elements. The key is to properly
combine the containment and non-containment references.
These two kinds of references were described in Sect. 3. The
dictionary has containment references. Then, the dictionary
contains the entities and relationships. The diagrams have
non-containment references to the entities and relationships
of the dictionary. Thus, the diagrams contain neither the enti-
ties nor relationships. The diagrams just have references to
the elements at the dictionary.

123



Arab J Sci Eng (2015) 40:1359–1373 1365

In particular, DTET creates diagram definitionsmetamod-
els with a specific structure. Let <name> be the diagram
name defined by the user. Then, a diagram definition is rep-
resented with the following elements:

– A class called <name>Diagram for the diagram body.
This class is placed in a package called diagrams. The
class has two containment references:

– The <name>DE reference. It references a class
called <Name>DE, which is described below.

– The <name>DR reference. It references a class
called <Name>DR, which is also described below.

– A class called<Name>DE. It has amultiple non-contain-
ment reference for each entity included in the diagram
called <name>. The entities are defined in the modeling
language metamodel. The <Name>DE class is situated
in a package called de.

– A class called <Name>RE. It has a multiple non-
containment reference for each relationship included in
the diagram called <name>. This class is similar to
<Name>DE. The difference is that this class references
relationships instead of entities. The <Name>RE class is
placed in a package called dr.

In this manner, the diagrams keep separately the references
to the entities and the references to the relationships.

Figure 6 shows an example of a excerpt of particular
diagram-type definition within a metamodel, following the
current approach. Specifically in this example, the meta-
model defines a diagram type called InteractionModelwithin
the Ingenias language. This language is aimed at modeling
MASs, and this diagram type determines the interactions
among agents. In particular, this diagram type includes the
InteractionUnit, Task, Role and Agent entities. The agents

Fig. 6 The Interaction diagram type of the Ingenias language, with
continuous arrows for containment references and discontinuous arrows
for non-containment references

are the autonomous entities within the system, and the roles
represent pattern behaviors. An interaction is composed of
several interaction units, which represent the messages inter-
changed among different agents. The tasks are executed as
result of receiving or sending a specific message. The IIniti-
ates, IColaborates andUIPrecedes relationships are included
in this diagram type. IInitiates associates an agent that sends
a specific message executing a particular task, while ICo-
laborates does the same but for the reception of a message.
Finally, UIPrecedes determines the order in which the inter-
action units are interchanged in the interaction.

Besides the aforementioned metamodeling elements, the
diagram definitionsmetamodel needs to have other elements:

– A class called GeneralDiagram (see Fig. 6). All the dia-
grams must extend this class in the metamodel.

– A class called ConcreteSpecification (see Fig. 7). The
instance of the ConcreteSpecification class contains the
diagrams of the instance models in M1 layer. For this
purpose, this class has a containment reference called
diagrams of GeneralDiagram type. This class extends
the Specification class.

Finally, there are two possible configurations for the
instance models in M1 layer. These configurations are the
following:

– The instance model in M1 layer is represented with
only one file. This file is an instance of the Concrete-
Specification class of the diagramdefinitionsmetamodel.
The dictionaries are kept in this class bymeans of the ref-
erences that are inherited from the Specification super-
class. This instance also contains the diagrams.

– The instance model in M1 layer is represented with two
files. The first file is an instance of the Specification class
of the modeling language metamodel. The second file
is an instance of the ConcreteSpecification class of the
diagram definitions metamodel. In this manner, the dic-
tionary and the diagrams are also kept separately in two
files in the M1 layer. In most cases, this work recom-
mends to use this option because it is more modular than
the other option.

Fig. 7 The concreteSpecification class

123



1366 Arab J Sci Eng (2015) 40:1359–1373

Fig. 8 DTET, the presented tool for metamodeling diagram types

5 DTET

DTET allows users to define diagrams types for most model-
ing languages, as indicated in Sect. 4.2. Once the users have
defined all the diagram types, DTET generates code with the
ECore metamodeling language, and this code constitutes a
particular diagram definitions metamodel.

The GUI of DTET is presented in Fig. 8. On the left side,
the diagrams are listed. Above the diagrams list, there are two
buttons with the New and Remove labels. The user can create
a new diagram or remove an existent diagram, respectively,
by means of these two buttons.

On the right side of the GUI, which is wider than left side,
there is a panel for creating a diagram type. On the top of this
panel, there is an edit field for introducing the nameof the new
diagram. Below this edit field, there are two selection areas,
respectively, for entities and relationships. In the first area,
the user can select the entities of the modeling language for
including them on the new diagram type. The user selects an
entity from the tree hierarchy of entities. Then,when pressing
the button with label “>>”, the selected entity is added to the
selected entity list on the right. In the entity hierarchy of the
GUI, the background color of the selected entities changes.
The goal of this change of color is to inform which entities
of the hierarchy are already selected. The button with label
“<<” provides the possibility of removing an entity from
the selected entities list.

It is worth highlighting that, when adding an entity from
the hierarchy to a diagram type, it is not necessary to select
any of the descendant entities. The reason is that the hierar-
chy considers a Is_A relationship between an entity and its
parent. Thus, when an entity is included, all its descendants
are assumed to be included.

The mechanism for selecting relationships for the new
diagram type is similar to the entity selectionmechanism.The
relationships are selected from the relationships hierarchy.

When the user finishes defining the whole diagram type, the
user presses the Finish button. Then, the new diagram type
is added to the diagrams list.

Finally, on the File menu, there are three options. Firstly,
the user can load a modeling language metamodel, and the
tool updates the hierarchies of entities and relationships. Sec-
ondly, the user can save a list of diagram definitions. DTET
creates a diagram definitions metamodel. Thirdly, the user
can load a diagram definitions metamodel, which can have
been previously created by DTET.

6 Evaluation

DTET has been evaluated by comparing it with other tools,
following a quantitative fixed design type with a experiment
strategy according to the empirical strategies proposed by
Wohlin et al. [33]. This evaluation is aimed at comparing
DTET with other alternatives in terms of average time for
defining diagram types and average number of errors in these
definitions.

In particular, Sect. 6.1 introduces the context of this evalu-
ation, arguing the reasons for selecting certain alternative edi-
tors and certain CASE tools as scenarios for the evaluation.
Section 6.2 describes the subjects that have been selected for
the current experimental evaluation. Section 6.3 mentions
the hypothesis of the evaluation, decomposing it in simpler
hypotheses that can be proved or refuted. Finally, Sect. 6.4
presents the results of the experiments, and analyzes these
with statistical tests and charts.

6.1 Context

To the best of authors’ knowledge, there is not any other
tool specifically aimed at defining diagram types with
metamodels. Therefore, DTET has been compared with
general-purpose editors for metamodels. These editors usu-
ally depend on the metamodeling language. The most com-
mon metamodeling languages are ECore and MOF, con-
sidered the high number of metamodels defined in these
languages in comparison with the number of metamodels
defined in other languages. Bearing in mind those two lan-
guages, ECore language has been selected for choosing alter-
natives because the current technique is also representedwith
this language. In this manner, the comparison is not affected
by the peculiarities of the metamodeling languages. Consid-
ering the ECore metamodeling language, the main editors
are those from the Eclipse foundation, as this foundation is
the one that defined and promoted ECore. Eclipse provides
the EMF editor as the basis for defining ECore metamodels.
This is the most popular editor for defining ECore metamod-
els, and subsequently, EMF editor has been selected for the
current comparison. ECore metamodels can also be edited

123



Arab J Sci Eng (2015) 40:1359–1373 1367

with a text editor, which is one of the most flexible editors
for this purpose, but it also needs a lot of expertise in the lan-
guage. Text editor has been considered flexible and popular
enough to be selected as another alternative for this com-
parison. There are other Eclipse plugins that are related to
ECore metamodels, such as the Graphical Modeling Frame-
work (GMF) and EcoreTools. GMF was discarded since it
is not flexible enough to define diagram types because of
its structure. EcoreTools extends EMF, but it is very similar
regarding the definition of ECore metamodels. Thus, only
one editor is selected from EMF and EcoreTools. Specifi-
cally, EMF editor was selected because it is more popular.

There are numerous CASE tools that define connection-
based modeling languages with diagram types. For instance,
regarding UML tools, there are plenty of these such as
StarUML,BoUML,Dia,ArgoUML,Rational RoseXDEand
Microsoft Visio, among others. From these, BoUML [19]
has been selected for this comparison because (1) it is one
of the most popular tools; (2) it is free, and consequently, it
is accessible for a wider audience, including the testers that
participated in this experiment; and (3) it is strictly related
to one modeling language metamodel, i.e., the UML meta-
model [27,28] (e.g., others such as Dia manages more lan-
guages than UML). Considering domain-specific tools, there
are many domains that use these tools. Among others, exam-
ples of these domains are representation of chemical com-
positions, MASs, databases, processes, telephone nets and
electronic circuits. The domain of MASs has been selected
since (1) it has many modeling languages (e.g., Prometheus,
Ingenias, Adelfe and Gaia) supported with tools with sev-
eral diagram types, and (2) most of these languages include
a great amount of entities and relationships. In particular,
this evaluation has chosen the IDK [8] tool supporting the
Ingenias language [15], because (1) it is one of the most
popular tools in this domain, (2) its language has one of
the larger metamodels in this domain, being this useful for
comparing definition times with metamodel sizes, and (3)
it includes a model-driven approach for automatically gen-
erating programming code, which makes it interesting for
many practitioners in this domain. Finally, the domain of
processes has been selected due to the facts that (1) it sup-
ports an standard metamodel, i.e., the Software & Systems
Process Engineering Metamodel (SPEM) [29], and (2) it is
used by awide audience, i.e., developers of both software and
systems. Among other tools such as Visio and Eclipse SPEM
Designer, this evaluation chooses APES2 [17] because (1) it
is only related to the SPEM metamodel and not others, (2)
it is free and can be accessible by a wider audience, (3) the
testers already knew this tool and (4) it uses a short subset
of the metamodel, adding this variety to the evaluation when
considering different metamodel sizes.

Each of the selected tools uses diagram types, and each
of these associated with a certain number of elements. Con-

Table 1 Features of the diagram types of CASE tools

Diag. Elem. Size (Diag. + Elem.)

IDK 10 157 167

BoUML 6 63 69

APES2 1 5 6

Total 17 225 242

cretely, Table 1 indicates the number of diagram types (in
Diag. column), the number of associations between the dia-
gram types and the element types (in Elem. column), and the
sum of these two columns as the size of the definitions of
diagram types (in Size column).

There was a version of the IDK metamodel that already
satisfied the requirements established in Sect. 4.2. However,
it was necessary to adapt the subset of the UML metamodel
for BoUML and the subset of SPEM for APES2. In this
manner,DTETwas able to support thesemetamodels of these
CASE tools. These preadaptation phases followed the steps
determined in Sect. 4.3.

6.2 Selection of Subjects

The current experiments were experienced by 36 students of
the Software Architecture Advanced Design subject of the
Master Degree in Software Architecture, and three experts in
MDE with PhD degree. The background of all these testers
have in common to know the principles of MDE and the
UML-DI standard and to be used to CASE tools with differ-
ent diagram types. In addition, all of them had defined several
DSMLs before this experiment. These testers were randomly
divided into three groups, each of which with an expert with
PhD degree and 12 students randomly selected. All themem-
bers of the three groups defined all the diagram types of the
different CASE tools, using different tools (text editor, EMF
editor, DTET). In order to avoid the influence of testers that
remember the diagram types of a CASE tool when redefining
these diagram types, each group of testers followed a differ-
ent order. Specifically, the first group followed the order of
editors (text, EMF and DTET), the second one (EMF, DTET
and text) and the third one (DTET, text and EMF).

Regarding the geographical distribution of testers, 16 stu-
dents are fromSpain, 10 students are fromDominicanRepub-
lic, 8 students are from Colombia and 4 students are from
Ecuador. In addition, two PhD testers are from Spain, and
one PhD tester is from France.

6.3 Hypothesis

The hypothesis of this evaluation is that practitioners need
less time and make less errors when defining diagram types

123



1368 Arab J Sci Eng (2015) 40:1359–1373

Table 2 Hypotheses of the evaluation

HypothesisDefinition

HT0 Practitioners need a similar amount of time for defining
diagram types with DTET and each alternative

HT1 Practitioners need different amounts of time for defining
diagram types with DTET and each alternative with a
significant difference

HE0 Practitioners make a similar amount of errors for defining
diagram types with DTET and each alternative

HE1 Practitioners make different amounts of errors for defining
diagram types with DTET and each alternative with a
significant difference

with DTET than with the alternatives with statistically sig-
nificant differences. In particular, this hypothesis has been
converted in two simpler null hypotheses and their alterna-
tives for conducting the statistical analysis. These hypothe-
ses are named as HT for the hypotheses regarding time, and
as HE for the hypotheses regarding the numbers of errors.
In particular, HT0 and HE0 are the null hypotheses, while
their alternative hypotheses are called HT1 and HE1. Table 2
defines all these hypotheses.

6.4 Analysis of the Results

For all the testers, when defining the diagram types of each
tool, the necessary time and the number of errors were mea-
sured for each editor. In the case of DTET, the time of the
preadaptation phase and the time of using the tool have been
measured separately, and the sum of these times is consid-
ered in the comparison. The averages of these results are
presented in Table 3. The definition of the diagram types of
all tools took 6h and 20min with the text editor in average,
and 65.95 errors were encountered in average. The diagram-
type definitions took less time (about 2 h and 27 min) and
implied fewer errors (i.e., 10.35 errors) with the EMF edi-
tor. However, the best results are obtained with DTET (only
1 h and 5 min and 0.11 errors). The errors in these experi-
ments were mainly human errors. For example, in the case of
the text editor, the errors were mainly related to misspelling
and syntax. In the case of the EMF editor, most errors were
related to incorrectly set the containment and upper bound
properties of the references. These errors make it impossible
the instantiation of models. The errors with DTET were only
related with the wrong association of existing elements with
diagram types, for instance, due to the similarity of some
entity names (e.g., DeploymentUnitByTypeEnumInitMS and
DeploymentUnitByTypeMSEntity in the IDK).

In order to determinewhether the differences of the results
are statistically significant, this work has applied statistical
tests. Firstly, this analysis applies the Shapiro–Wilk test of
normality. The data concerning the number of errors in the

Table 3 Comparison of DTETwith the text editor and EMF editor con-
sidering the time (hh:mm:ss) and the number of errors of the definition
of diagram types

Text editor EMF editor

Time Errors Time Errors

IDK 4:32:07 43.71 1:40:33 7.02

BoUML 1:36:20 20.22 0:42:31 3.33

APES2 0:12:15 2.02 0:04:20 0.00

Total 6:20:42 65.95 2:27:24 10.35

DTET

Pre-adaptation Tool time Time Errors

IDK 0:00:00 0:38:50 0:38:50 0.08

BoUML 0:10:11 0:13:05 0:23:16 0.03

APES2 0:02:30 0:01:10 0:03:40 0.00

Total 0:12:41 0:53:05 1:05:46 0.11

Table 4 Results of the Mann–Whitney tests for time

Null
hypothesis

Compared
editors

Sig. Difference of
means (s)

Decision

HT0 Text editor
and DTET

0.000 −18,896 Reject the null
hypothesis

HT0 EMF editor and
DTET

0.000 −4898 Reject the null
hypothesis

EMF editor passed the test of normality (significance 0.372).
However, this test of normality failed for the data regarding
errors in the other editors and the data regarding time in all
the editors (significance below 0.050 in all cases). For this
reason, this analysis applies a non-parametric test.

In particular, this work applies the Mann–Whitney test
for comparing DTET with each alternative, as this analysis
is performed with three independent samples. These tests are
applied considering the sum of time and the sum of errors
of the three scenarios for each subject. Table 4 presents the
results of this test for time of defining diagram types. In this
table, sig. stands for statistical significance. One can observe
that this test rejects the HT0 null hypothesis for, respec-
tively, the differences between DTET and both alternative
editors. Hence, the alternative HT1 hypothesis is concluded.
Differences of time between DTET and each of the alterna-
tives are statistically different (with a significance of 0.000 in
both cases). This table also includes the difference of means,
which are -18896 seconds between text editor and DTET and
−4898 seconds between EMF editor and DTET. The time is
less with DTET than both alternatives.

Table 5 presents the results of Mann–Whitney test for the
number of errors. One can observe that HE0 null hypothe-
sis is rejected for both alternative editors. Thus, practitioners
make different numbers of errors with DTET and each of

123



Arab J Sci Eng (2015) 40:1359–1373 1369

Table 5 Results of the Mann–Whitney tests for errors

Null
Hypothesis

Compared
Editors

Sig. Difference of
means

Decision

HE0 Text editor
and DTET

0.000 −65.84 Reject the
null
hypothesis

HE0 EMF editor
and DTET

0.000 −10.24 Reject the
null
hypothesis

Table 6 Comparative percentages of time and errors

Time Errors

DTET/text
(%)

DTET/EMF
(%)

DTET/text
(%)

DTET/EMF

IDK 14.27 38.62 0.18 1.14 %

BoUML 24.15 54.72 0.15 0.90 %

APES2 29.93 84.62 0.00 DIV/0

Average 22.79 59.32 0.11 1.02 %

the two alternatives, with statistically significant differences
(significance of 0.000 in both alternatives). Thus, the alter-
native HE1 hypothesis is confirmed for both editors. The
number of errors is less with DTET than each alternative. In
particular the differences of means are -65.86 errors between
text editor and DTET, and -10.24 errors between EMF editor
and DTET.

The ratios of times between DTET and each of the alter-
natives have been calculated for each CASE tool scenario.
Table 6 presents these ratios. This table also includes the
ratios of the number of errors with DTET and each of the
alternatives. In average, one can observe that with DTET
practitioners only needed the 22.79% of the time that they
needed with the text editor and the 59.32% of the time with
EMF editor. Regarding the errors, the ratios were consid-
erably lower. Specifically, the number of errors with DTET
was only 0.11% of the errors with the text editor and 1.02%
of the errors with EMF editor. Therefore, practitioners spent
less time for defining types with DTET than the considered
alternatives, and they made much less errors in this activity.

The data of the experiments are presented graphically sep-
arating the data about time from the data about errors. In par-
ticular, Fig. 9 presents a comparison of the average times of
defining the diagram types of eachCASE tool with theDTET
and the alternatives. As one can observe, practitioners needed
less time with the current approach (considering the sum of
preadaptation phase and definition with DTET) than with the
alternatives for each considered CASE tool. Moreover, Fig.
10 presents the percentage of average times spent with DTET
divided by each alternative. These percentages are presented
in a dispersion chart considering the sizes of diagram types

Fig. 9 Comparison of times for defining diagram types

Fig. 10 Comparison of time percentages regarding the sizes of dia-
gram types

Fig. 11 Comparison of errors when defining diagram types

in the abscissas. One can observe that the percentage of time
of using the current approach with DTET in comparison with
alternatives decreases when modeling larger diagram types.
Thus, the current approach is more efficient in relation with
the analyzed alternatives when the diagram types are larger.

Regarding the errors, Fig. 11 shows the errors of alterna-
tives and DTET, and one can observe that DTET has much
fewer errors than alternatives. In particular, Fig. 12 shows
the percentages of errors regarding the sizes of definitions of
diagram types. As illustrated with this figure, DTET has less
than 1.20% of errors for any tool and alternative considered.

In summary, the definition of the diagram types takes less
time with DTET than with the other alternatives, and this

123



1370 Arab J Sci Eng (2015) 40:1359–1373

Fig. 12 Comparison of percentages of errors regarding the sizes of
diagram types

difference becomes more notorious in larger definitions of
diagram types. In addition, DTET barely let users make mis-
takes. Making mistakes is more probable with the other con-
sidered alternatives.

7 Discussion About Related Works

This section compares the current work with other similar
approaches. Firstly, Sect. 7.1 discusses the advantages and
downsides of this approach in comparison with the UML-
DI approach, and Sect. 7.2 analyzes other related works. The
current approach is compared both quantitatively and qualita-
tively, following the recommendations of Wohlin et al. [33].
In particular, the previous section quantitatively compared
DTET with other alternative tools that can define diagram
types. Section 7.3 now compares DTET with the alternatives
from a qualitative point of view, mentioning both advantages
and drawbacks of DTET. It also discusses some features of
the underlying technique.

7.1 Comparison with the UML-DI Approach

The UML-DI specification [4] provides the definition of the
UMLdiagrams. InUML-DI, aDiagrammay be used to show
an extract of an existing Diagram without the need of cre-
ating the used DiagramElements more often than once. For
example, a large Diagram may be shown through several
smallerDiagrams for a better representation. To achieve this,
the large Diagram would own all its containing Diagram-
Elements while the cutout Diagrams would only contain
References to the originalDiagramElements. References and
stand-aloneDiagramElementsmay be used independently in
the same diagram.

The UML-DI approach has some disadvantages:

– Processing of models is difficult in some cases. Each
CASE tool designer must decide what to do with the

cutouts of diagrams. If the cutouts are processed, a same
elementmaybeprocessed twice. If not,maybe some rela-
tionships are missed. It is possible to process the models
but a bit confusing. Some CASE tools, such as BoUML
[19] and Rational Rose [30], use a different internal rep-
resentation from the model representation to solve the
mentioned problem.However, the experts onDSMLs [? ]
discourage this practice.

– There can be some undetermined situations. Maybe a
diagram has a cutout of another diagram. In this cutout
of the diagram, there can be another cutout of another dia-
gram. In this case, each CASE tool designer must decide
whether, in the first diagram, the cutout is taken from
the second or the third diagram. This decision is relevant
because, if the user removes the second diagram, what
happens with the cutout of the first diagram is not deter-
mined. Implementing all these situations in a CASE tool
is quite expensive compared to the approach presented
in this paper.

On the contrary, the current approach defines models with a
single container (dictionary) of all the elements (entities and
relationships), and there are several views (diagrams) of this
single container. In this manner, in the proposed approach,
the processing of models usually only requires processing
the dictionary instead of processing the diagrams, the cutouts
and their dependencies. Moreover, in the present approach,
each diagram directly references the elements in the dictio-
nary avoiding any dependency with any other diagram, and
consequently preventing diagrams from undetermined situ-
ations.

Furthermore, the present approach can be applied to a
large variety of modeling languages and can define new dia-
gram types. By contrast, UML-DI can be only applied to
UML and does not consider defining new diagram types.

Nevertheless, UML-DI describes useful information that
this paper does not. For example, the inclusion of spatial
information is not described in this paper. The description of
this information is left for future work.

7.2 Discussion of Other Related Works

To begin with, in 2002, Kalnins et al. [22] introduce the
principles of a generic modeling tool. This work uses the
diagram patterns. The diagram patterns are not the same as
diagram types, but they have similarities. These diagram pat-
terns are common constructions in the modeling diagrams.
By contrast, diagram types establish certain restrictions on
what entities and relationships a diagram type can contain.

Related to our work, Celms et al. [20,24] present a tech-
nique for defining diagram types. However, their approach
uses general-purpose tools for the definition of diagram
types. Since the current work is based on the specific tool

123



Arab J Sci Eng (2015) 40:1359–1373 1371

Table 7 Qualitative comparison of DTET with alternatives

Text Editor EMF Editor DTET

Possible Errors

Spelling errors in the ECore keywords Yes No No

Errors in the XML syntax Yes No No

Conceptual errors in the structure of diagram
definitions metamodels

Yes Yes No

Spelling errors in the domain-specific entities and
relations

Yes Yes No

Wrong associations of elements with diagram types
according to the domain

Yes Yes Yes

Features

GUI specifically aimed at defined diagram types No No Yes

Friendly way of setting associations between
diagram types and elements

No No Yes

Required expertise from users High High Low

Required preadaptation phase No Only translation
to ECore

Yes

Inclusion of new elements in the modeling language Yes Yes No

support for the diagram-type definition, the definition of dia-
gram types is faster and safer from human errors with the
current technique than with their technique. In addition, their
work is based on the definition of mappings for the definition
of diagram types. Conversely, the present technique defines
a metamodel for defining the diagram types. One of the main
advantages is that the use of themetamodel makes the instan-
tiation of diagrams clear.

Moreover, the definition of diagrams types can be use-
ful in several contexts. To begin with, Koskinen et al. [23]
propose operations to compare, merge, slice and synthesize
UML diagrams. These operations are based on the UML dia-
gram types. In addition, Boronat et al. [18] provide themerge
operation for class diagram integration. When considering
diagram types, the formal diagram-type definitions can be
useful. Furthermore, Alanen et al. [16] discuss how to cre-
ate and update diagrams after model transformations. This
work uses the diagram definitions. Thus, diagram-type defi-
nitions can be important when creating or updating diagrams
after model transformations. Heuer et al. [21] determine a
mechanism for assessing the variability in two different dia-
gram types, which are UML activity diagrams and petri nets.
A normalized way of formalizing different diagram types,
as the current work proposes, can be useful for works that
present a common research in different diagram types.

Finally, in the metamodeling literature, there are several
works that define several diagram types. For instance, Wag-
ner [32] presents a metamodel for MASs with several dia-
gram types. In addition, Vroom [31] presents an example of
industrial design engineering by means of a metamodel that
has six diagram types. Moreover, Molina et al. [26] define
a DSML for specifying interactive groupware applications

with a metamodel with ECore. This DSML has several dia-
gram types and is supported with a tool for designing mod-
els and another one for validating these models. Laleau and
Polack [25] define new diagram types for Information Sys-
tems (IS) departing from UML diagrams, conforming the
new modeling language called IS-UML. In particular, they
define IS transactions with a new diagram type that is the
combination of two types of UML diagrams (collaboration
and state diagrams). They also introduce a new diagram type
that extends theUMLclass diagrams.However, none of these
works proposes a technique formetamodeling diagram types.

7.3 Qualitative Comparison

This section comparesDTETwith the considered alternatives
(i.e., text editor and EMF editor) from a qualitative point of
view, with a flexible design type based on the case study
strategy of Wohlin et al. [33]. This qualitative comparison is
summarized in Table 7. One of themain advantages of DTET
is that users can only make a possible kind of mistake, which
is that they wrongly associates an existing element of the
language with a diagram type, according to the domain. For
instance, this may occur if there are several elements of the
language that have similar names.

The mistake of misspelling domain-specific entities and
relations is not possible with DTET, since the user selects
these entities and relations from two lists of choices. How-
ever, this is possible with the text editor, and with the EMF
editor if the references to external files are not explicitly
checked.

DTET does not allow users to define diagram definitions
metamodels with wrong structures, as it manages this struc-

123



1372 Arab J Sci Eng (2015) 40:1359–1373

ture. However, these errors are possible in the alternatives.
Finally, there are some errors that are only possible in the
text editor, such us spelling errors in ECore keywords and
syntax errors of the XML structure.

DTET has other advantages over the alternatives such
as a GUI specifically designed for defining diagram types,
and its friendly way of setting associations between diagram
types and elements (i.e., by selecting elements from lists of
choices). Another advantage is that the required metamod-
eling expertise of users can be low in comparison with the
expertise level necessary for defining diagram types with the
alternatives.

Nonetheless, DTET has some few disadvantages in com-
parison with the alternatives. Firstly, DTET usually needs a
preadaptation phase to adjust the metamodel of the model-
ing language, so that DTET can process it and allow users to
define diagram types. This is not necessary in the text editor.
In the case of the EMF editor, it is only necessary to translate
the metamodel to ECore, only if it is represented with a dif-
ferent language. Another downside of DTET is that it only
allows users to define the diagram definitions metamodels
and sometimes users can miss the possibility of changing the
modeling language metamodels within the same tool. Oppo-
sitely, this is allowed in the alternatives.

Regarding the underlying technique of the current
approach, this paper has already mentioned the main advan-
tages of the current approach over other options, and these
advantages are omitted here for the sake of brevity. However,
this section discusses some drawbacks that are notmentioned
before so that researchers can have a complete view of the
present approach. In particular, the use of a unique dictio-
nary for all the diagrams may imply some negative features,
especially in distributed modeling. For instance, the unique
dictionary is a single point of failure. In other words, if the
dictionary fails, the modeling of all diagrams would stop
working. In the case of distributed modeling, this single-
point-failure problem can be notorious, since it is possible
that the device with the dictionary stops working while the
other devices continue running. In this case, the users of the
other devices would suffer the failure.

Another disadvantage of the unique dictionary is that it
can become a performance bottleneck when there are many
diagrams. This performance bottleneck can be especially
noticed if several diagrams are simultaneously changed, for
example, in distributed modeling applications.

8 Conclusions and Future Work

A technique is presented for defining diagram types of
modeling languages by means of metamodels. This tech-
nique mainly covers the gap of the literature of non-UML
connection-based DSMLs, which is not supported by its

alternative standard (i.e., UML-DI). It also has some advan-
tages for CASE tools of UML over UML-DI. The present
technique is supported by a tool called DTET. This tool
receives input from a metamodel of a modeling language
and provides a GUI in which users can define diagram
types. Then, DTET generates a metamodel that defines the
diagram types. The modeling language and diagram types
are separately kept in different metamodels. Some CASE
tools can be generated from these metamodels. The models
that are instantiated with this technique can be processed
more easily than in other approaches, and some undeter-
mined situations are avoided. DTET is experimentally shown
to be faster for defining diagram types than the alterna-
tive metamodel editors. This difference is statistically sig-
nificant and is more notorious for larger definitions of dia-
gram types. Experimentation also shows that DTET is less
error-prone for defining diagram types than the alterna-
tive editors with statistically significant differences. Finally,
DTET has also been compared with the alternatives from
a qualitative point of view, analyzing its advantages and its
downsides.

DTET is planned to be integrated in Eclipse as a plugin
in the future. In particular, this plugin will create DSML
projects that will be observed in the projects tree window,
and each of these will be able to contain a modeling language
metamodel and a diagramdefinitionsmetamodel. The second
metamodel will be able to be edited with either the DTET or
the EMF editor, both of which will be able to be displayed
in the central window of Eclipse. In this manner, within an
Eclipse environment, designers can easily createmetamodels
for diagram types with a customized tool and open themwith
the EMF editor. The toolbar and pop-up menus will include
options for creating a diagram definitions metamodel, saving
it, and modifying an existing one.

Furthermore, the presented technique and DTET cannot
define certain aspects concerning diagrams. Firstly, it cannot
define nested diagrams, which are diagrams that are included
in other diagrams. Secondly, certain constraints involving
groups of elements cannot be defined only with DTET. For
instance, this could be necessary for defining constraints for
supporting code generation in some DSMLs. The solutions
for these problems are planned to be further considered in
the future in the proposed technique and DTET. For instance,
nested diagrams can be defined by using diagram elements
that can contain references to other diagrams. The additional
constraints can be defined by means of the Object Constraint
Language (OCL), and these constraints will be able to be
introduced from DTET.

Finally, this work can be improved with an explicit
description of the spatial information in diagrams. This
improvement will probably alter neither the presented tech-
nique nor DTET, because the spatial information is planned
to be included in a separate metamodel.

123



Arab J Sci Eng (2015) 40:1359–1373 1373

References

1. Tayan, O.; Al BinAli, A.M.; Kabir, M.N.: Analytical and computer
modelling of transportation systems for traffic bottleneck resolu-
tion: aHajj case study. Arab. J. Sci. Eng. 39(10), 7013–7037 (2014)

2. Hassan, A.; Kassem, A.M.:Modeling, simulation and performance
improvements of a PMSM based on functional model predictive
control. Arab. J. Sci. Eng. 38(11), 3071–3079 (2013)

3. Memon, R.N.; Salim, S.S.; Ahmad, R.: Analysis and classifica-
tion of problems associated with requirements engineering educa-
tion: Towards an integrated view. Arab. J. Sci. Eng. 39(3), 1923–
1935 (2014)

4. OMG:UMLDiagram Interchange Specification. Tech. rep., Object
Management Group, http://www.omg.org/ (Last Accessed 18 Dec
2014), (2006-04-04)

5. Rasool, G.; Mäder, P.: A customizable approach to design patterns
recognition based on feature types. Arab. J. Sci. Eng. 39(12), 8851–
8873 (2014)

6. Alshayeb, M.; Eisa, Y.; Ahmed, M.A.: Object-oriented class sta-
bility prediction: a comparison between artificial neural network
and support vector machine. Arab. J. Sci. Eng. 39(11), 7865–
7876 (2014)

7. Costagliola,G.;Delucia,A.;Orefice, S.; Polese,G.:Aclassification
framework to support the design of visual languages. J. Vis. Lang.
Comput. 13(6), 573–600 (2002)

8. Ingenias.: INGENIAS Development Kit. http://ingenias.
sourceforge.net/ (Last Accessed 18 Dec 2014), (2014)

9. OMG.: Meta Object Facility (MOF) Specification. Version 1.4.
Tech. rep., Object Management Group, http://www.omg.org/ (Last
Accessed 18 Dec 2014), (2002-04-03)

10. Budinsky, F.: Eclipse Modelling Framework: Developer’s
Guide. Addison Wesley, Boston (2003)

11. Moore, B.; Dean, D.; Gerber, A.; Wagenknecht, G.; Vanderhey-
den, P.: Eclipse Development Using Graphical Editing Framework
and the EclipseModelling Framework. IBMRedbooks, NewYork,
(2004)

12. García-Magariño, I.; Fuentes-Fernández, F.; Gómez-Sanz, J.J.:
Guideline for the definition of EMF metamodels using an entity-
relationship approach. Inform. Softw. Technol. 51(8), 1217–
1230 (2009). doi:10.1016/j.infsof.2009.02.003

13. Kelly S.: GOPRRDescription. PhDdissertationAppendix 1 (1997)
14. García-Magariño, I.; Fuentes-Fernández, R.: A technique

for defining metamodel translations. IEICE Trans. Inform.
Syst. 92(10), 2043–2052 (2009)

15. Pavón, J.; Gómez-Sanz, J.J.: Agent oriented software engineer-
ing with INGENIAS. Multi-Agent Syst. Appl. III 2691, 394–
403 (2003)

16. Alanen, M.; Lundkvist, T.; Porres, I.: Creating and reconciling
diagrams after executing model transformations. Sci. Comput.
Progr. 68(3), 128–151 (2007)

17. Apes: APES2: A Process Engineering Software. http://apes2.
berlios.de/en/links.html (last accessed 12/18/2014), (2014)

18. Boronat, A.; Carsí, J.; Ramos, I.; Letelier, P.: Formal model merg-
ing applied to class diagram integration. Electron. Notes Theor.
Comput. Sci. 166, 5–26 (2007)

19. Bouml.: BOUML: An UML Tool Box. www.bouml.fr (last
Accessed 18 Dec 2014), (2014)

20. Celms, E.;Kalnins,A.; Lace, L.:Diagramdefinition facilities based
on metamodel mappings. In: Proceedings of the 18th International
Conference, OOPSLA, pp. 23–32 (2003)

21. Heuer, A.; Stricker, V.; Budnik, C.J.; Konrad, S.; Lauenroth,
K.; Pohl, K.: Defining variability in activity diagrams and petri
nets. Sci. Comput. Progr. 78(12), 2414–2432 (2012)

22. Kalnins, A.; Barzdins, J.; Celms, E.; Lace, L.; Opmanis, M.; Pod-
nieks, K.; Zarins, A.: The first step towards generic modelling
tool. Proc. Baltic DB&IS 2, 167–180 (2002)

23. Koskinen, J.; Peltonen, J.; Selonen P.; Systä, T.; Koskimies, K.:
Model processing tools in UML. In: Proceedings of the 23rd Inter-
national Conference on Software Engineering (ICSE-01), pp. 819–
820 (2001)

24. Lace, L.; Celms, E.; Kalnins, A.: Diagram definition facilities in a
genericmodeling tool. In: Proceedings of International Conference
Modelling and Simulation of Business Systems, Vilnius, pp. 220–
224 (2003)

25. Laleau, R.; Polack, F.: Using formal metamodels to check con-
sistency of functional views in information systems specifica-
tion. Inform. Softw. Technol. 50(7), 797–814 (2008)

26. Molina, A.I.; Gallardo, J.; Redondo, M.A.; Ortega, M.; Giraldo,
W.J.: Metamodel-driven definition of a visual modeling language
for specifying interactive groupware applications: an empirical
study. J. Syst. Softw. 86(7), 1772–1789 (2013)

27. OMG.: Unified Modeling Language: Superstructure. Tech. rep.,
Object Management Group, http://www.omg.org/ (Last Accessed
18 Dec 2014), (2007-11-02)

28. OMG.:Unified Modeling Language: Infrastructure. Tech. rep.,
Object Management Group, http://www.omg.org/ (Last Accessed
18 Dec 2014), (2007-11-04)

29. OMG: Software&Systems Process EngineeringMetamodel Spec-
ification (SPEM) Version 2.0. Tech. rep., Object Management
Group, http://www.omg.org/ (Last Accessed 18 Dec 2014), (2008-
04-01)

30. Rational-Rose.: IBM Rational Software: Rational Rose Family.
http://www-03.ibm.com/software/products/en/ratirosefami/ (Last
Accessed 18 Dec 2014), (2014)

31. Vroom, R.: A general example model for automotive suppliers
of the development process and its related information. Comput.
Indust. 31(3), 255–280 (1996)

32. Wagner, G.: The agent–object-relationship metamodel: towards
a unified view of state and behavior. Inform. Syst. 28(5), 475–
504 (2003)

33. Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.C.; Reg-
nell, B.; Wesslén, A.: Experimentation in software engineer-
ing. Springer, Berlin (2012)

123

http://www.omg.org/
http://ingenias.sourceforge.net/
http://ingenias.sourceforge.net/
http://www.omg.org/
http://dx.doi.org/10.1016/j.infsof.2009.02.003
http://apes2.berlios.de/en/links.html
http://apes2.berlios.de/en/links.html
www.bouml.fr
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www-03.ibm.com/software/products/en/ratirosefami/

	A Technique for Metamodeling Diagram Types with Tool Support
	Abstract
	1 Introduction
	2 Motivation
	3 Introduction to MOF and EMF
	4 Technique for Metamodeling Diagram Types
	4.1 Architecture of the Technique
	4.2 Modeling-Language Requirements
	4.3 Pre-adaptation Phase
	4.4 Diagrams Modeled as Views
	4.5 The Diagram Definitions Metamodel with the ECore Language

	5 DTET
	6 Evaluation
	6.1 Context
	6.2 Selection of Subjects
	6.3 Hypothesis
	6.4 Analysis of the Results

	7 Discussion About Related Works
	7.1 Comparison with the UML-DI Approach
	7.2 Discussion of Other Related Works
	7.3 Qualitative Comparison

	8 Conclusions and Future Work
	References




