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Abstract Non-destructive structural damage identification
(SDI) and quantification of damage are important issues
for any engineering structure. In this study, a comparative
assessment of the damage identification capability of dif-
ferent design of experiment (DOE) methods (such as, 2k

factorial design, central composite design, Box–Behnken
design, D-optimal design and Taguchi’s OA design) used in
response surface methodology (RSM) has been carried out.
Three different structures (simply supported beam, spring
mass damper system and fibre reinforced polymer compos-
ite bridge deck) have been used for various single and mul-
tiple damage conditions to access the comparative ability of
the aforementioned methods in identifying damage address-
ing two critically important criteria: accuracy and compu-
tational efficiency. The study reveals that central compos-
ite design and D-optimal design are most recommendable
among the five considered DOE methods for SDI. Two dif-
ferent input parameter screening methods (sensitivity analy-
sis using RSM utilizing 2k factorial design and D-optimal
design, general sensitivity analysis) have been explored in
this study, and their comparative performance is also dis-
cussed. It is found that both the methods used in sensitiv-
ity analysis for the purpose of input parameter screening in
the damage identification process work satisfactorily. Per-
formance of RSM-based damage identification algorithm for
different DOE methods under the influence of noise has also
been addressed in this paper.
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1 Introduction

Damage in structures is defined by the changes to the mate-
rial and/or geometric properties of the systems, includ-
ing changes to the boundary conditions and system con-
nectivity, which adversely affect the system’s performance
[1]. Identification of damage in an existing structure is
very important to ensure the conditions of safety and ser-
viceability. Numerous methods have been developed so
far for damage detection in structures [2–9]. These meth-
ods can be broadly classified as global techniques and
local techniques. Further, both dynamic and static mea-
sures can be adopted for damage identification. In global
dynamic techniques, the structure is usually subjected to
low-frequency excitations of the order 4–100 Hz. The fun-
damental idea behind vibration-based damage identification
techniques is—the damage-induced changes in the physi-
cal properties (such as mass, damping and stiffness) will
cause detectable changes in modal properties (such as nat-
ural frequencies, modal damping and mode shapes) of the
structure. So the damage can be identified by analysing
the changes in vibration features of the structure. Several
global vibration-based algorithms have been proposed in
last two decades to locate and quantify damages in simple
structures, such as the change in natural frequency method
[10], the change in curvature mode shape method [11], the
change in stiffness method [12], the change in flexibility
method [13] and the damage index method [14]. Applica-
tion of global static techniques such as the static displace-
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ment response technique [15] and static strain measure-
ment technique [16] for damage identification has also been
explored. Local damage identification techniques rely on
localized exploration of structures, and these methods are
best to use when approximate damage location is known
a priori. Different techniques under this category are ultra-
sonic wave propagation, acoustic emission, eddy currents,
impact echo testing, magnetic field methods, electrical meth-
ods, dye penetrate testing and X-ray radiograph [17,18]. Of
late, electro-mechanical impedance (EMI) technique [19,20]
and wavelet-based approach [21–26] have been proposed for
damage identification. Advantage of these methods is that no
prior information about the responses of undamaged struc-
ture is needed. Another most promising recently proposed
global dynamic damage identification technique is based on
response surface method (RSM), which is gaining rapid pop-
ularity because of its computational efficiency. A concise
literature survey on this technique is presented in the next
paragraph.

Response surface-based damage identification algorithm
relies on model updating technique, which is based on the
modification of structural model matrices (such as mass,
stiffness, and damping) to reproduce as closely as possible
to the measured dynamic response of the actual damaged
structure. Comparisons of the updated matrices to the ini-
tial matrices provide an indication of damage and can be
used to quantify the location and extent of damage [27,28].
In response surface-based model updating techniques, the
actual finite element model is replaced by a response surface
metamodel, making the process very much computationally
efficient and cost-effective. SDI using RSM involves forma-
tion of response surface equation and inverse optimization
to achieve some target value of the responses with the help
of different statistical and mathematical techniques. RSM
was primarily proposed by Box and Wilson [29] for appli-
cation in chemical industry. After that, the methodology has
been modified and enriched rigorously for achieving differ-
ent objectives. Comprehensive description about RSM can
be found in [30,31]. RSM has been widely applied in many
fields of science and technology over time [32–40]. But the
state of application of RSM in structural dynamics problems
or particularly in damage identification problems is still very
scarce. Some of the applications of RSM in structural dynam-
ics related problems can be found in [41–44]. Cundy [45]
gave a preliminary idea of using RSM in damage detection of
structures. Cho [46] performed an investigation using RSM
to predict the accumulated damages in concrete structures.
Fang and Perera [47] established a comprehensive methodol-
ogy for damage identification using RSM. Casciati [48] used
linear response surface models for representing the relation-
ship between samples of response time histories to identify
damage in structure. The main attractive feature of RSM-
based damage identification technique is its computational

efficiency and the ability to quantify damage along with iden-
tifying damage location.

Though previous studies reveal that RSM-based method
has the potential to be successfully applied in structural dam-
age identification, at the same time, these researches initi-
ate the need to explore the method further. One of the most
interesting scopes of research in the present context that still
remains to be addressed is to explore comparative ability
of different DOE methods of RSM in SDI. This investiga-
tion will enable future researchers to choose the appropri-
ate DOE method for SDI from the viewpoint of accuracy as
well as computational efficiency. The present work aims to
provide a detail comparative study on the capability of dif-
ferent design methods of RSM (such as, 2k factorial design,
central composite design, Box–Behnken design, D-optimal
design and Taguchi’s OA design) in damage identification.
Another important aspect that needs attention is the perfor-
mance of RSM-based SDI under the influence of noise, which
is inevitable in practical situation. The present research inves-
tigates this aspect as well, considering different DOE meth-
ods. This paper is organized as, Sect. 1: introduction, Sect. 2:
brief overview of different design methods of RSM, Sect. 3:
different steps of SDI based on RSM algorithm, Sect. 4:
discussion on the comparative capability of different DOE
methods in SDI with the help of three illustrative numerical
models, Sect. 5: Performance of different DOE methods in
RSM-based damage identification methods under the effect
of noise, and Sect. 6: conclusion.

2 Response Surface Methodology

On the basis of statistical and mathematical analysis, RSM
gives an approximate equation, which relates the input fea-
tures ξ and output features y for a particular system.

y = f (ξ1, ξ2, . . . , ξk) + ε (1)

where f denotes the approximate response function and ε

is the statistical error term having a normal distribution with
mean zero. k is the number of input parameters. The input fea-
tures ξ are usually coded as dimensionless variables having
mean zero and the same standard deviation of ξ . The com-
monly used first-order and second-order polynomials are of
following shapes.

First-order model (interaction):

y = β0 +
k∑

i=1

βi xi +
k∑

i=1

k∑

j>i

βi j xi x j + ε

Second-order model:

y = β0 +
k∑

i=1

βi xi +
k∑

i=1

k∑

j>i

βi j xi x j +
k∑

i=1

βi i x2
i + ε (2)
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Fig. 1 2k fractional design for two factors

The metamodel is fit approximately to a set of points in the
design space (which may be chosen using design of exper-
iment approach) using a multiple regression fitting scheme.
Design of experiments (DOEs) is an efficient procedure for
planning experiments so that the data obtained can be uti-
lized to achieve any particular goal. The commonly used
DOE methods for constructing response surface models are
described below.

2.1 2k Factorial Design

One of the most common first-order designs is 2k fac-
torial design (2k FD), which is very useful for screen-
ing out some non-significant input parameters by deter-
mining the contribution of each parameter to the total
model variance. In this design, every input parameter
has two coded levels (±1), that correspond to the lower
and upper value bound of the design space as shown in
Fig. 1. For example, in case of a simple beam, if the
upper and lower limits of Young’s modulus (E) and sec-
tion moment of inertia (I ) are 28, 32 GPa and 2.278 ×
10−4 m4, 3.255 × 10−4 m4, respectively, then the coded val-
ues for E and I can be obtained by simple linear transforma-
tion as

coded value of E = Actual value of E − 30

2
(3)

coded value of I = Actual value of I − 2.7665 × 10−4

0.4885 × 10−4 (4)

In this design, the number of experimental runs is equal
to 2k provided no single design point is replicated more
than once. If k is large (k ≥ 5), the 2k design requires a
large number of design points. In that case, we can con-
sider a one-half fraction design consisting of one-half the
number of points of a 2k design, or a one-fourth fraction
design consisting of one- fourth the number of points of a
2k design. In general, a 2−m th fraction of a 2k design con-
sists of 2k−m points from a full 2k design. m should be cho-
sen in such a way that 2k−m ≥ number of unknowns in the
response surface equation. Sometimes, a few additional cen-
tre point samples (level=0) are added to the design to eval-

Fig. 2 Two factor Central composite design

uate the curvature of the middle region of the design space
[30,31].

2.2 Central Composite Design

Central composite design (CCD) is the most popular second-
order design, which consists of the following three portions: a
complete (or a fraction of) 2k factorial design coded as ±1, 2k
axial points coded as ±α (α ≥ 1) and n0 centre points (gen-
erally 5 or 6) as shown in Fig. 2. Augmentation of the design
by additional α actually extends the bound of the design
space. Thus, the total number of design points in a CCD
is n = 2k +2k +n0. If k = 10 and n0 = 6, then total number
of design points required is n = 210 + 2 × 10 + 6 = 1,050,
which needs considerable amount of computational effort.
So, instead of complete design, a fractional CCD (1/2, 1/4
or 1/8 and a minimum run with resolution V (MRRV) frac-
tions requiring 538, 282, 154 and 82 samples, respectively,
for k = 10 and n0 = 6) may be adopted. The values of α

and n0 are chosen in such a way so that the CCD possesses
certain desirable properties, and according to the value of
α, CCD can be rotatable (used for up to 5 factors, this cre-
ates a design that has the standard error of predictions equal
at points equidistant from the centre of the design), face-
centred (this puts the axial points into the faces of the cube
at ±1 levels. This produces a design where each factor only
has 3 levels), spherical (this puts all factorial and axial points
on the surface of a sphere of radius equal to square root of
the number of factors), orthogonal quadratic (provides alpha
values that allow the quadratic terms to be independently
estimated from the other terms), and practical (used for 6 or
more factors. The alpha value is the fourth root of the number
of factors) [30,31].

2.3 Box–Behnken Design

Box–Behnken design (BBD) is another popular second-order
rotatable design. It provides three levels (−1, 0, 1) for each
factor and consists of a particular subset of 3k factorial design

123



1030 Arab J Sci Eng (2015) 40:1027–1044

Fig. 3 Box–Behnken (BB) design for 3 factors

as shown in Fig. 3. BBD provides good result near centre of
the design space but weaker at the corner of the cube, i.e. for
extreme values of the input factors [30,31].

2.4 Optimal Design

Optimal designs require fewer samples than the other stan-
dard design procedures, and thus, it is much more compu-
tationally feasible mainly in case of large number of input
factors. In this design, position of design points is chosen
algorithmically according to the number of factors, and the
desired model and the points are not at any specific posi-
tions, they are selected to meet the optimality criteria. Opti-
mal designs can be used to create a good design for fit-
ting a linear, quadratic, cubic or higher-order models. There
are several types of optimality criteria such as D-optimality,
A-optimality and E-optimality. D-optimality is achieved if
the determinant of (X t X)−1 is minimal. A-optimality is
achieved by minimizing the trace of (X t X)−1. E-optimality
is achieved if the largest eigenvalue of (X t X)−1 is minimal.
Here, X denotes the design matrix as a set of value com-
binations of coded parameters, and X t is the transpose of
X [30,31,49]. In D-optimal design, the total sample size
(n) comprises of minimum design points (nd), additional
model points (na = k) and lack-of-fit points (nl). (i.e.
n = nd + na + nl). Required model points (i.e. minimum
design points) are the minimum number of runs to esti-
mate the coefficients for the terms in the design for model,
while additional model points are extra runs added by the
user to improve precision estimates or coverage of the fac-
tor space, and lack-of-fit points are the extra points to fill
the factor space. The extra information provided by these
points can test the fit of the model. For model construction
in the present study, an over-determined D-optimal design
[33,50,51] (number of additional samples na, along with the
minimum point design and nl = 5 samples to estimate the
lack of fit) has been used.

2.5 Taguchi’s OA Design

Taguchi designs are a type of factorial design. Design options
are available with differing numbers of parameters and levels.
In Taguchi’s orthogonal array design, the interaction between
different parameters is not considered explicitly, and thus,
this design method works best for discrete variables. Taguchi
developed a system of tabulated designs, which reduce the
number of experiments considerably as compared to a full
factorial design [30,31].

After selection of the design points using DOE method as
discussed above, a response surface metamodel (as shown
in Eq. 2) is constructed using the method of least squares.
Method of least squares is a multiple regression technique,
and it is assumed in this method that random errors are iden-
tically distributed with a zero mean and a common unknown
variance, and they are independent of each other. The differ-
ence between the observed (y) and the fitted value (yi ) for the
i th observation εi = yi − yi is called the residual. Criterion
for choosing the βi estimates of equation y = Xβ + ε (refer
Eq. 2) is that they should minimize the sum of the squares of
the residuals, which is often called the sum of squares of the
errors (SSEs). Thus,

SSE =
n∑

i=1

ε2
i =

∑
(yi − yi )

2 (5)

The residuals may be written as

ε = y − Xβ (6)

The SSE thus becomes

SSE = εTε = (y − Xβ)T(y − Xβ) (7)

Differentiating the SSE with respect to β using partial deriv-
atives and equating it to zero, one can get X β = y. This
over-determined system of equations can be solved directly
to obtain the coefficients β as follows

β = (XT X)−1 XT y (8)

After obtaining the coefficients β as described above,
response surface metamodel can be easily constructed.
The major drawback of RSM is to fit the design points
to a second-order polynomial as systems having high
degree of nonlinearity cannot be replaced by a second-
order model. To overcome this lacuna, the data can be
converted into another form using suitable transformation
scheme to capture the higher-degree nonlinearity. For exam-
ple, using logarithmic transformation or power transfor-
mation, the response surface model takes the following
forms:
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ln y = β0 +
k∑

i=1

βi xi +
k∑

i=1

k∑

j>i

βi j xi x j +
k∑

i=1

βi i x2
i + ε

yn = β0 +
k∑

i=1

βi xi +
k∑

i=1

k∑

j>i

βi j xi x j +
k∑

i=1

βi i x2
i + ε

(9)

Quality of a response surface model should be checked
following several criteria before using it as discussed in
Sect. 3.3.1.

3 Damage Identification Based on RSM

Damage detection using RSM is a four step procedure: step-
1: Identification of structure of interest, step-2: Identification
of proper input and output features, step-3: Formation of
response surface relating input and output features, step-4:
Identification of damage, as shown in Fig. 4. This section
contains detailed description about SDI using RSM.

3.1 Identification of Structure of Interest

First step of SDI is to identify the structure whose damage
is needed to be identified. In this study, three different struc-
tures have been taken: simply supported beam, five Degrees
of freedom system consisting of spring, mass, damper

and a fibre reinforced polymer (FRP) composite bridge
deck.

3.2 Identification of Proper Input and Output Features

Material properties, such as Young’s modulus, density, Pois-
son’s ratio and geometric properties such as section iner-
tia, may be taken as input parameters depending on the
type of structure under consideration. Time domain features
(peak acceleration, temporal moments, logarithmic decre-
ment, etc.) and frequency domain features (such as, modal
frequencies, mode shapes.) are generally taken as output. For
highly nonlinear structures, time domain features are more
suitable than frequency domain features. Selected output fea-
tures should not be highly correlated with each other, and they
should be sensitive enough to the chosen input features.

If the effects of the modelling errors in the baseline finite
element model exceed the modal sensitivity to damage, accu-
rate damage estimation may not be possible to carry out [6].
Although updating the modal baseline using the measured
data from the original model may improve estimation accu-
racy, it is not always practically feasible for most of the real-
life structures, since a lot of measurement information would
be required. For this reason, output features should be cho-
sen in such a way so that they are least sensitive possible to
the modelling errors in the baseline finite element model and
the most sensitive possible to damage. This problem can be
solved by studying the free vibration equations for undam-
aged and damaged structures as described below.

Fig. 4 Flowchart of the
RSM-based damage
identification algorithm
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In the case of no modelling errors,
([K ] − λ j [M]) {

φ j
} = 0, j = 1, . . . Nm (10)

(
([K ] + �[K ]) −

(
λ j + �λd

j

)
[M]

) ({
φ j

} + �
{
φd

j
}) = 0

(11)

In the case of existing modelling errors of value �[K̄ ] in the
baseline model,
(
([K ] + �[K̄ ]) − (λ j + �λ̄ j )[M]) ({φ j } + �{φ̄ j }

) = 0

(12)(
([K ] + �[K ] + �[K̄ ]) −

(
λ j + �λ̄d

j + �λ̄ j

)
[M]

)

(
{φ j } + {�φ̄d

j } + �
{
φ̄ j

}) = 0 (13)

where [K ], [M] and Nm are the global stiffness matrix, mass
matrix and the total number of mode shapes considered,
respectively. λ j is the square of the natural frequency corre-
sponding to vibration mode {φ j }. In this study, damage has
been modelled as reduction in stiffness �[K ]. This change
in stiffness leads to a change in square of frequencies �λd

j

and mode shapes �{φd
j }. The symbol (−. ) indicates the modal

quantities involving errors. By neglecting higher-order terms
of � in the above expressions and pre-multiplying by {φ j }T,
we get

�λd
j = �λ̄d

j ≈ {φ j }T�[K ]{φ j }
{φ j }T[M]{φ j } (14)

Again from Eqs. (11), (13) and (14), we can obtain

([K ] − λ j [M])
(
�

{
φd

j

}
− �

{
φ̄d

j

})
≈ 0 (15)

Equation (15) leads to

(
�

{
φd

j

}
− �

{
φ̄d

j

})
≈ 0 (16)

Equations (14) and (16) interprets that the effect of same
amount of change in stiffness �[K ] in two finite element
models with and without modelling error towards the square
of frequency and mode shapes are almost null. Thus, these
two modal quantities are least sensitive to modelling error. In
this study, low-frequency vibration measurements have been
used as output features. The main advantage of using low-
frequency vibration measurements is that the low-frequency
modes are generally global, and so the vibration sensors may
be mounted remotely from the damage site, and fewer sensors
can be used.

3.2.1 Variable Screening

Output features should be sensitive enough to the chosen
input features. The insignificant input features are screened

out, and those are not considered in the model formation. A
quantitative evaluation of each parameter’s effect on the total
model variance can be carried out using analysis of variance
(ANOVA) method according to its F-test value.

FA = SSR/k

SSE/(n − k − 1)
(17)

FA denotes the F test value of a particular input parameter
A. SSE and SSR are the sum of squares due to the model
and the residual (error), respectively. n is the number of sam-
ples used in the design procedure. If FA exceeds the selected
criterion value, the input parameter A is said to be signifi-
cant with respect to the chosen output feature. For sensitivity
analysis, the percentage contribution of each input parame-
ter (including the contribution of the interaction terms) to the
total model variance can be obtained by summing all the term
sum of squares (SS) and then taking each individual SS and
dividing it by the total SS and multiplying by 100.

General sensitivity analysis (GSA) may also be used as
a fast way to determine which input parameters are impor-
tant to the output features [52]. A sensitivity coefficient Si is
computed by the first-order derivative of the output feature of
interest with respect to each input parameter using finite dif-
ferencing keeping the input parameter under consideration
set to its extreme values, while the values of the remaining
input parameters are held at their nominal values. Thus,

Si =
(

OutputHi − OutputLow

InputHi − InputLow

)
InputLow

OutputLow
(18)

Subscripts Hi and Low in Eq. 13 refer to the level at which
the input parameter is set.

3.3 Formation of Response Surface Relating Input and
Output Features

In this step, the models are formed for responses in terms of
input parameters using different design procedures. Numer-
ical models have been used instead of actual experiments in
this study. ABAQUS [53] software has been used for finite
element analysis. The PYTHON scripts generated using
ABAQUS are parameterized to perform multiple runs by
varying the structural design parameters to get the corre-
sponding responses. The modified PYTHON script is capa-
ble of performing multiple runs taking different set of val-
ues (design points) of the above-mentioned structural design
parameters.

3.3.1 Model Adequacy Checking

An optimized response surface model is formed by adding
or deleting input factors through backward elimination, for-
ward addition or stepwise elimination/addition. It involves
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the calculation of the P value (probability value, gives the
risk of falsely rejecting a given hypothesis) and Prob. > F
value (gives the proportion of time one would expect to
get the stated F value if no factor effects are significant).
The response surface model constructed should be checked
by some criteria such as R2 (A measure of the amount of
variation around the mean explained by the model), R2

adj
(A measure of the amount of variation around the mean
explained by the model, adjusted for the number of terms
in the model. The adjusted R-squared decreases as the num-
ber of terms in the model increases if those additional
terms do not add value to the model) and R2

pred (A mea-
sure of the prediction capability of the response surface
model).

R2 = SSR

SST
= 1 − SSE

SST

(
0 ≤ R2 ≤ 1

)
(19)

R2
adj = 1 − SSE/(n − k − 1)

SST/(n − 1)

= 1 − (n − 1)

(n − k − 1)

(
1 − R2

) (
0 ≤ R2

adj ≤ 1
)

(20)

R2
pred = 1 − PRESS

SST

(
0 ≤ R2

pred ≤ 1
)

(21)

where SST = SSE + SSR is the total sum of square, SSR

and SSE are regression sum of squares and residual sum of
squares, respectively, and PRESS is the predicted residual
error sum of squares, which is a measure of how the model
fits the samples in the design space. The values of R2, R2

adj

and R2
pred should be close to 1. A difference between R2

adj and

R2
pred within 0.2 indicates that the model can be used for fur-

ther prediction. Another check is adequate precision, which
compares the range of the predicted values at the design
points with the average prediction error. A value >4 indi-
cates adequate model [54–59]. To check whether the residu-
als follow normal distribution, either quantitative approaches
following Kolmogorov–Smirnov test and Shapiro–Wilk test,
or graphical approach (as described in the next paragraph)
may be adopted [56–58].

Some plots should also be checked such as normal plot
of residuals (indicates whether the residuals follow a nor-
mal distribution, in which case, the points will follow a
straight line), residuals versus predicted plot (plot of the
residuals versus the ascending predicted response values),
actual versus predicted plot (a graph of the actual response
values versus the predicted response values for the design
points used for response surface formation. It helps to detect
a value, or group of values, that are not easily predicted
by the model), Box–Cox plot (helps to determine the most
appropriate power transformation to be applied to response
data).

3.4 Identification of Damage

Damage identification using the obtained response surface
models is an inverse multi-objective optimization problem,
i.e. knowing the measured output features, finding out the
input parameters that led to such output values. In this study,
damage has been modelled by reducing stiffness of the struc-
ture locally. The inverse problem for identifying damage can
be described as follows.

f1 = f (I1, I2, I3 . . .)

f2 = f (I1, I2, I3 . . .)

f3 = f (I1, I2, I3 . . .)

f4 = f (I1, I2, I3 . . .)

⎫
⎪⎪⎬

⎪⎪⎭
f1, f2, f3, f4 known, −→ I1, I2, I3 . . . =?

(22)

Here, f1, f2, . . . and I1, I2, . . . represent the set of objective
functions and input parameters, respectively. For example,
let us take the damage identification problem of a simply
supported beam (which has been discussed in Sect. 4.1 elab-
orately). The beam has been divided into ten symmetric sub-
structures having section inertias I1, I2, . . ., I10. In this case,
30 % damage in sub-structure 3 means 30 % reduction in sec-
tion inertia value of the sub-structure 3. For this particular
example, the problem is like: the dynamic responses (output
natural frequencies) of the beam (measured from the dam-
aged beam) are known; the objective is to identify the damage
in the structure from this information. In this study, the dam-
age identification results have been verified by comparing
them with the actual induced damage in the structure.

For identifying damage, multi-objective optimization
algorithm fgoalattain from Matlab [60] has been used in the
present study. The goal attainment problem is to minimize a
slack variable γ as:

min
x,y

γ, such that F(x) − wγ ≤ goal, lb ≤ x ≤ ub (23)

where F(x) = abs
(

fRSM− fexp
fexp

)
is a dimensionless objective

function with fRSM and fexp denoting the frequencies from
the RS model and experiment, respectively. A dimensionless
F(x) ensures that different physical quantities can be simul-
taneously and equally updated. The weight w controls the
relative over-attainment and under-attainment of the objec-
tives. In this study, equal weights are given to each F(x);
goal is a set of target values of the output features that are to
be attained; lb and ub are the lower and upper bounds of the
design space of x .

4 Results and Discussion

In this section, damage identification in three different struc-
tures using the procedure explained in Sect. 3 has been dis-
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Table 1 Damage scenarios introduced for SDI

Example Undamaged system Damage scenario-1 Damage scenario-2 Damage scenario-3

Simply
supportedBeam

Section inertia is
3.2552 × 10−4 m4

20 % reduction in
section inertia of
substructure-4

30 % reduction in
section inertia of
substructure-6

30 % reduction in section inertia of
substructure-6 plus 20 % reduction in
section inertia of substructure-7

Spring mass
damper system

Spring stiffness is
10,000 N/m

20 % reduction in
spring stiffness of
substructure-2

30 % reduction in
spring stiffness of
substructure-4

20 % reduction in spring stiffness of
substructure-1 plus 30 % reduction in
spring stiffness of substructure-3

Bridge deck Section inertia is
144,000 mm4

20 % reduction in
section inertia of
substructure-5

20 % reduction in
section inertia of
substructure-3

30 % reduction in section inertia of
substructure-2 plus 40 % reduction in
section inertia of substructure-3

Fig. 5 Dimensions of the
simply supported beam

cussed. The objective is to address the comparative ability
of different DOE methods of RSM in SDI with the help of
these numerical models. Different damage scenarios intro-
duced for SDI in the three examples are collectively shown
in Table 1.

4.1 Example I: Simply Supported Beam

4.1.1 Identification of Structure of Interest

A 3 m long simply supported concrete beam having cross sec-
tion of 0.25 m×0.25 m has been taken first for SDI. Material
properties of the beam are: Young’s modulus (E) = 30 GPa,
Density (D) = 2,400 kg/m3, Poisson ratio (P) = 0.2. The
beam is divided into 20 identical parts (as shown in Fig. 5) for
the damage detection purpose. The beam has been modelled
in ABAQUS using C3D8I elements assuring that different
section inertia values can be assigned to each of the 20 parts.
The Python scripts generated in ABAQUS have been para-
meterized in such way that they are capable of obtaining the
outputs corresponding to different sets of inputs following
multiple runs.

4.1.2 Identification of Proper Input and Output Features

Since the beam is having uniform cross section and material
property along its length, four parameters, Young’s modu-
lus (E), density (D), Poisson ratio (P) and section inertia
(I ) of substructure number-4 have been taken as initial input
parameters. For screening purpose, a 2k factorial design is
adopted having 16 samples. The first four bending frequen-
cies have been taken as responses (output feature) in this
case. The bounds (±1) of each parameter are identically set
to be ±30 % change with respect to the initial values. The
percentage contribution to total model variance of each input

parameter (including the two factor interaction effects) to
the output features has been shown in Fig. 6. From figure,
it is evident that chosen output features are highly sensitive
to E, I and D, whereas Poisson ratio has almost no effect
on output features. However, in most of the real applica-
tions, material property (Young’s modulus) and mass (den-
sity) remain unaltered. Therefore, in the present study, the
beam is assumed to be damaged only due to reduction of sec-
tion inertia (I ), i.e. damage has been modelled by reducing
the stiffness locally [61]. Furthermore, as modal frequency
is a global quantity, damage at two symmetric locations of
the symmetric beam will cause same amount of frequency
change. Therefore, instead of taking 20 section inertia val-
ues, 10 section inertia values (I1, I2, . . ., I10) have been taken
as input parameter. Here, I1 denotes the section inertia of
substructure-1 consisting of two symmetric parts of the beam
part-1 and part-20. Similarly, I2 denotes the section iner-
tia of substructure-2 consisting of part-2 and part-18 and so
on.

To examine the correlation between different output fea-
tures, correlation coefficient matrix has been formed by the
responses obtained from a 1/16th 2k factorial design using
the ten section inertias as input parameter.

ρxy =

⎡

⎢⎢⎣

1 0.69 0.69 0.25
0.69 1 0.68 0.24
0.69 0.68 1 0.24
0.25 0.24 0.24 1

⎤

⎥⎥⎦ (24)

where ρxy is the correlation coefficient matrix having order
across and down as f1, f2, f3, f4. The correlation coefficient
matrix shows that the five output features are not highly cor-
related with each other, and thus, they can be used for model
formation.
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Fig. 6 Parameter screening of the simply supported beam

4.1.3 Formation of Response Surface Relating Input and
Output Features

In this section, response surface equations have been formed
using different design methods as discussed before. It is noted
that, in this study, no replicate samples are used in any of the
design methods as there is no experimental error in case of
numerical experiments.

4.1.3.1 Formation of Response Surface Using Central Com-
posite Design A MRRV design having 82 training samples
comprising of 76 factorial and axial samples plus 6 centre
point samples is chosen for analysis. The lower and upper
bounds of the factorial part (±1) are set to 0.7I0 and 1.3I0

with α = 1.78 (practical), where I0 represents the undam-
aged section inertia. Second-order response surface models
have been developed with some significant interaction terms.
A typical actual versus predicted plot for response f1 and a
3D response plot for response f4 are shown in Figs. 7 and
8, respectively. A typical response surface model (obtained
using central composite design) for f1(corresponding R2 =
0.996; R2

adj = 0.994; R2
adj = 0.984; Adequate Precision =

119.25) is shown in Eq. 25.

( f1)
−3 = 4.00202 × 10−5 + 1.34886 × 10−7 I1

− 9.87866 × 10−8 I2 − 2.85414 × 10−7 I3

− 7.94255 × 10−7 I4 − 1.16127 × 10−6 I5

− 1.53641 × 10−6 I6 − 2.04643 × 10−6 I7

− 2.53261 × 10−6 I8 − 2.41884 × 10−6 I9

− 2.59891 × 10−6 I10 − 2.41345 × 10−8 I1 I3

+ 1.27725 × 10−8 I4 I8 − 2.41202 × 10−8 I6 I9

− 4.72066 × 10−8 I9 I10 − 7.40898 × 10−9 I 2
1

+ 8.39661 × 10−9 I 2
2 + 3.79405 × 10−8 I 2

3

+ 7.86034 × 10−8 I 2
4 + 1.26199 × 10−7 I 2

5

+ 1.76083 × 10−7 I 2
6 + 2.23142 × 10−7 I 2

7

+ 2.77319 × 10−7 I 2
8 + 2.89099 × 10−7 I 2

9

+ 2.99815 × 10−7 I 2
10 (25)

4.1.3.2 Formation of Response Surface Using 2k Factorial
Design A 1/16th fractional factorial design having 70 sam-
ples consisting of 64 factorial samples plus 6 centre point
samples is chosen for the analysis. The lower and upper
bounds of the factorial part (±1) are set to 0.7I0 and 1.3I0,
where I0 represents the undamaged section inertia. First-
order response surface models have been developed with
some significant interaction terms.

4.1.3.3 Formation of Response Surface Using D-optimal
Design An over-determined D-optimal design consider-
ing a linear model (with no interaction terms) having total 26
samples consisting of 21 model points plus 5 points to esti-
mate lack of fit has been used employing both Point exchange
and Coordinate exchange searches of the design space. The
lower and upper bounds (±1) are set to 0.7I0 and I0, where
I0 represents the undamaged section inertia.

Fig. 7 Typical actual versus
predicted plot for response f1
showing a comparison between
the response of original
numerical model and response
surface model
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Fig. 8 3D Response surface plot for response f4 (Hz) with I1 and I2
when other input parameters have a constant value of 3.255 mm4

4.1.3.4 Formation of Response Surface Using Box–Behnken
Design A Box–Behnken design having 170 samples
including 10 centre point samples has been taken. The lower
and upper bounds (±1) are set to 0.7I0 and I0, where I0 repre-
sents the undamaged section inertia. Second-order response
surface models have been developed with some significant
interaction terms.

4.1.3.5 Formation of Response Surface Using Taguchi’s OA
Design A Taguchi’s OA Design (L27 array corresponding
to 10 input parameters having 3 levels each) having 27 sam-
ples has been taken. The three levels chosen are 0.7I0, 0.85I0

and I0, where I0 represents the undamaged section inertia.

4.1.4 Identification of Damage

In this section, the capability to identify damage by using the
response surfaces formed by different design methods has
been discussed. For this purpose, three damage scenarios
including two single damage situations (damage scenario-1:
20 % reduction in section inertia of substructure 4; damage
scenario-2: 30 % reduction in section inertia of substructure
6) and one multiple damage situation (damage scenario-3:
30 % reduction in section inertia of substructure 6 plus 20 %
reduction in section inertia of substructure 7) have been intro-
duced to the structure. The responses (first four bending fre-
quencies) corresponding to each of the damage conditions
are found out first. Then, to judge how the different design
methods work for damage detection, the response surfaces
formed by different design methods are optimized to find the
value of the input parameters (section inertias of ten sub-
structures) which can cause such responses. In Fig. 9 opti-
mization results are shown. Undamaged section inertia of

Fig. 9 Damage identification of beam: a damage scenario-1, b damage scenario-2, c damage scenario-3. (Damage scenarios: Table 1)
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Fig. 10 5DOF spring mass damper system

the beam is 3.2552 × 10−4 m4. From Fig. 9, it is evident that
central composite design and D-optimal design work best
for damage detection purpose in the simply supported beam,
whereas 2k factorial design completely fails to identify dam-
age. Box–Behnken design and Taguchi’s OA method do not
give satisfactory results.

4.2 Example II: Spring Mass Damper System

4.2.1 Identification of Structure of Interest

A 5 degree of freedom system consisting of steel spring,
mass and damper has been taken as shown in Fig. 10. Spring
stiffness (k), mass (m) and damping (c) of the system are
10,000 N/m, 2 kg, 1 kg/s, respectively, in undamaged condi-
tion. The system having five sub-structures consisting of five
sets of spring stiffness, mass and damping values has been
modelled using ABAQUS. The PYTHON scripts generated
in ABAQUS have been parameterized in such a way that
they are capable of obtaining the outputs corresponding to
different sets of inputs following multiple runs.

4.2.2 Identification of Proper Input and Output Features

In this case, general sensitivity analysis (GSA) has been
employed for the purpose of significant input parameter
screening. The values of k2, c2 and m2 (input parameters cor-
responding to substructure 2) are varied ±30 % with respect
to their initial values as shown in Table 2. The sensitivity
coefficients for each input parameter corresponding to dif-
ferent output responses are shown in Fig. 11. From figure, it
is clear that mass and spring stiffness are the significant input
parameters when natural frequencies are taken as output fea-
tures. However, in this case, spring stiffness has been taken as
input parameter for damage identification problem assuming

Fig. 11 Parameter screening for spring mass damper system

mass remains unaltered. If damage detection in the dampers
is also needed to be carried out, then damped frequencies
may be used as output features instead of natural frequen-
cies. In that case, five damping values (c1, c2. . ..c5) can be
taken as input parameters along with the spring stiffnesses.

To examine the correlation between different output fea-
tures, correlation coefficient matrix has been formed by the
responses obtained from a 1/2 fractional 2k factorial design
using the five spring stiffness values as input parameter.

ρxy =

⎡

⎢⎢⎢⎢⎣

1 0.67 0.67 0.67 0.62
0.67 1 0.68 0.67 0.63
0.67 0.68 1 0.68 0.64
0.67 0.67 0.68 1 0.65
0.62 0.63 0.64 0.65 1

⎤

⎥⎥⎥⎥⎦
(26)

where ρxy is the correlation coefficient matrix having order
across and down as f1, f2, f3, f4, f5. The correlation coeffi-
cient matrix shows that the five output features are not highly
correlated with each other, and thus, they can be used for
model formation.

4.2.3 Formation of Response Surface Relating Input and
Output Features

4.2.3.1 Formation of Response Surface Using Central Com-
posite Design A 1/2 fraction design having 32 training
samples comprising of 26 factorial and axial samples plus 6
centre point samples is chosen for analysis. The lower and
upper bounds of the factorial part (±1) are set to 0.7k0 and k0

with α = 2 (rotatable), where k0 represents the undamaged

Table 2 GSA input parameter values and corresponding responses

K (N/m) m (kg) c (kg/s) f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz) f5 (Hz)

13,000 2 1 3.1185 8.6654 13.812 18.410 21.641

7,000 2 1 2.8620 8.5945 13.426 16.843 19.619

10,000 2.6 1 2.9064 8.1919 13.533 16.92 19.344

10,000 1.4 1 3.0005 9.1116 13.65 17.913 21.478

10,000 2 1.3 2.9532 8.6204 13.598 17.457 19.991

10,000 2 0.7 2.9532 8.6204 13.598 17.457 19.991
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Fig. 12 Damage identification of spring mass damper system: a damage scenario-1, b damage scenario-2, c damage scenario-3. (Damage scenarios:
Table 1). Five substructures (1–5) are shown using five different colours

spring stiffness. Second-order response surface models have
been developed with some significant interaction terms.

4.2.3.2 Formation of Response Surface Using 2k Factorial
Design A 1/2 fractional factorial design having 21 samples
consisting of 16 factorial samples plus 5 centre point samples
is chosen for the analysis. The lower and upper bounds of the
factorial part (±1) are set to 0.7k0 and k0, where k0 repre-
sents the undamaged spring stiffness. First-order response
surface models have been developed with some significant
interaction terms.

4.2.3.3 Formation of Response Surface Using D-optimal
Design An over-determined D-optimal design consider-
ing a linear model (with no interaction terms) having total 16
samples consisting of 11 model points plus 5 points to esti-
mate lack of fit has been used employing both point exchange
and coordinate exchange searches of the design space. The
lower and upper bounds (±1) are set to 0.7k0 and k0, where
k0 represents the undamaged spring stiffness.

4.2.3.4 Formation of Response Surface Using Box–Behnken
Design A Box–Behnken design having 46 samples includ-
ing 6 centre point samples has been taken. The lower and
upper bounds (±1) are set to 0.7k0 and k0, where k0 repre-
sents the undamaged spring stiffness. Second-order response
surface models have been developed with some significant
interaction terms.

4.2.3.5 Formation of Response Surface Using Taguchi’s OA
Design A Taguchi’s OA Design (L18 array corresponding
to 5 input parameters having 3 levels each) having 18 samples
has been taken. The three levels chosen are 0.7k0, 0.85k0 and
k0, where k0 represents the undamaged spring stiffness.

4.2.4 Identification of Damage

Three damage scenarios including two single damage situ-
ations (damage scenario-1: 20 % reduction in spring stiff-
ness of substructure 2; damage scenario-2: 30 % reduction in
spring stiffness of substructure 4) and one multiple damage
situation (damage scenario-3: 20 % reduction in spring stiff-
ness of substructure 1 plus 30 % reduction in spring stiffness
of substructure 3) have been introduced to the system. In
Fig. 12 damage detection results have been shown for differ-
ent design methods. Undamaged spring stiffness is 10,000
N/m. Fig. 12 shows that all the design methods can per-
fectly identify damage and its severity except Taguchi’s OA
method.

4.3 Example III: FRP Composite Bridge Deck

4.3.1 Identification of Structure of Interest

A fibre reinforced polymer (FRP) bridge deck with panel
of dimension 3 m × 1 m having one way rib core cross
section has been taken as shown in Fig. 13. The ribs are
considered to be oriented in the transverse direction only.
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Fig. 13 (a) Components of the
composite bridge deck (b)
Substructures of the bottom
plate

The panel is simply supported in one edge and having
roller support in the opposite edge while the other edges
are taken as free. The top plate and bottom plate con-
sist of three plies (0◦/90◦/0◦) having thicknesses 28 and
40 mm each, respectively. The web core consists of two plies
(45◦/−45◦) having thickness 28 mm each. Material proper-
ties of the GFRP used are: mass density(D) = 1,828 kg/m3;
Elastic properties: E1 = 23 GPa; E2 = 18 GPa; G12 =
9 GPa; G13 = 9 GPa; G23 = 4.5 GPa; Poisson ratio (P) =
0.25 [62]. Different structural components of bridge deck
system such as top face sheet, bottom face sheet and
web core have been modelled using conventional shell
elements (i.e. S4R: Conventional Stress/Displacement 3D
Shell, 4-node, Reduced Integration) having three displace-
ments and three rotational degrees of freedom at each node
in ABAQUS. The shape of the shell elements are con-
sidered to be quadrilateral having linear element geome-
try. In mesh module, the top and bottom face plates are
meshed by 80 by 80 divisions and the rib core is meshed
with a global seed size of 80 mm. The mesh sizes have
been finalized using convergent studies of mesh division.
The interaction between the common nodes of the indi-
vidual components is defined by using tie elements to
avoid the slip between two adjacent surfaces. The Python
scripts generated in ABAQUS have been parameterized
in such way that they are capable of obtaining the out-
puts corresponding to different sets of inputs multiple
runs.

4.3.2 Identification of Proper Input and Output Features

For the composite bridge deck, eight parameters, elastic mod-
uluses (E1, E2, G12, G13, G23), density (D), Poisson ratio
(P) and section inertia (I ) of substructure-2 of the bottom
plate are taken as input parameters for screening as flexure
cracks are most likely to appear in the bottom plate for this
structure. A D-optimal design having 14 samples is adopted
for screening purpose. The two levels of each input para-
meter are identically set to be ±30 % change with respect
to their initial values. The first four bending frequencies are
taken as responses (output feature). The percentage contri-
bution of each input parameter (including the important two
factor interaction effects) to the output features have been

Fig. 14 Parameter screening of the composite bridge deck

shown in Fig. 14. From figure, it is evident that chosen out-
put features are highly sensitive to all the input parameters.
However, in the present study, the composite bridge deck
is assumed to be damaged only due to reduction in section
inertia (I ) as material nonlinearity is not present here and
density does not change practically for most of the engi-
neering applications. Thus, five section inertia values of sec-
tions having unit width corresponding to five substructures
(I1, I2, . . ., I5) are taken as input parameters as shown in
Fig. 13b.

To examine the correlation between different output fea-
tures, correlation coefficient matrix has been formed by the
responses obtained from a 1/2 fraction 2k factorial design
using the five section inertias as input parameter.

ρxy =

⎡

⎢⎢⎣

1 0.8 0.48 0.8
0.8 1 0.52 0.75

0.48 0.52 1 0.68
0.8 0.75 0.68 1

⎤

⎥⎥⎦ (27)

where ρxy is the correlation coefficient matrix having order
across and down as f1, f2, f3, f4. The correlation coefficient
matrix shows that the five output features are not highly cor-
related with each other, and thus, they can be used for model
formation.

4.3.3 Formation of Response Surface Relating Input and
Output Features

4.3.3.1 Formation of Response Surface Using Central Com-
posite Design A 1/2 fraction design having 32 training
samples comprising of 26 factorial and axial samples plus 6
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Fig. 15 Damage identification of the composite bridge deck: a damage scenario-1, b damage scenario-2, c damage scenario-3. (Damage scenarios:
Table 1). Five substructures (1–5) are shown using five different colours

centre point samples is chosen for analysis. The lower and
upper bounds of the factorial part (±1) are set to 0.6I0 and
I0 with α = 2 (rotatable), where I0 (= 144,000 mm4) rep-
resents the undamaged section inertia of a strip of the bot-
tom plate having 1 mm width. Second-order response surface
models have been developed with some significant interac-
tion terms.

4.3.3.2 Formation of Response Surface Using 2k Factorial
Design A 1/2 fractional factorial design having 21 samples
consisting of 16 factorial samples plus 5 centre point samples
is chosen for the analysis. The lower and upper bounds of the
factorial part (±1) are set to 0.6I0 and I0, where I0 represents
the undamaged section inertia of a strip of the bottom plate
having 1 mm width. First-order response surface models have
been developed for this purpose.

4.3.3.3 Formation of Response Surface Using D-optimal
Design An over-determined D-optimal design consider-
ing a linear model (with no interaction terms) having total 16
samples consisting of 11 model points plus 5 points to esti-
mate lack of fit has been used employing both Point exchange
and coordinate exchange searches of the design space. The
lower and upper bounds (±1) are set to 0.6I0 and I0, where
I0 represents the undamaged section inertia of a strip of the
bottom plate having 1 mm width.

4.3.3.4 Formation of Response Surface Using Box–Behnken
Design A Box–Behnken design having 46 samples includ-
ing 6 centre point samples has been taken. The lower and
upper bounds (±1) are set to 0.6I0 and I0, where I0 represents

the undamaged section inertia of a strip of the bottom plate
having 1 mm width. Second-order response surface mod-
els have been developed with some significant interaction
terms.

4.3.3.5 Formation of Response Surface Using Taguchi’s OA
Design A Taguchi’s OA Design (L18 array corresponding
to 5 input parameters having 3 levels each) having 18 samples
has been taken. The three levels chosen are 0.6I0, 0.8I0 and
I0, where I0 represents the undamaged section inertia of a
strip of the bottom plate having 1 mm width.

4.3.4 Identification of Damage

Three damage scenarios including two single damage situ-
ations (damage scenario-1: 20 % reduction in section iner-
tia of substructure 5; damage scenario-2: 20 % reduction
in section inertia of substructure 3) and one multiple dam-
age situation (damage scenario-3: 30 % reduction in sec-
tion inertia of substructure 2 plus 40 % reduction in section
inertia of substructure 3) have been introduced to the sys-
tem. Section inertia of healthy system is 144,000 mm4. In
Fig. 15, damage detection results have been shown for dif-
ferent design methods. Figure shows that 2k factorial design
fails to identify damage for the damage scenario-1, and
though Taguchi’s OA design identifies all the damage loca-
tions properly, but it fails to predict the severity of damage
for damage scenario-1. All other design methods work satis-
factorily for the detection of damage in the composite bridge
deck structure.
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Fig. 16 Effect of noise on SDI based on RSM (damage scenarios: Table 1)
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Table 3 Relative damage identification capability of different design methods

Example Number of input
parameters

Number of output
parameters

Design
method used

Number of
design points

Capability in
damage
identification

Simply supported beam 10 4 CCD (MRRV) 82 Satisfactory

2k FD (1/16th fraction) 70 Failed

D-optimal 26 Satisfactory

Box–Behnken 170 Failed

Taguchi’s OA 27 Failed

Spring mass damper system 5 5 CCD (1/2 fraction) 32 Satisfactory

2k FD (1/2 fraction) 21 Satisfactory

D-optimal 16 Satisfactory

Box–Behnken 46 Satisfactory

Taguchi’s OA 18 Failed

Composite bridge deck 5 4 CCD (1/2 fraction) 32 Satisfactory

2k FD (1/2 fraction) 21 Failed

D-optimal 16 Satisfactory

Box–Behnken 46 Satisfactory

Taguchi’s OA 18 Failed

5 Performance of RSM-Based Damage Identification
Techniques Under the Effect of Noise

Effect of inevitable external noise in damage identification
problems is very crucial. Moreover, the field vibration mea-
surements may suffer from certain unavoidable errors, which
make the damage identification process even more difficult.
To judge the performance of central composite design (CCD)
and D-optimal design (DD), which are best suited for struc-
tural damage identification (as discussed in Sect. 4), simu-
lated noise has been introduced to the natural frequencies for
mimicking the actual field condition as follows

f = foriginal × (1 + p × randn) (28)

where foriginal and f represent the set of numerically obtained
natural frequencies and the randomly varied natural frequen-
cies, respectively. p is the percentage of noise. randn is a
Matlab function, which generates random numbers drawn
from a normal distribution having zero mean and unit stan-
dard deviation. Four noise levels (1, 1.5, 2 and 2.5 %) were
introduced to each of the three structures (simply supported
beam, spring mass damper system and FRP composite bridge
deck) for the aforementioned two DOE methods. Three dif-
ferent damage scenarios for each of the three structures have
been checked to study the influence of noise in SDI as shown
in Table 2. Damage identification results using different lev-
els of noisy data are shown in Fig. 16. Results show that
almost in all the cases the RSM-based damage identification
methods can work satisfactorily up to a simulated noise level
of 1.5 % for both CCD and DD.

6 Conclusions

This research explores the comparative capability of different
DOE methods used for RSM in the realm of damage identifi-
cation of engineering structures from the perspective of accu-
racy and computational efficiency. Subsequently, their per-
formance in SDI under the influence of inevitable noise has
also been addressed in this paper. Three numerical examples
have been used for the purpose of this comparative study. In
the present research, response surface metamodels have been
formed by taking the minimum possible number of samples
in all the cases. If the sample size of different DOE methods
is increased, the accuracy of SDI is expected to improve, but
at the cost of higher computational effort. The salient points
which come out from this research are summarized below:

1. SDI using RSM demands for very perfect fitting of the
response surface models, as an inverse method using
multi-objective optimization is involved in the damage
identification process. A concise report on the compara-
tive ability of different DOE methods in SDI is presented
in Table 3. 2k factorial design and Taguchi’s OA design
cannot perform well in the realm of damage detection
because of their poor prediction capability. The perfor-
mance of Box–Behnken design is also not satisfactory
when the number of input parameters is more.

2. D-optimal design and central composite design give the
best result in SDI, as in both the methods, the chosen
design points can capture the overall design space accu-
rately. D-optimal design requires much lesser number
of samples for metamodel formation compared with the
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other DOE methods ensuring high computational effi-
ciency.

3. Size of the design space while forming the response
surface metamodel should be as small as possible with
accordance to the expected range of damage to max-
imize the density of design points over the design
domain. For example, if the expected damage is around
15 % reduction of section inertia (I ), then the range of
input parameters can be taken as 0.7I to I , instead of
unnecessarily expanding the design space.

4. For parameter screening purpose, all the methods used,
i.e. 2k factorial design, D-optimal design and General
sensitivity method, give satisfactory results.

5. Central composite design and D-optimal design are
found to be working satisfactorily in damage identifica-
tion up to a level of 1.5 % simulated noise, demonstrat-
ing the capability of RSM-based damage identification
method to work satisfactorily in experimental/field con-
dition.

6. Damage location as well as extent of damage can be
more accurately identified if the number of substruc-
tures is increased, but at the same time, more number of
samples will be needed for response surface formation,
resulting more computational efforts. When large num-
ber of input parameters is involved in a multi-objective
optimization, the chances of getting false/poor results
also increase in the inverse optimization process. Rather,
an iterative process can be tried for this purpose. For
example, in case of the simply supported beam, we can
first divide it into 20 substructures. Say, damage is iden-
tified in substructure 4. Then in the second step, the
substructure-4 can be divided into some finite number
of substructures again, keeping all other substructures
in undamaged state and the same damage identification
strategy can be implemented on the new substructures of
substructure-4 and so on. In this way, the exact location
of the damage and damage intensity can be obtained.
The success of this method will depend on the sen-
sitivity of the input parameters to the selected output
features.

The research presented in this paper can be useful for further
investigation in RSM-based damage identification method
for its implementation in more complex structures as well as
field application. Furthermore, the present work can serve as
an important reference for future researches in many other
fields of science and engineering involving response surface-
based multi-objective optimization for choosing the appro-
priate DOE method.
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