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Abstract This paper is concerned with the application of
artificial neural networks (ANNs) and regression analysis
for the performance prediction of diamond sawblades in rock
sawing. A particular hard rock (granitic) is sawn by diamond
sawblades, and specific energy (SE) is considered as a per-
formance criterion. Operating variables namely peripheral
speed (Vp), traverse speed (Vc) and cutting depth (d) are
varied at four levels for obtaining different results for the
SE. Using the experimental results, the SE is modeled using
ANN and regression analysis based on the operating vari-
ables. The developed models are then tested and compared
using a test data set which is not utilized during construction
of models. The regression model is also validated using vari-
ous statistical approaches. The results reveal that bothmodel-
ing approaches are capable of giving adequate prediction for
the SE with an acceptable accuracy level. Additionally, the
compared results show that the corresponding ANN model
is more reliable than the regression model for the prediction
of the SE.
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List of symbols

Fh Horizontal force (N)
Fv Vertical force (N)
Fz Axial force (N)
Fn Normal force (N)
Ft Tangential force (N)
Fc Cutting force (N)
Ds Disc diameter (mm)
W Width of the sawblade segments
d Cutting depth (mm)
Vc Traverse speed (m/s)
Vp Peripheral speed (m/s)
Qf Flow rate of cooling fluid (ml/s)
ϕ The total included angle of the contact

zone (degrees) and
kϕ The angle showing the location of the resultant

force (degrees)
Fc Cutting force (N)
SE Specific energy (kN/mm3)

RM Regression models
MRA Multiple linear regression analysis
ANNs Artificial neural networks

1 Introduction

As a constructional material, the use of granites has dramat-
ically increased recently owing to their excellent features
such as beautiful colors, high durability, and resistance to
the environmental conditions [1]. This increase has resulted
in improving the performance of machining and processing
technologies for the granite production. Circular diamond
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sawblades have extensive applications in granite production.
Since they have been widely used as a machining technol-
ogy, many documents investigating the cutting performance
of these technology have been reported in the published lit-
erature [2–21].

For the natural stone industry, predictive models could
provide opportunity to evaluate the machining performance
without conducting complex test procedures. Therefore, var-
ious modeling techniques have been recently employed in
recent studies aiming at modeling the cutting performance
of circular diamond sawblades. Yurdakul and Akdaş [22];
Yasitli et al. [23]; Aydin et al. [24]; Karakurt et al. [25];
Aydin et al. [26]; Aydin et al. [27]; Karakurt et al. [28];
Karakurt [29] are the recent studies using different model-
ing techniques. Among different modeling techniques, sim-
ple and multiple regression techniques have been mostly
employed for the modeling purposes in the several fields
of geosciences. This is because (1) they are appropriate
techniques when the research problem includes one depen-
dent variable that is related to two or more independent
variables and (2) they can easily be used for determin-
ing the linear and/or nonlinear relationship between depen-
dent predictive and independent criterion variables. On the
other hand, Artificial Intelligent (AI)-based models have
recently gained attention for conventional and nonconven-
tional machining technologies. As one of the AI based mod-
els, the ANN approach has been mostly preferred for mod-
eling the rock material behavior [30]. The main reasons for
this preference can be listed as (1) the capability for learn-
ing and generalizing interactions among many variables; (2)
more successful when compared to conventional approaches,
in terms of capacity to learn from examples, especially
when the existing of nonlinear relationship between the
dependent and independent variables; (3) a multidiscipli-
nary nature providing popularities among researchers, plan-
ners, and designers; (4) showing a good performance in
the solving of nonlinear multivariable problems; (5) con-
tinuously re-train the new data meaning that it can con-
veniently be applied to new data; and (6) no need of any
assumption for the degree of nonlinearity among the vari-
ables [31].

In the relevant literature, the effects of operating vari-
ables and material properties on the performance of the cir-
cular diamond sawblades have been investigated in detail.
Additionally, some studies have provided predictive mod-
els based on the rock properties for performance prediction
of circular diamond sawblades. Therefore, differing from
other studies documented, the current study only focused
on the operating variables of diamond sawblades for mod-
eling of the SE using ANNs and RA. In this regard, the
study will be the first attempt for modeling the sawblade
performance as a function of operating variables using
ANNs.

2 Experimental Study

2.1 Experimental Setup

Sawing tests were performed on an experimental cutting
machine with a high precision (see Fig. 1). The sawing
machine consists of three major sub-systems: a sawing unit,
instrumentation, and a personal computer (PC). The diamond
sawblade used in the tests was of 40cm diameter having
28 impregnated diamond segments (circumferential length
40mm, width 3.5mm, and height 10mm). The diamonds
were sized at 40/50 US mesh with a concentration of 30,
which is commercially recommended for the sawing of hard
materials.

Disc movements forward–backward in the horizontal
plane and up–down in the vertical plane were driven with
two 0.75kW motors, while the rotation of the disc was pro-
vided by a 4kW motor. Moreover, 0.75kW motor was used
to move the wagon in the cutting line. Operating variables
were measured using sensors, load cells, transducers, and
an encoder in the monitoring system. All movements of the
sawing machine were controlled by the PC and industrial
electronic control cards.

2.2 Material Characteristics

In this study, a particular granitic rock was sampled and
dimensioned according to the requirements of the study (a
length of 30cm and 10cm × 3cm sections). The physical
properties of the rock which is traditionally known as Bala-
ban Green are presented in Table 1. The specific mass (grams
per cubic centimeter), water absorption by volume (percent),
porosity (percent), ultrasonic velocity (meters per second),
Schmidt hammer hardness, and Shore hardness are deter-
mined according to methods suggested by the International
Society for RockMechanics [32], while themicrohardness of
the sample was measured by a Vickers Microhardness meter
as recommended by Xie and Tamaki [33]. A similar proce-
dure with the determination of microhardness was followed
for the determination of Mohs’ hardness of the rock sam-
ple. For Cerchar abrasiveness index testing, a pointed steel
pin having 610 ± 5 Vickers hardness, 200kg/mm2 tensile
strength, and a cone angle of 90◦ was applied to the surface
of the rock samples for approximately one second under a
static load of 68.646 N to scratch a 10mm long groove.

This procedure was repeated five times in various direc-
tions using a fresh pin for each repetition. The abrasiveness of
the rock was determined by the resultant wear flat generated
at the point of the stylus, whichwasmeasured in 0.1mmunits
under a microscope. The unit of abrasiveness was defined as
a wear flat of 0.1mm which is equal to 1 Cerchar abrasiv-
ity index, ranging from 0 to 6. Thin section of the rock was
also examined under a petrographical microscope for deter-
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Fig. 1 Experimental setup

Table 1 Physical properties of rock used in the sawing tests

Rock properties

Specific weight (kN/m3) 26.6

Water absorption by volume (%) 0.19

Porosity (%) 2.20

Ultrasonic velocity (m/s) 4,849

Cerchar abrasion index 4.356

Schmidt hammer hardness 55

Microhardness (HV) 559.03

Shore hardness 75.15

Mohs’ hardness 6.0

mining the mineral type and content (see Fig. 2). Moreover,
the point count method was employed for the modal analy-
ses. These examinations mainly included the determination
of modal compositions and grain size distributions of the
sampled rock. The mineralogical composition of the sam-
pled rock is given in Table 2 along with its textural and
granular description. As can be followed from the Table,
alkali feldspar, quartz, plagioclase, and amphibole are the
main rock-forming minerals in the sample, varying in their
percentage contents. Additionally, grain sizes of the rock-
forming minerals were also determined using a digital image
processing software of Dewinter Material Plus 4.1, and the
mean grain size of the sampled rock was then calculated.

2.3 Experimental Procedure

In the study, SE is considered as a performance criterion.
The SE has been successfully used for the performance eval-

uation of circular diamond sawblades in granite sawing. It
is derived from the amount of energy required to remove
a given volume of rock. The lower value of SE indicates
that the sawing is performed more efficiently [19]. In order
to determine the levels of the operating variables for the
study, preliminary sawing tests were conducted by consider-
ing instructions of diamond disc manufacturers and related
studies. The levels for operating variables of peripheral speed
(Vp), traverse speed (Vc), and cutting depth (d) were selected
as given in Table 3 and each varied at four levels. A factorial
design requiring 64 trials was followed for the sawing tests.
Each trial was repeated four times to increase the accuracy of
results obtained. The sawing experiments were conducted in
the down-cutting mode, and the dimensioned samples were
cut through their lengths. The horizontal (Fh) and vertical
(Fv) force components acting on the disk were measured
using load cells. The tangential (Ft) force and normal (Fn)
force were derived from the Eqs. (1–11) considering the geo-
metrical relations presented in Fig. 3 [34]. Finally, the SEwas
calculated through the Eq. (12).

cosδ = Fv
Fc

(1)

sinδ = Fh
Fc

(2)

Fn = Fccos[(kϕ) − δ] (3)

Fn = Fc

[
cos(kϕ)

Fv
Fc

+ sin(kϕ)
Fh
Fc

]
(4)

Fn = Fvcos(kϕ) + Fhsin(kϕ) (5)

Ft = Fcsin[(kϕ) − δ] (6)

Ft = Fc

[
sin(kϕ)

Fv
Fc

− cos(kϕ)
Fh
Fc

]
(7)
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Amphibole

Quartz
Biotite

Orthoclase

Fig. 2 Photographs of the thin section of the rock tested

Table 2 Mineralogical
properties of the rock sawn

Mineral Grain Size (mm) Prop. (%) Summary of petrographic
description (texture, grain size)

Min. Max. Mean

Alkali feldspar (orthoclase. mikroklin) 0.80 6.80 2.1 38 Hypidiomorphic, coarse-
grained, grains between
0.08 and 6.80mm

Quartz 0.16 5.60 2.7 25

Plagioclase 0.96 5.20 2.2 14

Amphibole 0.24 1.20 0.4 10

Epidot 0.08 0.40 0.1 6

Biotite 0.48 3.20 0.7 4

Other and secondary components
(mica, titanit, zircon, opaque)

0.16 0.96 3

Table 3 Operating variables and their levels

Operating variables Level

Vp (m/s) 25 30 35 40

Vc (cm/min) 50 60 70 80

d (cm) 0.5 1.0 1.5 2.0

Qf (ml/s) 150 (kept constant)

Ft = Fvsin(kϕ) − Fhcos(kϕ) (8)

Fc =
√
F2
n + F2

t (9)

where Fh is horizontal force (N), Fv vertical force (N), Fz
axial force (N), Fn normal force (N), Ft tangential force (N),
Fc resultant cutting force (N), Ds disc diameter (mm), d cut-
ting depth (mm), Vc traverse speed (m/s), Vp peripheral speed
(m/s),ϕ the total included angle of the contact zone (degrees),
and kϕ is the angle showing the location of the resultant force
(degrees). The total included angle of the contact zone (ϕ)

and the angle (kϕ) indicating the location of the resultant
force can be calculated by the following formulas:

Vc

Fn

Fc Fv

Ft

Fz
d

Fh

Vp

kϕ
ϕ δ

Fig. 3 The kinematics of cutting process for the down-cutting model

ϕ = cos−1
(
1 − 2d

Ds

)
(10)

kϕ = 0.7ϕ (11)

Specific energy was calculated as:

SE = Ft Vp
dWV c

(12)

where W is the width of the sawblade segments.
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3 Modeling Studies

3.1 Artificial Neural Networks (ANNs)

ANNs which are a branch of artificial intelligence (AI)
attempt to imitate the brain functions and learn from sam-
ple data presented to them with the purpose of capturing
the relationship among data. ANNs are considered as a type
of intelligent tool for solving complex problems. In each
neuron of ANNs consisting of densely interconnected sim-
ple processing units referred as neurons, the input data are
processed and a single output is obtained [35]. In the pre-
sented study, aMulti-Layer Perception (MLP) type of ANNs
has been used for prediction of SE. A MLP network is the
most commonly employedANNarchitecture. A typicalMLP
structure is shown in Fig. 4. AMLP has three types of layers:
the input, output, and the hidden layers. Each neuron on the
input layer is assigned to an attribute in data and produces an
output which is equal to the scaled value of the corresponding
attribute. The hidden layers, usually numbering one or two,
are intermediate between the input and output layers [36].
The mathematical expression of the output of the MLPs as
shown in Fig. 4 is presented below.

Y = f

⎛
⎝β +

m∑
j=1

v j

[
n∑

i=1

g(wi j Xi + θ j )

]⎞
⎠ (13)

where Y is the prediction value of dependent variable; Xi is
the input value of ith independent variable; wi j is the weight
of connection between the i th input neuron and j th hidden
neuron; θ j is the bias value of the jth hidden neuron; v j is
the weight of connection between the jth hidden neuron and
output neuron; β is the bias value of output neuron; and f (.)
and g(.) are the activation functions of output and hidden
neurons respectively.

Training is a very important procedure for a MLP to
accomplish a required task. Training of a MLP means to
determine the best weights of connections between the neu-
rons in order to obtain minimum difference between actual

X1

X2

Xn

1

2

n

1

m

1

1

Y

β

Vj

Wij

θj

Fig. 4 A typical MLP structure of ANNs

and predicted value of dependent variable. Back propaga-
tion is a most widely used training algorithm. On the other
hand, some factors such as number of input neurons, hidden
neurons, output neurons, and activation function affect the
ANNs performance. In a prediction problem based on cause
and effect relationship, the number of input neurons is equal
to the number of independent variables, and the number of
output neurons is equal to the number of dependent variables.
In order to determine the number of hidden neurons, heuristic
approaches may be used or experimental designmay be done
[37]. Although there are some proposed approaches [38–42]
in the literature to determine the number of hidden neurons,
they are not valid for all the problems [43].

3.2 Regression Analysis

Regression analysis (RA)was performed for the prediction of
SE from operating variables in the presented study. As one
of the traditional statistical methods is used for proposing
an indirect estimation by empirical equations, RA is widely
used for modelling and analyzing the experimental results.
RA focuses on learning more about the relationship between
several predict or variables and a dependent. The perfor-
mance of the model depends on a large number of factors
that act and interact in a complex manner [44,45]. Simple
RA can show how a single dependent variable is affected
by the values of one independent variable. This method only
involves the Xi variable as a predictor and the Y variable as
an outcome. Therefore, simple RA has mainly two anom-
alies. One is related to the number of predictors, and the
other is related to the prediction of most significant X vari-
able among independent variables. Because if two or more
predictors are used for the simple RA, each predictor can
separately show an individual relationship with the outcome
variable and it cannot predict the most significant X vari-
able among independent variables [46]. On the other hand,
multiple regression analysis (MRA) is a powerful modeling
technique and can be useful in those cases where complex
relations are involved. Additionally, MRA can be the right
methodwheremore than one variable affects amaterial prop-
erty as pointed out by Karakus et al. [47]. A multiple linear
regression model is generally expressed by the relationship
between a single outcome variable (Y) and some explanatory
variables (Xi ) given as:

Y = a + b1X1 + b2X2 + · · · + bn Xn (14)

where the term Y is the outcome variable (estimated from
Xi ), a is the constant, and bi are the partial regression coef-
ficients.

Following the regression model establishing, goodness of
fit of the models and the statistical significance of the esti-
mated variables is generally confirmed by various statistical
approaches. F test is used to determine the overall signifi-
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Fig. 5 Experimental results

cance, i.e., whether there is a significant relationship between
the response and the set of all the predictors. If the F test
shows an overall significance, then separated t test is con-
ducted to determine the individual significance, i.e., whether
each of the predictors is significant or not. If the calculated
F- and t-ratios are greater than the tabulated F- and t-ratios
(obtained from F and t distribution Tables), the validation of
model is confirmed [48].

4 Results and Discussion

Experimental results are presented inFig. 5 in graphical form.
As can be understood, the independent variables (operating
variables) are highly correlated with the dependent variable,
SE, and therefore, they are seemed to be significant for using
them in the models that will be developed for the prediction
of SE. A better model that has high correlation coefficient
has not been produced by discarding one or two independent
variables. Therefore, it was decided to include these three
variables in the model. Using 64 trials’ results, the devel-
oped regression model is given below. As seen, the depen-
dent variable, the SE, is a linear function of three independent
variables.

SE = (1.784) + (0.103)Vp − (0.027)Vc − (0.598)d (15)

where SE is the specific energy (Nm/mm3), Vp is the periph-
eral speed (m/s), Vc is the traverse speed (cm/mm), and d is
the cutting depth (cm).

The statistical results of confirmation tests for the devel-
oped model validation are given in Table 4. As seen, the
determination coefficient of the model is 0.98 indicating a
high degree of relationship between the operating variables
and SE. This value implies that 0.02% of the variation in the
SE is due to all causes other than the predictors as they appear
in the expression. Similarly, it can be stated that 0.02% vari-
ation in the SE remains unexplained.

Additionally, it can be also concluded that the calculated
F- and t-ratios are greater than the tabulated F- and t-ratios
confirming the correctness of thewholemodel and individual
variables involved in the model, respectively. Consequently,
it can be concluded that the validation of the developedmodel
has statistically confirmed and the SEmay bemodeled in this
way.

To develop model for the SE by ANNs, inputs and output
of the model were determined. While peripheral speed, tra-
verse speed, and cutting depth are the inputs, the SE is the
output of the model. After preparation of the data belong-
ing to the inputs and output, the network was trained. The
training was carried out by making attempts to establish dif-
ferent ANN models with different network architecture and
learning parameters. The models were tested using a test
data set which was not utilized for the training processes in
order to test the performance of networks. Thus, ANN mod-
els given the most sensitive results were targeted. As a result,
the ANN models produced the closest values to the actual
values were chosen as the prediction models. ANN models
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Table 4 Statistical results of the MRA

Independent
variables

Coefficient Standard error Standard error
of estimate

t
value

Tabulated t
value

F ratio Tabulated F
ratio

Determination
coefficient (R2)

C 1.784 0.116 0.108 15.361 2.388 981.732 4.968 0.98

Vp 0.103 0.002 42.710

Vc −0.027 0.001 −22.589

d −0.598 0.024 −24.715

 Vp

 Vc

 d

SE

Fig. 6 ANN model for SE

consisting of one input layer, one hidden layer, and one out-
put layer selected as the prediction models are shown in the
Fig. 6 for the SE. The number of neurons in the hidden layer
was determined by trying various networks. The number of
hidden layer neurons was changed from 2 to 8, and finally
the best number of hidden layer neurons was found as 4.
Hyperbolic tangent was preferred as the activation function
and linear transfer function in the hidden and output layers,
respectively.

Bayesian regularization training function (trainbr inMAT-
LAB coding) was chosen as training algorithm. The data set
was splitted into two separate parts for learning and valida-
tion purposes. Data belong to the 69 trials (five of them is the
test data set which was not utilized for the training processes)
were used for training (32 data set, 46.4% of total trials), val-
idating (32 data set, 46.4% of total trials), and testing (5 data
set, 7.2%of total trials) ofANNs. In order to evaluate the per-
formance of the ANNs in training phase, root-mean-square
error (RMSE), mean absolute percentage error (MAPE), and
mean absolute error (MAE) measures were preferred as their
equations are given below.

RMSE =
√√√√1

n

n∑
i=1

e2i (16)

MAPE = 1

n

n∑
i=1

(∣∣∣∣ eiyi
∣∣∣∣
)

× 100 (17)

MAE = 1

n

n∑
i=1

|ei | (18)

where n is the total number of measurements, ei is differ-
ences between actual (measured) and predicted values, and
yi is actual values. Finally, three input neurons, four hidden
neurons, and one output neuron were determined for the best
ANNmodel. By using this model, the obtained performance
measures for training data are as 0.078, 2.225, and 0.056
for the RMSE, MAPE, and MAE, respectively. Accordingly,
the determination coefficient (R2) of the ANN model was
obtained as 0.994.

5 Comparison and Evaluation of Regression and ANN
Models

In this part of the study, the performances of developed mod-
els by RA and ANNs were compared and evaluated. To com-
pare both models’ performances, RMSE, MAPE, and MAE
performance measures were used. The accuracy of predic-
tion is evaluated based on the estimation of error, thus the
smaller the value of RMSE, MAPE, and MAE, the better the
prediction is. Herein, the criterion of MAPE is the decisive
factor as it is expressed in easy generic percentage term.

The criteria of MAPE for model evaluation indicated by
Lewis [49] and the compared results for the models devel-
oped by ANNs and RA are given in Tables 5 and 6, respec-
tively. As seen, the MAPE values were determined as 3.064
and 5.34% for ANN and regression models, respectively.
Similarly, the RMSE values were determined as 0.088 and
0.113, while the MAE values were determined as 0.068 and
0.121 for ANN and regression and models, respectively.
Additionally, the determination coefficients of the ANN and

Table 5 Typical MAPE values for model evaluation

MAPE (%) Evaluation

MAPE ≤ 10% High accuracy prediction

10% < MAPE ≤ 20% Good prediction

20% < MAPE ≤ 50% Reasonable prediction

MAPE > 50% Inaccurate prediction
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Fig. 7 Plots of training,
validating and testing data for
the ANN model
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Table 6 Compared results for ANNs and RA models

Model type Experimental Prediction MAPE (%) RMSE MAE R2

ANNs 2.21 2.24 3.06 0.08 0.06 0.99

1.56 1.49

2.28 2.28

2.48 2.64

3.57 3.60

RA 2.21 2.29 5.34 0.113 0.121 0.98

1.56 1.51

2.28 2.36

2.48 2.67

3.57 3.50

regression models were found as 0.99 and 0.98, respectively
as shown in Fig. 7. The compared results revealed that both
models can give adequate prediction for the SE with a high
accuracy prediction because their MAPE are in the ranges of

≤10% (see Table 5). However, it can be stated that the cor-
responding ANN model is more reliable than the regression
model for the prediction of SE as this model has the lower
MAPE of 3.064%.

Furthermore, focused on the predicted SE values, the eval-
uation of the developed regression and ANNmodels is given
as follows as reported by Mohd Zain et al. [50]:

1. Experimental data versus regression
The minimum SE value (since minimum SE is desired
in sawing applications) among the experimental trials
(Table 6) was obtained as 1.56kN/mm3. Therefore, with
the predicted minimum SE of 1.51kN/mm3 (Table 6), it
can be stated that the regression model has given a min-
imum value of the SE compared to experimental data by
about 0.05kN/mm3.

2. Experimental data versus ANN
With the predicted minimum SE = 1.49 kN/mm3 for
ANN and SE = 1.56 kN/mm3 for experimental data, it
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can be stated that the ANN model has given a minimum
value of the SE compared to experimental data by about
0.07kN/mm3.

3. Regression versus ANN
With SE = 1.51 kN/mm3 for regression and SE =
1.49 kN/mm3 for ANN models, it can be stated that the
ANN model has given a minimum value of the SE com-
pared to regression model by about 0.02kN/mm3.

As it is seen, the ANN and RA techniques are capable of
giving minimum value of SE compared to experimental data
in rock sawing applications by diamond sawblades.

6 Conclusions

A modeling study using ANN and regression techniques on
the SE in sawing of granitic rock was presented in the cur-
rent study.Models’ performancesweremeasured, compared,
and evaluated for showing the accuracy levels in prediction
of SE. Results of both modeling techniques showed that the
form of the models was generally feasible and consistent
with the experimental trends. The statistical criteria for vali-
dation also confirmed the correctness of the developed mod-
els that provide promising potential for future applications.
Although both approaches present better results, the com-
pared results revealed that the corresponding ANN model
is reliable than the regression model for the prediction of
SE. In other words, the compared results demonstrated the
superiority of the ANN model over regression model. As
a consequence, the present work indicated that the ANNs
and regression analysis can be effectively used for predicting
the rock sawing performance of diamond sawblades. There-
fore, it is highly recommended that in addition to the SE,
other performance indicators (especially wear rate of saw-
blade elements and surface quality of the cut surface) should
be modeled by ANNs and other artificial intelligent methods
since such studies will enable the natural stone producers to
sustain their productions in a planned scale.
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