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Abstract In this study, the PID controller design method
based on direct synthesis approach for achieving the desired
set-point or load-disturbance response is proposed. The
PID controller is derived using an approximate frequency-
response-matching criteria. A simple criterion has been also
provided to choose the frequency points for matching of the
proposed PID controller with the desired direct synthesis
controller. It is a unified approach which deals with broad
class of processes including integrating and inverse response,
and it is directly applicable to any order of process with
time delay. The ideal controller based on the direct synthesis
approach has been directly approximated to the PID con-
troller in desired frequency range. Therefore, the proposed
method is free from model reduction in high-order process
to low-order process and also rational approximation of the
time-delay term e−sL . The advantage of method is illustrated
through examples taken from the literature and compared
with some of the well-known methods.
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1 Introduction

The proportional–integral–derivative (PID) controller is the
most widely accepted controller in the industrial applications,
especially in process industries due to advantageous cost-to-
benefit ratio. It is well proven in terms of simplicity in control
structure, easy to understand, low cost and easy to maintain as
well as satisfactory performance. Numerous tuning methods
have been proposed in the last few decades that cover var-
ious aspects of the control performance requirements such
as set-point response, controller output, robust operation and
load-disturbance rejection. These methods differ in complex-
ity, flexibility and amount of process knowledge requirement
against the level of performance obtained. They are well doc-
umented in books [1,2] and in review paper [3].

There are variety of controller tuning approaches reported
in the literature; of them, two are widely used for the con-
troller tuning; and one may use open-loop or closed-loop
plant tests. Most tuning approaches are based on open-loop
plant information—typically, the plant’s gain (k), time con-
stant (τ ) and time delay (L).

The internal model control (IMC) [4] is a popular tech-
nique with improved robustness where the user can spec-
ify the performance in terms of a single parameter, i.e., the
desired closed-loop time constant. If required, then one can
compute a PID controller in the classical feedback configu-
ration from the IMC configuration. Although the IMC design
method is mainly used for the low-order processes, it could be
applicable for the high-order process where one has to reduce
high-order process into low-order process using model reduc-
tion technique. To obtain the PID controllers, the Maclaurin
series expansion of the equivalent classical feedback con-
troller derived from the IMC configuration has been used
[5,6], whereas the Laurent series expansion has been used
by Panda [7,8]. Based on the IMC principle, Shamsuzzoha
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and Lee have used 1/2 Pade approximation of the dead-time
term to obtain the PID controller in cascade with a lag/lead
compensator [9,10]. Vijayan and Panda [11] have proposed a
PID controller based on the IMC scheme using double feed-
back loops with the inner loop for the purpose of stabilizing
the unstable process. Another IMC-based approach is pro-
posed by Wang et al. [12] which is based on minimization of
frequency response error in the region of the bandwidth of
the desired closed-loop system.

In frequency domain, model-matching technique can be
applied for obtaining the PID controller without model reduc-
tion in the high-order process. Wang et al. [13] used one
or two (for PI/PID, respectively) specific frequency points
related to the settling time of the desired control system,
whereas Wang et al. [14] used multiple frequency points for
matching purpose and an optimization technique for the solu-
tion. In the direct synthesis (DS) approach [15], the design
is based on a desired closed-loop transfer function. Several
researchers [16–18] have utilized the DS approach for the
PID controller design for stable and unstable processes. Sim-
ilar to IMC approach, model reduction is required in DS
approach as well because it is based on low-order model.

The main alternative of the above-mentioned open-loop
approach is to use closed-loop experiments. It requires very
little information about the process to obtain controller set-
ting. Recently, several authors [19–22] have proposed mod-
ified tuning methods based on closed-loop experiments, and
resulting controller gives consistently better performance and
robustness for a broad class of processes.

Recently, Alcantara et al. [23] has addressed the model-
based tuning of PI/PID controller based on the robust-
ness/performance and servo/regulator trade-offs. The study
suggests how to shift each compromise based upon constraint
for several types of processes. They have extended the prelim-
inary design concept of balanced autotuning, which was pub-
lished earlier [24–26]. K-SIMC method, a modification of
SIMC rule has been proposed recently by Lee et al. [27]. Tor-
rico et al. [28] proposed a new and simple design for the fil-
tered Smith predictor (FSP), which belongs to a class of dead-
time compensators (DTCs) and allows the handling of stable,
unstable and integrating processes. Recently Ravi and Thya-
garajan [29] have suggested a simple and straightforward
procedure for designing a non-adaptive decoupling-based
decentralized PI control scheme and adaptive decoupling-
based decentralized PI control scheme using regime-based
multi-model adaptive control strategy for the TCTILS.

It should be emphasized that the most of the aforemen-
tioned tuning methods is based on the low-order model and
approximation of the time-delay term. As a result, model
reduction is required to deal with such kind of processes that
may eventually have performance and robustness limitation.

Therefore, in this study, a DS-based frequency domain
approximate model-matching method has been proposed for

the PID controller design. The desired reference model for
both the set-point and load-disturbance response is selected.
The obtained DS controller is approximated to the PID con-
troller by matching the frequency response of the two con-
trollers. For the purpose of matching, two low-frequency
points are chosen which shows an overall matching over the
effective range of frequency response. The method is free
from any restriction on the structure and complexity of the
process, and hence, process reduction for high-order process
and the approximation of the time-delay term is not required.
It is applicable for different types of stable and integrating
processes with and without non-minimum phase zero and
time delay. The simulation results of the proposed method
are comparable with other well-known methods.

The rest of the paper is organized as follows: The math-
ematical preliminaries used in the design method have been
discussed in Sect. 2; in Sect. 3, the proposed design method;
Sect. 4 is devoted for discussion; and in Sect. 5, simulation
study followed by conclusion in Sect. 6.

2 Mathematical Preliminaries

Consider a real function f(x) with derivatives f(i)(x), i ∈
[1,n] and in some region around the point x = x0. Let the
value of f(x) be given for the distinct real numbers xi, where
xi = x0 + hi, and h > 0. Using the notation of calculus
of divided differences, we may define f[x0] = f(x0) and the
following divided differences of arguments 2 to n + 1

f [x0x1] = ( f [x0] − f [x1])/(x0 − x1)

f [x0x1x2] = ( f [x0x1] − f [x1x2])/(x0 − x2)

:
:

f [x0x1 . . . .xk] = ( f [x0x1 . . . xk−1]
− f [x1x2 . . . .xk])/(x0−xk)k ∈[1, n]

(1)

Suppose that the interval (a, b) bounded by the greatest
and least of x0, x1, . . . , xn , the function f (x) of the real vari-
able x and its first (n−1) derivatives are finite and continuous
and that f n(x) exist. It may then be shown [30] that:

f [x0x1x2...xn] = h−n
n∑

i=0

(−1)n−i

i !(k − i)! f (xi ) = 1

n! f (n)(η)

(2)

where η lies in the interval x0 ≤ η ≤ x0 + nh.
Now let ψ(x) be a second real function with finite and

continuous derivatives ψ(i)(x) around the point x = x0 such
that

ψ(xi ) = f (xi ), i ∈ [0, n] (3)
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Then, from Eq. (2), ψ(n)(ξ) = f (n)(η) where ξ lies in the
interval x0 ≤ ξ ≤ x0 + nh. If the parameter h takes a very
small nonnegative value, we have [31,32]

f (i)(x) = ψ(i)(x), i ∈ [0, n] (4)

Thus, for a suitable small value of the parameter h, for a
given f (x) another real-valued functionψ(x)may always be
constructed using Eq. (3) so that the approximate relations in
(4) are satisfied. The above concept is used in the controller
design section for approximation.

3 Controller Design Method

Consider a general process transfer function,

G(s) = N (s)

D(s)
e−sL (5)

where N (s)/D(s) is the rational part of the transfer function
and L is the time delay of the process. The unity negative-
output feedback control system configuration is considered
with a controller C(s) as shown in Fig. 1. F(s) is a set-
point filter, which is usually required to improve set-point
performance when the controller is designed based on the
disturbance rejection. r is the input, e is the error, u is the
controller output, d is the disturbance, x is the process input,
and y is the output of the process. The main design concept
is described below without considering the set-point filter.

The closed-loop transfer function for both the set-point
and disturbance rejection are given as

y(s)

r(s)
= C(s)G(s)

1 + C(s)G(s)
(6)

y(s)

d(s)
= G(s)

1 + C(s)G(s)
(7)

In the direct synthesis method, the controller design is based
on the process model and a desired closed-loop transfer func-
tion. The controller may be designed either for the desired
set-point response or for the load-disturbance response. First,
the closed-loop transfer function for the desired set-point
response is selected as Gr,y(s). The controller, C(s), which
yield the desired set-point response may be obtained from

r C(s) G(s)
y

d

-+F(s)
u

++
e x

Fig. 1 Block diagram of the classical feedback control systems

Eq. (6) as

C(s) = Gr,y(s)

G(s)[1 − Gr,y(s)] (8)

Similarly, to achieve the desired load-disturbance response,
the closed-loop transfer function Gd,y(s) is selected and the
controller C(s) can be obtain from Eq. (7) as

C(s) = 1

Gd,y(s)
− 1

G(s)
(9)

The structure and the order of the controller C(s) depend
on the desired closed-loop transfer function and the process
model as can be seen from Eqs. (8) and (9). To get a PID
controller CPID(s) from C(s), the researchers usually use a
low-order process model such as the first order plus dead time
(FOPDT) and second order plus dead time (SOPDT). Then,
they used a rational approximation of the time-delay term
using the Pade approximation or the power series expansion.
In common practice, for the higher-order process, it is first
reduced to a suitable low order to apply any design method.
The proposed method is free from model reduction in high-
order process to low order and rational approximation of the
delay term e−sL .

In this approach, instead of the process model reduction,
the controller C(s) is directly approximated to a PID con-
troller CPID(s) as

CPID(s) = KP + KI

s
+ KDs (10)

where KP, KI and KD are proportional, integral and deriva-
tive gains, respectively. To approximate the C(s) by the PID
controller CPID(s), the frequency response matching of the
two controllers is considered as given below

CPID(s)
∣∣∣
s= jω

∼= C(s)|s= jω (11)

or

CPID
R (ω)+ jCPID

I (ω) ∼= CR(ω)+ jCI(ω) (12)

where

CPID(s)
∣∣∣
s= jw

= CPID
R (ω)+ jCPID

I (ω)

and C(s)|s= jw = CR(ω)+ jCI(ω)

Separating the real and the imaginary parts in Eq. (12), one
may write

CPID
R (ω) ∼= CR(ω) and CPID

I (ω) ∼= CI(ω) (13)

In order to force the equivalence of two real functions,
CR(ω) and CI(ω) with their approximants CPID

R (ω) and
CPID

I (ω), respectively, one may equate appropriate number
of initial few terms of the corresponding Taylor series expan-
sions about ω = 0. Thus, to accomplish approximate match-
ing of the left-hand side (LHS) functions in Eq. (13) with the
corresponding functions on the right-hand side (RHS), initial
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N derivatives of the corresponding functions are equated at
ω = 0 to give

dk

dωk

[
CPID

R (ω)
]∣∣∣∣
ω=0

= dk

dωk
[CR(ω)]

∣∣∣∣
ω=0

(14)

dk

dωk

[
CPID

I (ω)
]∣∣∣∣
ω=0

= dk

dωk
[CI(ω)]

∣∣∣∣
ω=0

(15)

where, k ∈ [0, N − 1]

Now, using the mathematical preliminaries given in earlier
section, CPID

R (ω) approximately matches CR(ω) if

CPID
R (ω)

∣∣∣
ω=ωk

= CR(ω)|ω=ωk
; k ∈ [0, N − 1] (16)

and

CPID
I (ω)

∣∣∣
ω=ωk

= CI(ω)|ω=ωk
; k ∈ [0, N − 1] (17)

whereωk are sufficiently small positive values aroundω = 0.
It is clear from Eqs. (16) and (17) that N values of ω give 2N
linear algebraic equations with the unknown parameters. For
3 numbers of unknowns of the PID controller N is at least
equal to 2, and for two low-frequency points ω0 and ω1, the
following expression is obtained.

Ax̄ = b̄ (18)

where

A=

⎡

⎢⎢⎣

1 0 0
0 − 1

ω0
ω0

1 0 0
0 − 1

ω1
ω1

⎤

⎥⎥⎦ ; x̄ =
⎡

⎣
KP

KI

KD

⎤

⎦ ; and b̄=

⎡

⎢⎢⎣

CR(ω0)

CI(ω0)

CR(ω1)

CI(ω1)

⎤

⎥⎥⎦

From Eq. (18), two values of KP are obtained as:

KP1 = CR(ω0); KP2 = CR(ω1)

It is observed from various examples that KP1 ≈ KP2, and
we may take an average of these values.

Hence, to evaluate KI and KD, Eq. (18) may be simplified
as

A1 x̄1 = b̄1 (19)

where

A1 =
[

− 1
ω0

ω0

− 1
ω1

ω1

]
; x̄1 =

[
KI

KD

]
; and b̄1 =

[
CI(ω0)

CI(ω1)

]

Then, solution of Eq. (19) determines KI and KD. Thus, the
parameters of the PID controller are evaluated.

4 Discussion

4.1 Selection of Low-Frequency Points

Good approximation of C(s) by the CPID(s) results in good
matching of the overall designed system with the desired
closed-loop system. Thus, frequency points’ selection is con-
sidered with respect to the desired closed-loop system. How-
ever, theoretically, the range ofω is from 0 to ∞ and for such
an infinite range, it is meaningless to findωk values which are
sufficiently small. The small values of frequency points are
chosen at around 0.1 % of the bandwidth frequency, where
the bandwidth may be treated as an indication to the effective
range of frequency response of the desired reference model.
Normally, industrial processes show low-pass dynamics in
terms of the frequency response, so closer matching in low-
frequency zone is more important. Such frequency points
for matching have been observed through simulation to give
good result for the most of the processes.

4.2 Selection of the Desired Closed-Loop System

In the DS/IMC design methods, the desired closed-loop
transfer function is selected based on the closed-loop
response speed or effective time constant of closed-loop sys-
tem. The desired closed-loop transfer function either Gr,y(s)
or Gd,y(s) as the case may required to have a time-delay
value at least equal to that of the process. From the stability
point of view, it is also required to have the zeros of the right
half of the s-plane of the process (i.e., non-minimum phase
zeros that show the inverse response) in the desired trans-
fer function. Further, for a choice of the desired closed-loop
transfer function Gd,y(s) for the load-disturbance rejection
response, it is required to have one zero at origin. In the pro-
posed design method, the effective closed-loop time constant
is being selected with the consideration of the open-loop sys-
tem dynamics.

• In addition to FOPDT and SOPDT, the proposed design
method is directly applicable to high-order processes
that may have over-damped, oscillatory or inverse
response dynamics along with dead time. Both the
design approaches considering either the desired set-
point response or the desired load-disturbance response
are applicable for all the cases.

• In case of processes with integrating dynamics, the pro-
posed method, when applied for achieving the desired
set-point response, gives the integral constant KI = 0,
leading to a PD controller. This may also be shown as
discussed below.

A desired reference model of the second order for set-point
tracking is considered as given by
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Gr,y(s) = ω2
n

s2 + 2ξωns + ω2
n

e−Ls (20)

Equation (8) may be written as
(

KP + KI

s
+ KDs

)∣∣∣∣
s= jω

∼=
(

ω2
n

s2+2ξωns+ω2
n

)

(
Np(s)

s Dp(s)

) (
1 − ω2

n
s2+2ξωns+ω2

n
e−Ls

)

∣∣∣∣∣∣∣
s= jω

(21)

Using the first-order Pade approximation of e−Ls , Eq. (21)
can be simplified as

(
KDs2 + KPs + KI

)

s

∣∣∣∣∣
s= jω

∼= Dp(s)[(ω2
n L/2)s + ω2

n]
Np(s)

[( L
2

)
s2 +

(
2ξωn L

2 + 1
)

s + (
Lω2

n + 2ξωn
)]

∣∣∣∣∣∣
s= jω

(22)

In Eq. (22), LHS has one pole at origin (type-1 transfer func-
tion), while the RHS has not any pole at origin (type-0 transfer
function). Then, for feasible matching, types of both sides of
Eq. (22) are to be same. This may be obtained by choosing
KI = 0, which makes LHS as type-0. In a similar way, it can
be shown for any order of the reference model, KI is to be
0. It is to note that the proposed design method generates the
value of KI as 0 by its own procedure.

Thus, the proposed PID controller design for the desired
set-point response yields the PD controller for integrating
processes. Based on such a PD controller, a good set-point
response may be obtained, but it fails to reject the load
disturbance. Thus, for the integrating processes, the pro-
posed design method is applied to achieve the desired load-
disturbance response.

4.3 Set-Point Filter for Enhanced Servo Response

Achieving a good load-disturbance rejection is usually asso-
ciated with tight set-point response with overshoot. In such
case, a possible solution is to use a set-point filter [1], lead-
ing to a two-degree-of-freedom control scheme that does not
affect the load-disturbance rejection performance. A simple
structure as F(s) = 1/(λs +1) is considered, where the time
constant λ is to be chosen carefully. A small λ results in faster
response of the system with improvement in the peak over-
shoot and the oscillation. Too small λ becomes ineffective
(F(s) ≈ 1). It is observed through simulation that accept-
able improvement occurs for 0 < λ < ts/4, where ts is the
settling time of the set-point response of the control system
before employing the filter.

5 Simulation Results

To show the performance of the proposed method, simu-
lation has been conducted on different types of processes,
e.g., over-damped, oscillatory, inverse response, integrating
dynamics, low order as well as high order with and without
time delay. The set-point filter is used in case of aggressive
set-point response observed. It is also compared with some
of the well-known methods available in the literature. The
following robustness and performance parameters are used
to evaluate the proposed PID controllers.

• Maximum sensitivity (Ms): To evaluate the robustness of
a control system, the maximum sensitivity, Ms, is consid-
ered which is defined as Ms = max0≤ω≤∞ |1/1 + C( jω)
G( jω)|. Smaller value of Ms is preferred with recom-
mended range of 1.2 – 2.0 [1].

• Integral absolute error (IAE): This indicates a perfor-
mance measure of the overall step response as given by

IAE =
∞∫

0
|e(t)|dt , where e(t) is the error signal.

• Total variation (TV) of controller output: It is an impor-
tant parameter for evaluation of manipulated variable
u(t), by considering all its up and down moves. It is
defined as TV = ∑∞

i=1 |ui+1 − ui |, where ui is the dis-
cretized manipulated variable. A lower TV value indi-
cates better smoothness of the controller output [33].

For process G1(s), various pairs of frequency points are
chosen for the design purpose and tabulated in Table 1. It
is observed from this table that the values of the frequency
points are within a small percentage range (around 0.1 %)
of the bandwidth frequency. The variation in obtained con-
troller parameters is insignificant, and resulting difference in
performance is almost negligible. In general, the choice of
frequency points around 0.1 % of the bandwidth frequency
has been observed to give good results for the most of the

Table 1 PID controller parameters considering different frequency
point matching for example 1

Cases ω0 ω1 KP1 KP2 KI KD

1 0.01 0.02 1.125 1.125 1.0 0.14

2 0.02 0.04 1.125 1.125 1.0 0.12

3 0.04 0.08 1.125 1.125 1.0 0.12

4 0.1 0.2 1.125 1.125 1.0 0.12

5 0.2 0.4 1.125 1.126 1.0 0.12

6 0.4 0.8 1.126 1.129 1.0 0.12

7 1.0 1.2 1.131 1.137 1.0 0.12

8 1.4 1.8 1.137 1.145 1.0 0.121

9 1.8 2.0 1.145 1.150 1.0 0.124
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Fig. 2 Bode magnitude plot of controllers for example 1; solid line,
PID controller CPID(s); dotted line, Ideal controller C(s)
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Fig. 3 Bode plot for example 1; solid line, open-loop designed system;
dotted line, open-loop reference model

processes. To show the effectiveness of the approximation,
the performance comparison of G1(s) has been considered
in frequency domain. The frequency response of the con-

troller C(s) and the approximated PID controller CPID(s) is
shown in Figure 2, where it has observed of close match-
ing in the low-frequency region. In Fig. 3, the frequency
response of the open-loop system and the reference open-
loop system has been shown. The result in this case also
shows close matching in the low-frequency region. Similar
observation has been found for the rest of examples given in
Table 2.

In the simulation study, wide range of processes has been
considered to show the effectiveness of the proposed method.
To design PID controller for stable process, a desired set-
point response model is considered, while for an integrating
process, a desired load-disturbance response model is con-
sidered. The desired reference model for both the set-point
and the load-disturbance rejection with selected frequency
points for all the cases is listed in Table 2. Set-point filter of
the first order is considered in case of aggressive set-point
response.

The closed-loop performance is evaluated by introducing
a unit step change in both the set point and load disturbance,
i.e., (ys = 1 and d = 1). The proposed PID controller is
compared with other well-known methods, and the controller
parameters, including the performance and robustness matrix
(IAE, Ms and TV) are listed in Table 3. The simulation results
of examples 1, 3, 6, 7 and 9 are shown in Figs. 4, 5, 6, 7 and 8.
It clearly shows that the proposed method gives both smaller
overshoot and faster disturbance rejection while maintaining
the set-point performance in most of the cases. From above
analysis, it seems that the proposed method constantly gives
either better closed-loop response or comparable with other
well-known methods.

Figure 9 shows the manipulated variable (MV) response
for G3(s) as the representative case. The response of the MV
of the proposed method is smooth and better in comparison
with other methods. As mentioned earlier, TV is a good mea-
sure of the smoothness of a signal, and the TV value of all 9
processes is given in Table 3.

Table 2 Process models and
reference models for the
simulation study

Process Reference model ω0, ω1 rad/s

G1(s) = e−0.5s

s+1 Gr,y(s) = e−0.5s

0.5s+1 0.02,0.04

G2(s) = 2(−3s+1)e−0.5s

(2s+1)(s+1) Gr,y(s) = −3s+1
4s+1 e−0.5s 0.2,0.4

G3(s) = e−0.4s

(s2+s+1)(s+3)
Gr,y(s) = e−0.4s

4.5s+1 0.002,0.004

G4(s) = e−4s

s(s+1) Gd,y(s) = 120se−4s

(5s+1)(15s+1) 0.001,0.002

G5(s) = 0.0506
s e−6s Gd,y(s) = 4s

(5s+1)(6.3s+1) e
−6s 0.001,0.002

G6(s) = 0.547(−0.418s+1)e−0.1s

s(1.06s+1) Gd,y(s) = (−0.418s+1)s
(s+1)(2s+1) e−0.1s 0.001,0.002

G7(s) = e−8s

(2s+1)3(s+1)2
Gr,y(s) = e−8s

10s+1 0.002,0.004

G8(s) = e−2.2s

(4s2+2.8s+1)(s+1)2
Gr,y(s) = e−2.2s

(1.2s+1)4
0.003,0.006

G9(s) = 1
(s+1)20 Gr,y(s) = 1

(s+1)20 0.001,0.002
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Table 3 Performance comparison for nominal process model

Process Method KP KI KD MS Set-point response Load-disturbance response

IAE TV IAE TV

G1(s) Proposed 1.12 1.0 0.12 1.44 1.05 2.25 1.0 1.0

Shamsuzzoha and Lee [6] 1.08 1.02 0.11 1.44 1.08 2.18 0.99 1.0

IMC-PID 1.11 0.88 0.11 1.44 1.12 2.10 1.26 1.0

G2(s) Proposed 0.212 0.066 0.176 1.32 7.575 0.59 20.52 3.21

Jeng and Lin [34] 0.191 0.063 0.127 1.26 7.973 0.51 20.98 2.22

Chen et al. [35] 0.21 0.067 0.134 1.33 7.563 0.50 20.68 2.33

G3(s) Proposed 0.74 0.612 0.827 1.14 4.903 2.99 1.634 0.99

Wang et al. [14] 1.96 1.75 3.74 1.69 2.799 4.78 0.821 1.34

Ho [36] 1.60 0.41 0 1.68 7.314 3.77 2.438 1.24

G4(s) Proposeda 0.20 0.0083 0.357 1.30 14.49 0.17 120.1 1.81

Ali and Majhi [37] 0.19 0.0084 0.53 1.31 14.75 0.54 119.7 1.81

SIMC [33] 0.13 0.0039 0.126 1.32 17.28 0.32 256.0 1.55

G5(s) Proposedb 3.50 0.16 6.62 1.34 16.04 3.42 5.99 2.59

Ali and Majhi [37] 3.39 0.17 9.96 1.35 17.53 15.03 6.029 3.17

Chidambaram and Sree [38] 4.06 0.15 10.97 1.42 16.61 24.13 6.665 4.73

G6(s) Proposedc 3.518 1.00 1.95 1.28 2.061 4.71 1.044 3.93

Shamsuzzoha and Lee [39]d 2.43 0.667 1.786 1.32 2.567 2.53 1.542 2.93

Gu et al. [40] e 2.088 0.541 1.436 1.27 2.706 2.05 1.889 2.64

G7(s) Proposed 0.543 0.055 2.30 1.24 18.45 1.36 18.19 1.08

Yang et al. [41] 0.63 0.060 1.745 1.30 18.52 1.66 16.69 1.22

IMC-PID [42] 0.56 0.063 1.316 1.26 18.92 1.48 17.10 1.15

G8(s) Proposed 0.558 0.143 0.857 1.23 8.362 1.30 7.151 1.05

Yang et al. [41] 0.73 0.170 1.467 1.31 8.216 1.84 6.152 1.31

IMC-PID 0.58 0.124 0.650 1.26 8.462 1.34 8.014 1.11

G9(s) Proposed 0.525 0.055 1.66 1.27 23.33 1.56 20.02 1.25

Yang et al. [41] 0.62 0.052 2.21 1.33 23.77 1.68 19.85 1.26

IMC-PID [42] 0.55 0.05 1.87 1.29 23.72 1.43 22.53 1.11

The set-point filter is used in some of the cases to improve servo response as given below,
a F(s) = 1/12s + 1; b F(s) = 1/15s + 1; c F(s) = 1/15s + 1;
d F(s) = 1.0963s+1

2.7528s2+3.6543s+1
; e F(s) = 1.1599s+1

2.6597s2+3.8664s+1
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Fig. 4 Process responses of the first order with time-delay process

G1(s) = e−0.5s

s+1 , set-point change at t = 0; load disturbance of magni-
tude 1 at t = 8

The performance of the nominal case has been compared
and shown both in figures and Table 3; it is also worth to ana-
lyze the robustness of the controller evaluated by inserting
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Fig. 5 Process responses of third order with time-delay process
G3(s) = 1

(s2+s+1)(s+3)
e−0.4s , set-point change at t = 0; load distur-

bance of magnitude 1 at t = 60

a perturbation uncertainty in gain and dead time. To show
the closed-loop response of the model mismatch, a case has
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Fig. 6 Process responses of the second order with positive zero and

time-delay integrating process G6(s) = 0.547(−0.418s+1)e−0.1s

s(1.06s+1) , set-point
change at t = 0; load disturbance of magnitude 1 at t = 20
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Fig. 7 Process responses of fifth order with time-delay process

G7(s) = e−8s

(2s+1)3(s+1)2
, set-point change at t = 0; load disturbance

of magnitude 1 at t = 100
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Fig. 8 Process responses of 20th order process G9(s) = 1
(s+1)20 , set-

point change at t = 0; load disturbance of magnitude 1 at t = 100

been selected for 20 % uncertainty in both the process gain
and dead time simultaneously. The simulation results for the
plant-model mismatch are given in Figs. 10 and 11 for both
the servo and regulatory problems. It should be mentioned
that the controller settings used in simulation are those calcu-
lated for the process with nominal process parameters. The
performance and robustness indices clearly demonstrate the
comparable robust performance of the proposed controller
design.

In the proposed design method, both the selected fre-
quency points is sufficiently low values which emphasis
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Fig. 9 Controller output of third order with time-delay process
G3(s) = 1

(s2+s+1)(s+3)
e−0.4s , set-point change at t = 0; load dis-

turbance of magnitude 1 at t = 60
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Fig. 10 Process output of the third order with time-delay perturbed
process G3(s) = 1

(s2+s+1)(s+3)
e−0.4s , set-point change at t = 0; load

disturbance of magnitude 1 at t = 60
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Fig. 11 Process output of the second order with positive zero and

time-delay perturbed process G6(s) = 0.547(−0.418s+1)e−0.1s

s(1.06s+1) , set-point
change at t = 0; load disturbance of magnitude 1 at t = 20

for closer matching in the low-frequency region. It ensures
achievement of the desired steady-state specification and
consequently good transient response for stable and integrat-
ing processes with inverse response.

6 Conclusions

In this study, a simple DS-based PID controller design
method for industrial processes have been proposed. Ini-
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tially DS control scheme is obtained for a given process,
and further, it is converted to a PID controller by an approxi-
mate frequency-response-matching method. Two frequency
points are required for matching the frequency response, and
an effective criterion has been provided for choosing such fre-
quency points. The method is free from model reduction in
high-order process to low-order process and rational approx-
imation of the delay term e−sL . The design procedure has
acceptable computation burden to obtain the PID controller
settings. The important feature of the proposed methodology
is that it deals with stable and integrating process in a unified
way. The proposed method shows comparable results with
other well-known methods.
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