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Abstract In this paper, an efficient and secure strong des-
ignated verifier signature with message recovery scheme is
presented using elliptic curve and bilinear pairing. In our
scheme, the signer implants a message on the signature and
sends it without message to the verifier, who then extracts
the original message and validates the message-signature
pair. However, an outsider is unable to verify the message-
signature pair since the verifier’s private key is strictly
required for verification. Our scheme has been designed
to achieve confidentiality, integrity, authentication and non-
repudiation of message transmitted through hostile networks.
Our scheme is secure against adaptive chosen message attack
in the random oracle model under the intractability assump-
tion of Co-Bilinear Diffie–Hellman problem. Besides, our
scheme is computation and communication efficient than
other schemes, and hence, it may be useful in many small
message applications and also for the resource-constrained
environments.
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1 Introduction

In 1996, Jakobsson et al. [1] firstly formulated the strong des-
ignated verifier signature (SDVS) scheme. In SDVS scheme,
a signer recognized with the identity IDA calculates a signa-
ture for the verifier recognized with the identity IDB , who can
only verify the authenticity, but he cannot prove to an out-
sider recognized with the identity IDC that the signer IDA was
the actual signer since the verifier IDB has the capability to
produce another valid SDVS intended for him, which is indis-
tinguishable from the signature computed by the signer IDA.
The fact is that the outsider IDC cannot verify the signature
since the private key of the verifier IDB is strictly involved in
the message-signature verification process. With the elliptic
curve cryptography (ECC) [2–4] and bilinear pairing [5,6],
several identity-based SDVS schemes [1,7–17] are studied
widely.

1.1 Related Works and their Problems

In 2007, Lee and Chang [18] implemented a SDVS scheme
with message recovery facility, called SDVSMR scheme.
However, they have not defined any formal security model
and formal security analysis. In 2004, Saeednia et al. [19] pro-
posed a SDVS scheme without any formal security analysis.
Unfortunately, Lee and Chang [20] analyzed that Saeednia
et al.’s scheme [19] has some security problem, i.e., the sig-
nature can also be verified by the signer. It means that if
the private key of the signer revealed to an adversary, then
he can verify the signature using signer’s private key. Then,
they devised an enhanced SDVS scheme without any formal
security analysis. Inspired from the Lee and Chang’s scheme
[18], in 2010, Yang and Liao [21] proposed a new strong des-
ignated verifier signature with message recovery (SDVSMR)
scheme without any formal security analysis. In 2013, Shim
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[22] designed an SDVS scheme in the standard model based
on the bilinear pairing and the security assumption given by
Lysyanskaya et al. [23]. However, it has no message recovery
facility. Unfortunately, Kang et al. [24] showed that both the
schemes [18] and [20] are vulnerable to the delegatability
attack.

In 2004, Susilo et al. [25] presented an identity-based
SDVS (ID-SDVS) scheme with identity-based cryptosystem
(IBC) [26] and elliptic curve bilinear pairing. Zhang and
Mao [7] designed a new pairing-based ID-SDVS scheme,
but Kang et al. [8] analyzed that the scheme in [7] is inse-
cure against the strongness property of SDVS scheme since
an outsider can eavesdrop an old signature and obtain some
information that is to be used for the verification of subse-
quent signatures. Kang et al. [8] devised an improved scheme
without formal security analysis. Lee et al. [9] demonstrated
that Kang et al.’s scheme [8] is universally forgeable and
Kumar et al.’s scheme [10] violates the strongness prop-
erty. In 2009, Kang et al. [11] proposed another ID-SDVS
scheme with low costs from computation and communica-
tion aspect and analyzed its formal security. However, Du and
Wen [12] proved that the Kang et al.’s scheme [11] is univer-
sally forgeable and violates the strongness property. In 2009,
Yang et al. [13] presented an efficient and provably secure
ID-SDVS scheme based on bilinear computational Diffie–
Hellman (BCDH) assumption. Sun et al. [14] constructed
a provably secure ID-SDVS scheme using bilinear pairing.
In 2011, Huang et al. [15] presented a security model for
ID-SDVS scheme that is shown to be stronger than previous
models and subsequently proposed a new provably secure
ID-SDVS scheme in their security model.

Based on the security of the discrete logarithm prob-
lem (DLP), in 1994, Nyberg and Rueppel [16] proposed
the idea of digital signature with message recovery (DSMR)
scheme. However, only few DSMR schemes have been con-
structed in the literature. Tseng and Hwang [17] proposed a
DSMR scheme and its variant based on elliptic curve discrete
logarithm problem (ECDLP). In 2004, Shao [27] showed
that the schemes proposed in [17] are vulnerable to insider
forgery attack, and does not satisfy the forward security and
non-repudiation properties, and subsequently proposed an
improved scheme to overcome these weaknesses. In 2005,
Zhang et al. [28] presented the first ID-based digital signa-
ture with partial message recovery (ID-DSPMR) scheme in
the random oracle model. However, Tso et al. [29] pointed out
that, in some undesirable situation, a correctly generated sig-
nature may be misjudged and rejected, and in such cases, the
message cannot be recovered correctly. To cope this weak-
ness, Tso et al. [29] proposed an ID-DSPMR scheme with
reduced computational cost and the length of the signature
as well than others. In 2007, Li and Chen [30] also proposed
an efficient ID-DSPMR based on bilinear pairing and ana-
lyzed its formal security under the q-Strong Diffie–Hellman

(q-SDH) assumption. Kalkan et al. [31] proposed the gener-
alized concept of ID-based ElGamal signature with partial
message recovery scheme.

1.2 Motivations and Contributions

As discussed earlier, the DSMR schemes give opportunity
to recover the original digital message from the signature,
and hence, the message does not need to be transmitted sep-
arately. However, an outsider may recover the message and
verify the exactness of message-signature pair without ver-
ifier’s secret key. Therefore, the message confidentiality is
violated in DSMR scheme. In order to manage this problem,
we combine the ideas of SDVS and DSMR schemes and then
designed an efficient and provably secure strong designated
verifier signature with message recovery (SDVSMR) scheme
with elliptic curve and bilinear pairing. In the proposed
scheme, only the designated verifier recovers the message
and validates the message-signature pair. However, any out-
sider has no such ability, because the verifier’s private key is
strictly required in the message-signature validation process.
In our scheme, the signer is allowed to send the signature
without message, and thus, it can save both the communica-
tion bandwidth and computation cost. In the random oracle
model, our scheme is provably secure against the adaptive
chosen message attack with the intractability of Co-Bilinear
Diffie–Hellman (Co-BDH) problem. The computation and
communication cost analysis showed that our scheme is more
efficient than others. Our scheme is appropriate in the area
of small message applications and the environments where
the computing ability and communication bandwidth are
limited.

1.3 Roadmap of the Paper

We structured the paper in the following ways. In Sect. 2,
we presented some mathematical preliminaries. The attack
model of SDVSMR scheme in the random oracle model
is discussed in Sect. 3, and various security properties of
SDVSMR scheme are studied in Sect. 4. Section 5 describes
our scheme. The provable security analysis of the proposed
scheme is discussed in Sect. 6, and Sect. 7 deals with the
comparative results of our scheme with existing schemes. In
Sect. 8, we made some concluding remarks.

2 Mathematical Preliminaries

The descriptions of some preliminaries needed in our signa-
ture scheme are given here.
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2.1 Elliptic Curve Cryptography

Recently, the elliptic curve cryptography (ECC) [2,3] has
accepted as an efficient tool in public key cryptography
(PKC) due to the computation, communication and secu-
rity strengths. For example, it offers same level of security
at reduced key sizes than other PKCs. Below is the brief
explanation of ECC.

Let Fq be a prime field with order q = pn , where p is
a large prime number and the group E(Fq) consisting of
points from a supersingular elliptic curve, which is given
below, over Fq .

y2 mod q = (x3 + ax + b)mod q (1)

where x, y, a, b ∈ Fq and (4a3+27b2)mod q �= 0. Assume
that the point P(x, y) on the Eq. (1), the point Q(x,−y) is
called the negative of P , i.e., Q = −P . Let P(x1, y1) and
Q(x2, y2)(P �= Q) be two points on (1); if P = Q, then the
line (i.e., tangent at P) joining the points P and Q intersects
the curve (1) at −R(x3,−y3) and the reflection of it with
respect to x-axis is the point R(x3, y3), i.e., P+Q = R. The
set E(Fq) including the point O , called “point at infinity” or
“zero point,” makes an additive elliptic curve cyclic group
Gq , i.e., Gq = {(x, y) : x, y ∈ Fq and (x, y) ∈ E(Fq)} ∪
{O} of prime order p. The scalar point multiplication on Gq

is defined as k P = P + P + · · · + P (k times). A generator
point P ∈ Gq has order n if n P = O , where n is the smallest
positive integer.

The order of the elliptic curve E(Fq) defined over Fq

denoted as O(E(Fq)) that satisfies the following relation q+
1 − 2

√
q ≤ O(E(Fq)) ≤ q + 1 + 2

√
q , where the interval

[q+1−2
√

q, q+1+2
√

q] is called the Hasse interval [4].
For the group E(Fq) defined over Fq ,O(E(Fq)) = q+1 · t ,
where |t | ≤ √q and t is called trace of the group E(Fq) over
Fq . Since 2

√
q is small relative to q, we have O(E(Fq)) ≈ q.

In the next subsection, we discussed the types of elliptic curve
used for bilinear pairing [4].

2.2 Bilinear Pairing

Let (Gq ,+) be a cyclic group of elliptic curve points com-
puted with the generator P and (Gm, ·) be another group
with order the same prime order p, where p ≥ 2k and k is
security parameter. The mapping ê : Gq × Gq → Gm is
called an admissible bilinear paring if it satisfies the proper-
ties described below [5,6]:

– Bilinearity: For all P, Q, R ∈ Gq , we have ê(P +
Q, R) = ê(P, R)ê(Q, R) and ê(P, Q + R) = ê(P, Q)
ê(P, R). Therefore, for a, b ∈ Z∗q , ê(a P, bQ)= ê(P, Q)ab

holds.
– Non-degenerate: For all P, Q ∈ Gq such that ê(P, Q) �=

1m , where 1m is the identity element of the group Gm .

– Computability: There must be a polynomial time-bounded
algorithm that can easily execute ê(P, Q) for all P, Q ∈
Gq .

For the efficient implementation of pairing-based proto-
col, Weil pairing and Ate pairing on elliptic curves over prime
fields have been considered. In pairing-based protocols, the
elliptic curve group E(Fq) is constructed from the supersin-
gular elliptic curve y2 mod q = (x3+ax+b)mod q, where
Fq be a prime field with order q = pn and p is a large prime
number [32]. The group E(Fq) is a the multiplicative group
of the extension field Fqk , where k is called the embedding
degree of the elliptic curve given above. The pairing is said to
be secure if the computational problems are computationally
hard both in the groups E(Fq) and F∗

qk .
In order to obtain computation and security efficiencies, q

and k should be chosen so that the computational problems
are hard by any polynomial time algorithm, and the group
order denoted by O(E(Fq)) must have a large prime fac-
tor r . Suppose that for a large prime number r such that it
divides O(E(Fq)), then for the smallest integer k (embed-
ding degree) such that r divides (qk − 1). It is proven that
the pairing is secure when r ≈ 2160 and k ≈ 6−10. In order
to achieve the enhanced security of pairing-based protocols,
Barreto and Naehrig [33] proposed an efficient and power-
ful method that can easily calculate pairing-friendly elliptic
curves over a field Zq of prime order q, and with the embed-
ding degree k = 12 [33]. The equation of the curve is E(Zq ) :
y2 = x3 + b, with b �= 0, called Barreto–Naehrig curve.

In our construction, the map ê will be derived either from
Weil pairing or Ate pairing over the prime order elliptic
curve group E(Zq) defined over the prime field Zq [33,34].
According to the explanations given in [35], the bilinear pair-
ing discussed above is a symmetric pairing of Type 1. For this
type of pairing, the group Gq is a subgroup of E(Zq) and
there is a distortion map defined as ψ : Gq → E(Zqk ).
The pairing of P, Q ∈ Gq can be computed efficiently by
executing ê(P, ψ(Q)).

2.3 Computational Problems

In this section, we described some computational problems
and hardness assumptions.

Definition 1 (Bilinear Diffie–Hellman (BDH) problem)
Given a random tuple 〈P, a P, bP, cP〉 ∈ Gq , where
a, b, c ∈ Z∗q , it is hard to compute ê(P, P)abc by a probabilis-
tic polynomial time-bounded algorithm B. The probability
thatB can solve the BDH problem is defined as AdvBDH

B (k) =
Pr [B(P, a P, bP, cP) = ê(P, P)abc : a, b, c ∈ Z∗q ].
Definition 2 (Bilinear Diffie–Hellman (BDH) assumption))
Given a random tuple 〈P, a P, bP, cP〉 ∈ Gq , where
a, b, c ∈ Z∗q and for every B,AdvBDH

B (k) is negligible.
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Definition 3 (Co-Diffie–Hellman (Co-DH) problem)
Given a random tuple 〈P, Q, a P〉 ∈ Gq , where a ∈
Z∗q , it is hard to compute aQ by a probabilistic polyno-
mial time-bounded algorithm B. The probability that B can
solve the Co-BDH problem is defined as AdvCo−DH

B (k) =
Pr [B(P, a P, Q) = aQ : a ∈ Z∗q ].

Definition 4 (Co-Diffie–Hellman (Co-DH) assumption)
Given a random tuple 〈P, Q, a P〉 ∈ Gq , where a ∈ Z∗q
and for every B,AdvCo−DH

B (k) is negligible.

Definition 5 (Co-Bilinear Diffie–Hellman (Co-BDH) prob-
lem) Given a random tuple 〈P, Q, a P, bP〉 ∈ Gq , where
a, b ∈ Z∗q , it is hard to compute ê(P, Q)ab by a proba-
bilistic polynomial time-bounded algorithm B. The proba-
bility that B can solve the Co-BDH problem is defined as
AdvCo−BDH

B (k) = Pr [B(P, a P, bP, Q) = ê(P, Q)ab :
a, b ∈ Z∗q ].

Definition 6 (Co-Bilinear Diffie–Hellman (Co-BDH)
assumption) Given a random tuple 〈P, Q, a P, bP〉 ∈ Gq ,
where a, b ∈ Z∗q and for every B,AdvCo−BDH

B (k) is negligi-
ble.

3 Formal Definition of SDVSMR Scheme

In this section, we present the formal definition of SDVSMR
scheme. We assume IDi is the identity of a user i , who may
be the signer or designated verifier. Let us assume that the
tuple 〈xi , Pi 〉 denotes the private key and public key pair
of the user IDi . The scheme SDVSMR has the following
polynomial time-bounded algorithms, called Setup, Keygen,
Sign, Verify and Sig-sim.

– Setup: The input of this probabilistic polynomial time
(PPT) algorithm is a security parameter 1k , and the output
is the system’s parameter Ω .

– Keygen: The system’s parameter Ω is the input of this
PPT algorithm, and the output is 〈xi , Pi 〉, where xi is the
private key and Pi is the public key of the user IDi .

– Sign: This PPT algorithm takes a message mi ∈ {0, 1}k ,
private key xi of the signer IDi and public key Pj of the
designated verifier ID j as input and produces a signature
σi for mi .

– Sig-sim: The designated verifier ID j executes this deter-
ministic polynomial time-bounded algorithm to calcu-
late an identically distributed signature, which is indis-
tinguishable from the signature produced by the signer
IDi . This algorithm takes public key Pi of the signer IDi ,
private key x j of the designated verifier ID j and a mes-
sage mi ∈ {0, 1}k as input and then outputs a simulated
signature σ̂i on mi .

– Verify: This deterministic polynomial time-bounded algo-
rithm takes signer’s public key Pi , designated verifier’s
private key x j and the signature σi as input; then, it recov-
ers mi from σi and outputs true if 〈mi , σi 〉 is valid and
false otherwise.

4 Security Properties of SDVSMR Scheme

The following security properties must be satisfied by any
SDVSMR scheme.

4.1 Correctness

If the signer IDi properly computes a signature σi on a mes-
sage mi , then the designated verifier ID j must be able to
recover the message mi from the signature σi and verifies the
correctness of the message-signature pair 〈mi , σi 〉. That is,
for Ω ← Setup(1k), for any IDi , ID j ∈ {0, 1}∗, 〈xi , Pi 〉 ←
Keygen(IDi ,Ω), 〈x j , Pj 〉 ← Keygen(ID j ,Ω) for any
message mi ∈ {0, 1}k , if σi ← Sign(IDi , ID j , xi , Pj ,mi )

and σ̂i ← Sign-sim(IDi , ID j , x j , Pi ,mi ), therefore Verify
(IDi , ID j , x j , Pi , mi , σi ) = true and Verify(IDi , ID j , x j ,
Pi , mi , σ̂i ) = true hold.

4.2 Strongness

A genuine signature σi can be verified and the correct mes-
sage mi from it can be recovered only by the designated
verifier ID j , but not by any outsider IDl who does not
have knowledge about the verifier’s private key. That is, for
Ω ← Setup(1k), for any IDi , ID j ∈ {0, 1}∗, 〈xi , Pi 〉 ←
Keygen(IDi ,Ω), 〈x j , Pj 〉 ← Keygen(ID j ,Ω) for any
message mi ∈ {0, 1}k , if σi ← Sign(IDi , ID j , xi , Pj ,mi )

and σ̂i ← Sign-sim(IDi , ID j , x j , Pi ,mi ), therefore Verify
(IDi , ID j , xl , Pi , mi , σi ) = f alse and Verify(IDi , ID j , xl ,
Pi , mi , σ̂i ) = f alse hold provided x j �= xl , where xl is the
private key of the outsider IDl .

4.3 Source Hiding

Suppose all the private keys of the signer IDi and the des-
ignated verifier ID j are known to an outsider; however, he
cannot identify that IDi is the signer or ID j is the signer
for a given message-signature pair 〈mi , σi 〉. That is, an
outsider IDl cannot distinguished the signature σ̂ simu-
lated by the verifier ID j and the signature σ generated by
the signer IDi within polynomial time bound. That is, for
Ω ← Setup(1k), for any IDi , ID j ∈ {0, 1}∗, 〈xi , Pi 〉 ←
Keygen(IDi ,Ω), 〈x j , Pj 〉 ← Keygen(ID j ,Ω), for any
message mi ∈ {0, 1}k , then σi ← Sign(IDi , ID j , xi , Pj ,mi )

≈ σ̂i ← Sign-sim(IDi , ID j , x j , Pi ,mi ).
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4.4 Non-delegatability

The non-delegatable property of an SDVSMR scheme state
that an adversary A cannot generate a valid signature even if
either the signer IDi or the designated verifier ID j delegates
his/her signing capability to A without disclosing the secret
key. That is, in a delegatable SDVSMR scheme, the signer
IDi disclose some side information of the secret key to A
without disclosing the secret key xi so that A can produce
a valid signature on behalf of IDi and this signature can be
verified only by the designated verifier ID j . Similarly, the
designated verifier ID j may disclose some side information
to A such that A can produce a valid simulated signature.
The formal definition [36] of non-delegatable property of an
SDVSMR scheme is given as follows:

Definition 7 Suppose K be the knowledge extractor and
ξ ∈ [0, 1] is the knowledge error. An IBSDVS scheme is
(t, ξ) non-delegatable if there is a K; for every simulator
C that runs in polynomial time, t , satisfies the following
condition:
ForΩ ← Setup(1k), for every IDi , ID j ∈{0, 1}∗, 〈xi , Pi 〉 ←
Keygen(IDi ,Ω), 〈x j , Pj 〉 ← Keygen(ID j ,Ω) and every
message mi ∈ {0, 1}k , if C produces a valid signature σi on
mi against 〈IDi , ID j 〉with negligible probability ε > ξ , then
on input mi and on oracle access to C,K produces either xi

or x j with in the time t
ε−ξ , without considering the time to

make oracle queries.

4.5 Unforgeability

An adversary A cannot compute a valid signature σi on a
message mi ∈ {0, 1}k chosen by himself without the private
key xi of the signer IDi or the private key x j of the designated
verifier ID j .

The formal unforgeability model of a SDVSMR scheme
under the adaptively chosen message attack is defined by the
following challenge-response game. This game is executed
cooperatively by a polynomial time-bounded adversary A
with a polynomial time-bounded algorithm/challenger C.

– Setup: The challenger C executes the Setup algorithm. It
takes a security parameter 1k as input and then given the
system’s parameter Ω to A as output.

– Keygen queries: To obtain the private key of the user
IDi ,A submit this query and then C returns 〈xi , Pi 〉 to A,
where xi is the private key and Pi is the public key of IDi .

– Hash queries to Hi : C maintains the initial-empty list
L list

Hi
for the oracle Hi (i = 1, 2) and it includes the tuple

〈ci , di 〉. If A asks a Hi query with the input ci , then
C returns di , if a tuple 〈ci , di 〉 is in L list

Hi
. Otherwise, C

chooses a number di ∈R Z∗q such that the tuple 〈·, di 〉

is not in L list
Hi

, then returns di as answer and incorporates

〈ci , di 〉 into the list L list
Hi

.
– Sign queries: To obtain a signature for an adaptively cho-

sen message mi ∈ {0, 1}k,A asks a Sign query with the
tuple 〈IDi , ID j ,mi 〉, C then produces a signature σi and
sends it to A.

– Verify queries: SupposeA asks to verify 〈IDi , ID j , σi 〉, C
executes the Verify algorithm, then returns true if σi is
valid and the recovered message mi is correct, and returns
false otherwise.

– Forgery: Finally, A stops and outputs a forged signature
σ ∗i on m∗i with the signer’s identity ID∗i and designated
verifier’s identity ID∗j . The adversary A wins the game if
the following holds:

– ID∗i �= ID∗j .
– A did not make any Keygen queries on ID∗i and ID∗j .
– A did not make any Sign queries with 〈ID∗i , ID∗j ,m∗i 〉.
– Signature σ ∗i of m∗i is valid against ID∗i and ID∗j .

Definition 8 The advantage to win the above challenge-
response game by a probabilistic polynomial time-bounded
adversary with the help of C is defined as AdvSDVSMR

A,UF (k).

Definition 9 A SDVSMR scheme is existentially unforge-
able in the random oracle model under the adaptively chosen
message attack if AdvSDVSMR

A,UF (k) is negligible.

4.6 Non-transferability

It is impossible for the designated verifier ID j to prove to
an outsider A that σi is actually generated by the signer IDi .
Because, the designated verifier ID j also has the ability to
generate a simulated signature σ̂i , which indistinguishable
from the signature σi generated by IDi .

We can formally define the non-transferability of SDV
SMR scheme against adaptive chosen message attack by the
following challenge-response game, which is executed by a
polynomial time-bounded adversary A and a simulator C.

– Setup: This query is executed as described in the unforge-
ability game.

– Keygen queries: This query is executed as described in
the unforgeability game.

– Hash queries to Hi : This query is executed as described
in the unforgeability game.

– Sign queries: This query is executed as described in the
unforgeability game.

– Sign-sim queries: To obtain a simulated signature on
mi (same message chosen in the Sign phase), A asks a
Sign-sim query with the tuple 〈IDi , ID j ,mi 〉, C outputs
a simulated signature σ̂i to A.

– Verify queries: Suppose A asks to verify 〈IDi , ID j , σi 〉
(or 〈IDi , ID j , σ̂i 〉), C executes the Verify algorithm, then
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returns true ifσi (or σ̂i ) is valid and the recovered message
mi is correct, and returns false otherwise.

– Forgery: Finally, A stops and outputs two forged signa-
ture σ ∗i on m∗i and σ̂ ∗i on m∗i against the signer ID∗i and
the designated verifier ID∗j . We can say that A wins this
game if the following holds:

– ID∗i �= ID∗j .
– A did not make any Keygen queries on ID∗i and ID∗j .
– A did not make any Sign and Sign-sim queries with
〈ID∗i , ID∗j ,m∗i 〉.

– Both the signatures σ ∗i and σ̂ on m∗i are valid against
ID∗i and ID∗j .

Definition 10 The advantage to win the above challenge-
response game by a probabilistic polynomial time-bounded
adversary with the help of C is defined as AdvSDVSMR

A,NT (k).

Definition 11 A SDVSMR scheme is non-transferable in the
random oracle model against the adaptive chosen message
attack if AdvSDVSMR

A,NT (k) is negligible.

5 The Proposed SDVSMR Scheme

The concrete description of the proposed SDVSMR scheme
using elliptic curve and bilinear pairing is presented in this
section. Here, we assumed that the original signer is identi-
fied with the identity IDA and that the designated verifier is
identified with the identity IDB . The proposed scheme is the
collection of the following algorithms:

5.1 Setup

On input a security parameter 1k , this algorithm produces the
system’s parameter Ω = 〈Fq , E(Fq),Gq , P, Q, H1, H2〉,
where q denotes k-bit prime number, P and Q are two gen-
erators of Gq , and H1, H2 : {0, 1}∗ → Z∗q are two secure
and one-way cryptographic hash functions.

5.2 Keygen

The user IDi , i ∈ {A, B} picks a number xi ∈R Z∗q as his/her
private key and publishes Pi = xi P as his/her public key.

5.3 Sign

To compute the signature σ = 〈R, t, g〉, the signer IDA

chooses a message m ∈ {0, 1}k and then calculates the fol-
lowing:

(i) Choose r ∈R Z∗q and compute R = rPA. (2)

(ii) Compute l = H1(ê(Q, PB)
r xA). (3)

(iii) Compute t = l ⊕ m(mod q). (4)

(iv) Compute h = H2(m, t, l). (5)

(v) Compute s = (r + h)xA(mod q). If s = 0 go to

step (i), otherwise proceed to the next step. (6)

(vi) Compute g = ê(Q, PB)
s . (7)

(vii) Output the signature σ = 〈R, t, g〉.

5.4 Verify

On receiving the signature σ = 〈R, t, g〉, the designated
verifier IDB does as follows:

(i) Compute l ′ = H1
(
ê(xB Q, R)

)
. (8)

(ii) Compute m′ = t ⊕ l ′(mod q). (9)

(iii) Compute h′ = H2
(
m′, t, l ′

)
. (10)

(iv) Compute g′ = ê
(
xB Q, R + h′PA

)
. (11)

(v) Accept the signature σ = 〈R, t, g〉and the message

m is correct i.e., m′ = m if g′ = g holds, otherwise

reject the signature σ = 〈R, t, g〉.

5.5 Sig-Sim

To generate a simulated signature, the designated verifier
IDB selects a message m ∈ {0, 1}k and then calculates the
following:

(i) Choose a number r̂ ∈R Z∗q and compute R̂ = r̂ PA.

(ii) Compute l̂ = H1

(
ê(xB Q, R̂)

)
.

(iii) Compute t̂ = l̂ ⊕ m(mod q).

(iv) Compute ĥ = H2

(
m, t̂, l̂

)
.

(v) Compute ŝ =
(

r̂ + ĥ
)

xB(mod q). If ŝ = 0 go to step

(i), otherwise proceed to the next step.
(vi) Compute ĝ = ê(Q, PA)

ŝ .

It is to be noted that the simulated signature σ̂ = 〈R̂, t̂, ĝ〉 is
also a valid signature.

In Figs. 1 and 2, we further illustrated the signature com-
putation and verification phases of the proposed SVDSMR.

6 Security Analysis of the Proposed Scheme

Here, we evaluated all the security requirements of the pro-
posed SDVSMR scheme. We will also demonstrated that our
scheme is unforgeable against the adaptive chosen message
attack in the random oracle model.

Theorem 1 If the signer computes the strong designated ver-
ifier signature σ = 〈R, t, g〉 on a message m for the desig-
nated verifier, then the signature σ is correct and consistent,
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Fig. 1 Signature generation process of the proposed SDVSMR scheme

Fig. 2 Signature verification
process of the proposed
SDVSMR scheme

and the message m only can be recovered by the designated
verifier.

Proof From Eqs. (3) and (8), we have

l ′ = H1
(
ê(xB Q, R)

)

= H1
(
ê(Q, r xA P)xB

)

= H1
(
ê(Q, P)r xAxB

)

= H1
(
ê(Q, xB P)r xA

)

= H1
(
ê(Q, PB)

r xA
)

= l (12)

From Eqs. (4), (9) and (12), we obtained

m′ = t ⊕ l ′

= m ⊕ l ⊕ l

= m (13)

From Eqs. (10), (12) and (13), we get

h′ = H2
(
m′, t, l ′

)

= H2(m, t, l)

= h (14)
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From Eq. (11), we derived

g′ = ê
(
xB Q, r xA P + h′xA P

) [Eqs. (2) and (14)]
= ê (xB Q, (r + h)xA P)

= ê(xB Q, s P) [Eq. (6)]
= ê(Q, P)xB s [Bilinearity]
= ê(Q, xB P)s [Bilinearity]
= ê(Q, PB)

s [Bilinearity]
= g [Eq. (7)]

Therefore, the signature σ = 〈R, t, g〉 is valid and the recov-
ered message m is correct.

Theorem 2 The proposed SDVSMR scheme is a strong des-
ignated verifier signature scheme.

Proof In the following, we proved that our SDVSMR scheme
satisfies the strongness property. Assume that the signer
IDA generates a valid signature σ = 〈R, t, g〉 for the des-
ignated verifier IDB . For an outsider identified with the
identity IDC , there is no way to obtain the information
about the private keys xA and xB of IDA and IDB from
σ = 〈R, t, g〉. Moreover, from the verification equation
g′ = ê(xB Q, R+h′PA) = g, we observed that xB is strictly
required to check the validity of σ = 〈R, t, g〉 and to recover
the message m correctly. As a result, the outsider IDC cannot
recover m and verify σ = 〈R, t, g〉 without xB . Thus, only
the designated verifier IDB can verify message-signature pair
〈m, σ 〉. ��
Theorem 3 The proposed SDVSMR scheme satisfies the
source-hiding property.

Proof The source-hiding property of an strong designated
verifier signature scheme states that the outsider IDC can-
not recognize whether a given signature σ = 〈R, t, g〉 for a
message m is produced by the signer IDA or the designated
verifier IDB , even if the private keys of IDA and IDB are
disclosed to the outsider IDC . Let us define S be the set of
signatures generated by the signer IDA for the designated ver-
ifier IDB and Ŝ be the set of simulated signatures computed
by the designated verifier IDB for himself.

Let the signature σ ′′ = 〈R′′, t ′′, g′′〉 for some message
m ∈ {0, 1}k is chosen randomly from S; thus,

Pr [(R, t, g) = (
R′′, t ′′, g′′

)]

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

r ∈R Z∗q , R = r PA = R′′
l = H1(ê(Q, PB)

r xA ) = l ′′
t = l ⊕ m(mod q) = t ′′
h = H2(m, t, l) = h′′
s = (r + h)xA(mod q) = s′′
g = ê(Q, PB)

s = g′′

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

= 1

q3

Since r and t are chosen randomly from a uniformed set Z∗q
of order q and g is selected from the group Gm of order q, let
the signature σ̂ = 〈R̂, t̂, ĝ〉 on the same message m is chosen
randomly from Ŝ; thus,

Pr [(R, t, g) = (R̂, t̂, ĝ)]

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r ∈R Z∗q , R = r PA = R̂

l = H1(ê(Q, PB)
r xA ) = l̂

t = l ⊕ m(mod q) = t̂

h = H2(m, t, l) = ĥ

s = (r + h)xA(mod q) = ŝ

g = ê(Q, PB)
s = ĝ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 1

q3

Therefore, from the above two equations, we can say that
the signature σ̂ simulated by the verifier IDB and the signa-
ture σ generated by the signer IDA are statistically indistin-
guishable from each other. Accordingly, a polynomial time-
bounded adversary A cannot distinguish the simulated signa-
tures from the real signatures. Thus, the proposed signature
scheme achieves the source-hiding property. ��
Theorem 4 The proposed SDVSMR scheme is non-
delegatable in the random oracle model.

Proof Here, we will prove that the proposed SDVSMR
scheme is non-delegatable in the programmable random ora-
cle model as described in [36]. Assume that ε > ξ = 1

q , and
there exists a polynomial time-bounded knowledge extractor
K that on input of a signature σ = 〈R, t, g〉 and on ora-
cle access to the adversary A can produce either the pri-
vate key xA of the signer IDA or the private key xB of the
designated verifier IDB within the time bound τ ′ ≤ 56τ

ε

and with probability 1, where A has the ability to con-
structs two valid strong designated verifier signatures within
time bound τ and with probability ε. Assume that Am be
a forger with the input m. Consider two executions of Am

by K with the same random input. In both cases, K exe-
cutes Am step-by-step, except that K returns two valid sig-
natures σ = 〈R, t, g〉 and σ ′ = 〈R′, t ′, g′〉 with two dif-
ferent hash values h and h′. Since σ and σ ′ are valid,
therefore, we have sx−1

A − h ≡ ŝx−1
A − ĥ (mod q) and

s′x−1
B − h′ ≡ ŝ′x−1

B − ĥ′ (mod q). Therefore, Am computes

xA = s−ŝ
h−ĥ

and xB = s′−ŝ′
h′−ĥ′ .

According to [37], there exists an algorithm Rewind, on
oracle access to the adversary Am , in time τ , outputs two
correct signatures σ = 〈R, t, g〉 and σ ′ = 〈R′, t ′, g′〉 such
that h �= h′, but 〈R, t, g〉 = 〈R′, t ′, g′〉 holds. Accordingly,
Am can compute either the private key xA of the signer IDA

or the private key xB of the designated verifier IDB within
the time bound τ ′ ≤ 56τ

ε
and with probability 1. ��
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Theorem 5 The proposed SDVSMR scheme is secure against
the adaptive chosen message attack in the random oracle
model based on the infeasibility of the Co-BDH problem.

Proof Assume that the proposed SDVSMR scheme can be
forged by the probabilistic polynomial time-bounded adver-
sary A; then, it is possible to construct a challenger C
which helps A to solve the Co-BDH problem, i.e., A pro-
duces ê(P, Q)ab from the given Co-BDH problem instance
〈P, Q, aP, bP〉, where a, b ∈ Z∗q are unknown to A. In
order to breach the unforgeability of our scheme, C sets
PA = a P and PB = bP, respectively, and then gives Ω =
〈Fq , E(Fq),Gq , ê, P, Q, PA = aP, PB = bP, H1, H2〉 to
A. C maintains the following lists in order to achieve the
consistency between queries made by A:

– L list
H1: This is an initial-empty list, and it consists the tuple

of type 〈ri , Pj , li 〉.
– L list

H2: This is an initial-empty list, and it consists the tuple
of type 〈mi , ti , hi 〉.

– L list
pk : This is an initial-empty list, and it consists the tuple

of type 〈IDi , xi , Pi 〉.

Now C answers A’s queries in the following ways:

– Keygen queries: If A asked an Keygen query for the user
IDi , then C responds as follows:

– If IDi = IDA, output the tuple 〈IDA,⊥, PA = aP〉.
– If IDi = IDB , output the tuple 〈IDB,⊥, PB = bP〉.
– Else, choose xi ∈R Z∗q , compute Pi = xi P and

returns 〈IDi , xi , Pi 〉 as answer.

Finally, C incorporates the tuple 〈IDi , xi , Pi 〉 into the list
L list

pk .
– Hash queries to H1: Suppose A asks a H1 query with

the input 〈ri , Pj 〉, C, then replies with the previous li if a
tuple 〈ri , Pj , li 〉 is found in L list

H1. Otherwise, C selects a
number li ∈R Z∗q such that there is no item 〈·, ·, li 〉 in L list

H1

and returns li to A, and includes 〈ri , Pj , li 〉 into L list
H1.

– Hash queries to H2: Suppose A asks a H2 query with
the input 〈mi , ti 〉, C then replies with the previous hi if a
tuple 〈mi , ti , hi 〉 is found in L list

H2. Otherwise, C selects a
number hi ∈R Z∗q such that there is no tuple 〈·, ·, hi 〉 in
L list

H2, returns hi to A and includes 〈mi , ti , hi 〉 into L list
H2.

– Sign queries: Suppose that A asks to produce a signature
on an adaptively chosen message mi ∈ {0, 1}k for the
signer IDi and the designated verifier ID j . C executes the
following:

(i) If 〈IDi , ID j 〉 = 〈IDA, IDB〉 or 〈IDi , ID j 〉 = 〈IDB,

IDA〉, C outputs failure and aborts the simulation.
(ii) Otherwise, C uses the private key xi of IDi and then

performs the following:

– Choose ri ∈R Z∗q .
– Compute Ri = ri Pi and li = H1

(
ê(Q, Pj )

ri xi
)
.

– Compute ti = mi ⊕ li and hi = H2(mi , ti , li ).
– Compute si = (ri + hi )xi and gi = ê(Q, Pj )

si .
– Output σi = 〈Ri , ti , gi 〉.

– Verify queries: If A asks to verify a signature σi =
〈Ri , ti , gi 〉 and to recover mi for the signer IDi and the
designated verifier ID j , C then does as follows:

(i) If 〈IDi , ID j 〉 = 〈IDA, IDB〉 or 〈IDi , ID j 〉 = 〈IDB,

IDA〉 holds, then terminate the protocol simulation.
(ii) Otherwise, use the private key x j of ID j and verifies

σi = 〈Ri , ti , gi 〉 using the Verify algorithm of our
scheme.

– Forgery: Finally, C stops the protocol execution and
outputs a signature σ = 〈R, t, g〉 with the hash value
h of the message m if 〈IDi , ID j 〉 = 〈IDA, IDB〉 (or
〈IDi , ID j 〉 = 〈IDB, IDA〉) hold. Based on the forking
lemma [38], C finds the tuples 〈ri , Pj , li 〉 and 〈mi , ti , hi 〉
from the lists L list

H1 and L list
H2 and another valid signature

σ ′ = 〈R′, t ′, g′〉 with the hash value h′ on m such that
h �= h′, g �= g′ and R = R′. Since both σ = 〈R, t, g〉
and σ ′ = 〈R′, t ′, g′〉 are valid signatures on the message
m. Therefore, we can write g = ê(dB Q, R + h PA) and
g′ = ê(dB Q, R′ + h′PA). We have

g′

g
= ê

(
xB Q, R + h′PA

)

ê (xB Q, R + h PA)

= ê
(
xB Q, (h′ − h)PA

)

= ê(PA, xB Q)(h
′−h)

That is,

(
g′

g

) 1
(h′−h) = ê(PA, xB Q)

= ê(a P, bQ)

= ê(P, Q)ab

Hence, C solves the Co-BDH problem as ê(P, Q)ab =
(

g′
g

) 1
(h′−h) and it contradicts that the Co-BDH problem is

computationally hard. Therefore, our SDVSMR scheme is
existentially unforgeable in the random oracle model against
the adaptive chosen message attack.

Theorem 6 The proposed SDVSMR scheme is non-
transferable against the adaptive chosen message attack in
the random oracle model based on the infeasibility of the
Co-BDH problem.

Proof Suppose that a probabilistic polynomial time-bounded
adversary A breaches the non-transferability of our scheme.
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If this happen, then there must be a polynomial time-bounded
challenger C which helps A to solve the Co-BDH prob-
lem, i.e., A can compute ê(P, Q)ab from a given tuple
〈P, Q, aP, bP〉, where a, b ∈ Z∗q are not known to A.
Now, C sets PA = a P and PB = bP, respectively, and
then returns Ω = 〈Fq , E(Fq), Gq , ê, P , Q, PA = a P ,
PB = bP, H1, H2〉 to A. Similar to the Theorem 5, C main-
tains the following lists L list

H1, L list
H2 and L list

pk , respectively.
The challenger C returns output based on A’s queries as
follows:

– Keygen queries: This query is same as given in Theo-
rem 5.

– Hash queries to H1: This query is same as given in The-
orem 5.

– Hash queries to H2: This query is same as given in The-
orem 5.

– Sign queries: This query is same as given in Theorem 5.
– Sign-sim queries: Suppose that A asks to produce a

simulated signature on an adaptively chosen message
mi ∈ {0, 1}k (as chosen in Sign phase) for the signer
IDi and the designated verifier ID j . C does as follows:

(i) If 〈IDi , ID j 〉 = 〈IDA, IDB〉 or 〈IDi , ID j 〉 = 〈IDB,

IDA〉, C outputs failure and aborts the simulation.
(ii) Otherwise, C uses the private key x j of ID j and then

does as follows:
– Choose r̂i ∈R Z∗q .

– Compute R̂i = ri Pi and l̂i = H1(ê(Q, Pi )
r̂i x j .

– Compute t̂i = mi ⊕ l̂i and ĥi = H2(mi , t̂i , l̂i ).
– Compute ŝi = (r̂ + ĥ)x j and ĝi = ê(Q, Pi )

ŝi .
– Output σ̂i = 〈R̂i , t̂i , ĝi 〉.

– Verify queries: If A asks to verify σi = 〈Ri , ti , gi 〉 or
σ̂i = 〈R̂i , t̂i , ĝi 〉 and to recover mi , C then does as follows:

(i) If 〈IDi , ID j 〉 = 〈IDA, IDB〉 or 〈IDi , ID j 〉 = 〈IDB,

IDA〉 holds, terminate the protocol execution.
(ii) Otherwise, use the private key x j of ID j and verify

σi = 〈Ri , ti , gi 〉 (or σ̂i = 〈R̂i , t̂i , ĝi 〉) using the Verify
algorithm of our scheme.

– Forgery: Finally, C terminates the protocol simulation
and produces a signature σ = 〈R, t, g〉 with the hash
value h of the message m if 〈IDi , ID j 〉 = 〈IDA, IDB〉 (or
〈IDi , ID j 〉 = 〈IDB, IDA〉) holds. Moreover, C finds the
tuples 〈ri , Pj , li 〉 and 〈mi , ti , hi 〉 from L list

H1 and L list
H2 and

can produce a simulated signature σ̂i = 〈R̂i , t̂i , ĝi 〉 with
the hash value ĥ on m according to the Sign-sim algorithm
such that h �= ĥ, g �= ĝ and R = R̂ holds. Since σ =
〈R, t, g〉 and σ̂ = 〈R̂, t̂, ĝ〉 are valid for m. Accordingly,
g = ê(dB Q, R + hPA) and ĝ = ê(dB Q, R̂ + ĥ PA) hold.
We have

ĝ

g
=

ê
(

xB Q, R + ĥ PA

)

ê (xB Q, R + h PA)

= ê
(

xB Q, (ĥ − h)PA

)

= ê(PA, xB Q)(ĥ−h)

That is,

(
ĝ

g

) 1
(ĥ−h) = ê(PA, xB Q)

= ê(a P, bQ)

= ê(P, Q)ab

Therefore, C solves the Co-BDH problem as ê(P, Q)ab =
(

ĝ
g

) 1
(ĥ−h) , and thus, our SDVSMR scheme is non-transferable

in the random oracle model. ��

7 Efficiency Comparison of our SDVSMR Scheme
with Others

In this section, we illustrated the performance comparisons of
our scheme with the related schemes [18–22] from the com-
putation and communication (signature length) costs point
of view. For this purpose, in Table 1, we define some com-
putational time complexity and their conversions [39,40] in
terms of TML.

As discussed in [41], to achieve the comparable security
with 1,024-bit RSA key, bilinear pairing-based schemes exe-
cute Ate pairing on a supersingular elliptic curve E(Fq) :
y2 = x3 + x with embedding degree 2 and the large
prime order q, which is a 160-bit Solinas prime of the form
q = 2159 + 217 + 1 and p is at least 512-bit prime number
that satisfies p+1 = 12qr [42]. To achieve the same level of

Table 1 Different notations and their meanings

Notations Definition and conversion

TML Time needed to execute the modular multiplication
operation

TEX Time needed to execute modular exponentiation
operation, TEX ≈ 240TML

TEM Time needed to execute the elliptic curve point
multiplication operation, TEM ≈ 29TM L

TBP Time needed to execute the bilinear pairing
operation, TBP ≈ 87TML

TPX Time needed to execute the pairing-based
exponentiation operation, TPX ≈ 43.5TM L

TIN Time needed to execute the modular inversion
operation, TIN ≈ 11.6TML
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Table 2 Computation cost comparison of the different schemes

Scheme Signature length (bits) Signing cost Verification cost Total cost

Lee and Chang [18] 4×1,024 3TEX + TIN 5TEX 8TEX + TIN ≈1,931TML

Saeednia et al. [19] 3×1,024 + |m| TEX 3TEX 4TEX ≈ 960TML

Lee and Chang [20] 2×1,024 + |m| 2TEX 2TEX 4TEX ≈ 960TML

Yang and Liao [21] 1,024 + 160 TEX TEX 2TEX ≈ 480TML

Shim [22] 4×1,024 + |m| 5TEX TEX + 4TBP 6TEX + 4TBP ≈1,798TML

Proposed 2× 512+ 160 2TPX + TEM 2TBP + 2TEM 2TBP + 2TPX + 3TEM ≈ 348TML

security, pairing-free elliptic curve-based schemes execute
operations on Koblitz curve defined as y2 = x3+ax2+b on
F2163 with a = 1 and b is a 163-bit random prime number.
Thus, the security provided by a 512-bit random number in a
pairing-based scheme is equivalent to a 160-bit random num-
ber in a pairing-free scheme and 1,024-bit number in RSA
type scheme. Here, we also assume that the output length
of the hash function is 160 bits. Therefore, the length of the
signature of our scheme is (2× 512+ 160) bits = 1,184 bits.

Due to the lightweight feature of the hash function (H1 and
H2) and the elliptic curve point addition operation, we ignore
these computations in our comparison. It is assumed that the
order of Gq and Gm is a large prime number q (512 bits) and
|Gq | = |Gm | = 512 bits; |Gq | denotes the bit length of the
element of Gq . In our scheme, the signer can pre-compute
ê(Q, PB), and thus, to compute l = H1(ê(Q, PB)

rdA ) and
g = ê(Q, PB)

s , he/she has to execute only two pairing-based
exponentiations (2TPX). Therefore, the signature generation
phase and the verification phase involve (2TPX + TEM) and
(2TBP + 2TEM) amount of time. Thus, the total computation
cost of our scheme is (2TBP + 2TPX + 3TEM ≈ 348TML)

amount of time, whereas other schemes need more. We
conducted a comparison in Table 2 of different schemes
[18–22] with respect to computation and communication
costs.

It is clear that our scheme bears benefit of message
recovery and the length of the signature in the proposed
scheme is reduced compared with other related schemes.
Similar to the scheme [22], our scheme is provably secure
in the random oracle model. However, the schemes [18–
21] are not provably secured. From the Table 2, we have
seen that, the communication cost of our scheme is 28 %
of Lee and Chang’s scheme [18], 38 % of Saeednia et al.’s
scheme [19], 14 % of Lee and Chang’s scheme [20], 100 %
of Yang and Liao’s scheme [21] and 28 % of Shim’s scheme
[22], respectively. Based on the Table 2, we observed that
the computation cost of our scheme is 18 % of Lee and
Chang’s scheme [18], 36 % of Saeednia et al.’s scheme
[19], 36 % of Lee and Chang’s scheme [20], 72 % of Yang
and Liao’s scheme [21] and 20 % of Shim’s scheme [22],
respectively.

8 Conclusion and Future Scope

This paper proposed a provably secure SDVSMR scheme
using bilinear pairing and elliptic curve. The security analy-
sis demonstrates that our scheme provides unforgeablility in
the random oracle model and its security against adaptive
chosen message adversary is based on the Co-BDH assump-
tion. Furthermore, our scheme is shown to be more efficient
than the earlier schemes from the perspective of computation
and communication costs. Thus, our scheme will be more
useful in resource-constrained and small message applica-
tions where confidentiality, integrity, authentication and non-
repudiation of the message are needed.

Although the proposed SDVSMR scheme is implemented
with symmetric bilinear pairing on supersingular elliptic
curve; however, it needs a global public key infrastructure to
authenticate the public keys of the signer and the designated
verifier. In addition, our scheme requires more computation
costs due to bilinear pairing compared with the pairing-free
schemes. As a result, our scheme experiences additional over-
head due to the public key infrastructure and bilinear pair-
ing. Thus, we will study an efficient identity-based SDVSMR
scheme with bilinear pairing-free concept in the near future.
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