
Arab J Sci Eng (2015) 40:817–844
DOI 10.1007/s13369-014-1558-9

RESEARCH ARTICLE - COMPUTER ENGINEERING AND COMPUTER SCIENCE

Task Scheduling Using Two-Phase Variable Neighborhood Search
Algorithm on Heterogeneous Computing and Grid Environments

S. Selvi · D. Manimegalai

Received: 6 July 2014 / Accepted: 30 November 2014 / Published online: 24 January 2015
© King Fahd University of Petroleum and Minerals 2015

Abstract Grid computing solves high-performance and
high-throughput computing problems through sharing nodes
ranging from personal computers to supercomputers dis-
tributed around the world. As the grid environments facil-
itate distributed computation, the scheduling of grid jobs
has become an important issue. In this paper, an investi-
gation on implementing Two-Phase Variable Neighborhood
Search (TPVNS) algorithm for scheduling independent jobs
on computational grid is carried out. The proposed algorithm
consists of two modules with General Variable Neighbor-
hood Search and Basic Variable Neighborhood Search algo-
rithms in order to find a good mapping of grid jobs with
grid nodes. The performance of the proposed algorithm has
been evaluated with deterministic heuristic and evolutionary
algorithms. Simulation results show that TPVNS algorithm
generally performs better than the existing methods.

Keywords Grid computing · Job scheduling · Variable
Neighborhood Search · Makespan

1 Introduction

There are various computation and data-intensive problems
in science and industry that require weeks or months of
computation to solve. Scientists involved in these types of
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problems need a computing environment that delivers large
amounts of computational power over a long period of time.
Such an environment is called a high-throughput comput-
ing (HTC) environment [1,2]. In HTC systems, there are
mostly numbers of independent and sequential tasks which
can be individually scheduled on many different computing
resources across multiple administrative domains. HTC sys-
tem can achieve this using grid computing technologies and
techniques [3].

Grid computing is a form of distributed computing that
involves coordinating and sharing computing, application,
data and storage or network nodes across dynamic and geo-
graphically dispersed organization [4]. Users can share grid
nodes by submitting computing tasks to grid system. Nodes
can be computers, storage space, instruments, software appli-
cations, and data. All nodes are connected through the Inter-
net and a middleware layer that provide basic services for
security, monitoring, and node management. The nodes of
computational grid are dynamic, and they belong to different
administrative domains. The participation of nodes may be
active or inactive within the grid. This makes it impossible
for anyone to manually assign jobs to computing nodes in
grids. Therefore, grid job scheduling is one of the challeng-
ing issues in grid computing.

In order to achieve the HTC through grid environments,
the overall response time to all the tasks in a relatively long
period of time should be minimized. Therefore, the grid
scheduler (GS) could schedule the submitted tasks on appro-
priate grid resources, considering the makespan of the envi-
ronment. The throughput of the environment is increased by
minimizing the total makespan of a grid environment [5,6].
To make effective use of the tremendous capabilities of the
computational resources in grid environments and to min-
imize the makespan of the grids, efficient task scheduling
algorithms are required. Scheduling problem in heteroge-
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Fig. 1 Block diagram of TPVNS-based grid job scheduling algorithm

neous environments had been shown to be NP complete [7].
Hence, there are many research efforts aiming at job schedul-
ing on the grid. The use of heuristics is the de facto approach
in order to cope in practice with its difficulty.

This work presents a thorough experimental exploration of
Two-Phase Variable Neighborhood Search algorithm imple-
mented to execute in sequential mode, with problem-specific
neighborhood structures to solve the grid job scheduling
problem in order to reduce the makespan. The block diagram
of the proposed algorithm is shown in Fig. 1.

The first module of the proposed algorithm is the explo-
ration phase, which consists of General Variable Neighbor-
hood Search (GVNS) algorithm. GVNS mainly focuses on
the intensification of search process. The second phase is the
diversification module, in which a new concept coined as
crossover heuristic algorithm has been proposed. This accel-
erates the speed of the search process along with Basic Vari-
able Neighborhood Search (BVNS) algorithm. The second
phase is also helpful to identify new better solution and also to
avoid the grid job scheduling algorithm to trap into the local
minima. Extensive computational experiments were carried
out to select an effective neighborhood order for the pro-
posed Two-Phase Variable Neighborhood Search (TPVNS).
Efficient numerical results are reported in the experimental
analysis performed on a set of 124 well-known and large
heterogeneous computing scheduling problem instances [8].
The comparative study shows that the proposed TPVNS is
able to achieve high problem efficiency, outperforming the
results of existing methods.

Variable Neighborhood Search (VNS) is a simple and
effective meta-heuristic method developed to efficiently deal
with the hard optimization problem. VNS is a framework
for building heuristics, based upon systematic changes of

neighborhoods both in descent phase to find a local mini-
mum and in perturbation phase to emerge from the corre-
sponding valley. VNS demonstrated good performance on
industrial applications such as design of an offshore pipeline
network [9] and the pooling problem [10]. It has also been
applied to real-world optimization problems, including opti-
mization of a power plant cable layout [11], optical rout-
ing [12], and online nodes allocation problem for ATM net-
works [13]. Applications of VNS are diverse which include
the areas such as location problems, data mining problems,
graph problems, mixed integer problems, scheduling prob-
lems, vehicle routing problems, and biosciences and chem-
istry problems too [14,15].

2 Related Works

Some of the job scheduling algorithms are nature-inspired,
e.g., Genetic Algorithm (GA) [16–19], cellular memetic
algorithm [20], Simulated Annealing (SA) [21], ant colony
optimization [22,23], Particle Swarm Optimization (PSO)
[24], Differential Evolution (DE) [25], parallel Cross-
generational elitist selection, Heterogeneous recombination,
and Cataclysmic mutation (pCHC) [8]. There are also non-
nature-inspired metaheuristics, such as Tabu Search (TS) [26,
27], Threshold Accepting (TA) [28], Chemical Reaction
Optimization (CRO) [29], VNS algorithm [30].

Krauter et al. [31] provided a useful survey on grid node
management systems, in which most of the grid schedulers
such as AppLes, Condor, Globus, Legion, Netsolve, Ninf,
and Nimrod use simple batch scheduling heuristics. Braun
et al. [5] studied the comparison of the performance of
batch queuing heuristics, TS, GA, and SA to minimize the
makespan. The results revealed that GA achieved the best
results compared with batch queuing heuristics. Xhafa [32]
studied the performance of Memetic Algorithm (MA) with
different local search algorithms including TS and VNS.
The experimental results revealed that MA+TS hybridiza-
tion outperforms the combination of MA with other local
search algorithms. Abraham et al. [33] proposed the vari-
able neighborhood particle swarm optimization algorithm.
They empirically showed the performance of the proposed
algorithm and its feasibility and effectiveness for scheduling
work flow applications.

Many recent articles have proposed novel concepts for
solving the scheduling problem of heterogeneous computing
and grid environments with various scheduling objectives,
namely makespan [34–38], makespan and flowtime [39–41],
energy consumption and makespan [42–46], makespan, flow-
time and energy consumption [47,48], budget constraints and
makespan [49–51], system reliability, system cost, deadline,
quality of service constraints and redundancy [52,53], and
load balancing factor [54,55].
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Fig. 2 A logical grid
scheduling architecture

Neural- and fuzzy-based multi-criteria decision making
scheduler and scheduler with novel resource provisioning
policy have been proposed to enable efficient resource allo-
cation and data transfer [56–60]. Navin et al. [61] proposed
a new framework, namely Expert Grid, which is used to
find, exploit, share, and manage the skills and knowledge
of human resource, and which considers the optimal trade-
off between the human resource and job demands. Lusa et
al. [62] proposed the VNS algorithm for the constrained task
allocation problem and compared the performance of the
proposed algorithm with the other local search procedures.
Kardani-Moghaddam et al. [63] presented a hybrid GA and
VNS to reduce overall cost of task executions in grid envi-
ronment.

The VNS algorithm has received relatively little attention
in solving the grid job scheduling problem. It is known that
VNS has been used in hybridization with other algorithms for
such problems. There are no other antecedents on applying
explicit VNS to solve the heterogeneous computing schedul-
ing problems. So the approach presented here is a novel
approach in this line of research to solve using VNS alone. In
addition, none of the sequential execution algorithms outper-
formed the recently published results of parallel algorithm [8]
for the de facto standard problems by Braun et al. [5]. This
paves the path to contribute in these lines of research by
studying sequential execution algorithms, able to deal with
large-size scheduling problem instances by using innovative
concepts embedded with sequential execution algorithms.

3 The Grid Scheduling Process and Components

A computational grid is a hardware and software infrastruc-
ture that provides dependable, consistent, pervasive, and
inexpensive access to high-end computational capabilities
[4]. A grid scheduler (GS) receives applications from grid
users, selects feasible nodes for these applications accord-

ing to acquired information from the Grid Information Ser-
vice (GIS) module, and finally generates application-to-node
mappings, based on certain objective functions and predicted
node performance.

The grid scheduling process can be generalized into three
stages, namely node discovering and filtering, node select-
ing and scheduling according to certain objectives, and job
submission [64]. Figure 2 depicts a model of grid scheduling
system. Grid scheduler is referred as meta-scheduler in the
literature [65].

The role of the grid information service is to provide infor-
mation about the status of available nodes to grid schedulers.
GIS is responsible for collecting and predicting the node state
information, such as CPU capacities, memory size, network
bandwidth, software availabilities, and load of a site in a par-
ticular period. GIS can answer queries for node information
or push information to subscribers.

Besides raw node information from GIS, application prop-
erties such as approximate instruction quantity, memory and
storage requirements, subtask dependency in a job, and com-
munication volumes and performance of a node for different
application species are also necessary for making a feasible
schedule. Application Profiling (AP) is used to extract prop-
erties of applications, while Analogical Benchmarking (AB)
provides a measure of how well a node can perform a given
type of job [66,67]. Cost estimation module computes the
cost of candidate schedules. On the basis of knowledge from
AP, AB, and cost estimation module, from which the sched-
uler chooses those that can optimize the objective functions.

The Launching and Monitoring (LM) module is known as
the “binder” which implements a finally determined schedule
by submitting applications to selected nodes, staging input
data and executables if necessary, and monitoring the execu-
tion of the applications [68].

A Local Resource Manager (LRM) is mainly responsible
for two jobs: local scheduling inside a node domain, where
not only jobs from exterior grid users, but also jobs from
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the domain’s local users are executed, and reporting node
information to GIS.

For clarity, some key terminologies [69] are defined as
follows.

• Grid node

A grid node is an autonomous entity composed of one or mul-
tiple nodes. The computational capacity of the node depends
on its number of CPUs, amount of memory, basic storage
space, and other specifications.

• Jobs and operations

A job is considered as a single set of multiple atomic opera-
tions/tasks. Each operation will be typically allocated to exe-
cute on one single node without preemption. It has input and
output data and processing requirements in order to complete
its task.

• Task scheduling

A task scheduling is the mapping of tasks to a selected group
of nodes which may be distributed in multiple administrative
domains.

This work deals with the static scheduling problem, in
which all tasks can be independently performed. All the
information about tasks and resources is gathered by the
grid scheduler before computing the schedule, and the task
to resource assignment is not allowed to change during the
execution. Static scheduler acts as the basic building block
to develop a powerful dynamic scheduler, able to solve more
complex scheduling problems. The concept of static schedul-
ing frequently appears in many scientific research problems,
especially in single-program multiple-data applications used
for multimedia processing, scientific computing, data min-
ing, parallel domain decomposition of numerical models
for physical phenomena. The independent tasks model also
arises when different users submit their tasks to execute in
volunteer-based and grid computing services and in para-
meter sweep applications, which are structured as a set of
multiple experiments, each one executed with a different set
of parameter values [8].

4 Scheduling Problem Formulation

The problem is formulated based on the “Expected Time to
Compute” (ETC) model [5]. In a particular time interval, n
independent jobs J1, J2, J3, . . . , Jn (expressed in millions of
instructions) are submitted to meta-scheduler for scheduling,
and at the same time, GIS locates m (usually n � m) hetero-

geneous grid nodes G1, G2, G3, . . . , Gm , donating nodes.
The processing power of a grid node is measured in terms of
“millions of instructions per second”. To address the prob-
lem, we start with the following assumptions [29].

1. Any job Ji has to be processed in one of the grid nodes
G j until completion.

2. Jobs come in batch mode.
3. A node cannot remain idle when jobs have been assigned

to it.
4. A job can only be executed on one grid node in each

interval.
5. When a node processes its tasks, there are no priority

distinctions between the tasks assigned in the previous
intervals and those assigned in the current interval.

4.1 Mathematical Model

The standard three-field notation of Graham et al. [70] for
scheduling problem is represented as α|β|γ , where α rep-
resents the machine environment, β describes about the job
characteristics, and γ refers to the optimality criterion cho-
sen. The problem of this paper is denoted as R||Cmax . Here, R
represents the unrelated parallel machines scheduling prob-
lem. The null value of β denotes the absence of various char-
acteristics of the job such as preemption, precedence relation,
resource constraints, constant upper bound on machine allot-
ted to the particular job, upper and lower bound on processing
time. Cmax denotes the makespan. Makespan is the comple-
tion time of the last finished task.

Based on the specifications of the nodes and tasks, meta-
scheduler computes n × m matrix ET C(ET C : J × G →
R+). The R||Cmax problem can be formulated by defining
the following notations and variables.

i index of tasks, i = 1, 2, . . . , n
j index of nodes, j = 1, 2, . . . , m
n number of tasks,
m number of heterogeneous nodes,
xi variable representing the node to execute the task i ,

x (U )
i maximum allowed value of xi ,

x (L)
i minimum allowed value of xi ,

ET Ci j expected time for node j to process task i ,
C j completion time of node j

The goal of the grid job scheduling problem is to find
an assignment of tasks to nodes (a function f :J n → Gm)

which minimizes the makespan. The objective function can
be expressed as follows:

Minimize f (x) = max

⎧
⎨

⎩

∑

[i/xi = j]
ET Ci j

⎫
⎬

⎭
(1)
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s.t. x = {x1, x2, . . . , xn} , ∀xi ∈ [1, m] ,∀i ∈ [1, n] ,

∀ j ∈ [1, m] (2)

ETCi j > 0, i = 1, 2, . . . , n; j = 1, 2, . . . , m (3)

x (U )
i = m, i = 1, 2, . . . , n (4)

x (L)
i = 1, i = 1, 2, . . . , n (5)

x (U )
i ≥ xi ≥ x (L)

i , i = 1, 2, . . . , n (6)

C j =
∑

[i/xi = j]
ET Ci j ,

[i/xi = j] represents the tasks assigned to node j (7)

In this model, the objective function (1) minimizes the
makespan. Constraint (2) denotes a vector composed of n
objective function parameters. Constraint (3) ensures that all
entries of n × m ET C matrix are positive. Constraints (4)
and (5) define the upper and lower boundary constraints of
the objective function parameters, respectively. Constraint
(6) defines the upper and lower boundary constraints of the
variable xi . Constraint (7) calculates the completion time of
node j , which is defined as the time required for node j to
complete all its assigned tasks.

5 Variable Neighborhood Search Algorithm

VNS is a metaheuristic which systematically exploits the idea
of neighborhood change, both in descent to local minima
and in escape from the valleys which contain them. The term
VNS is referred to all local search-based approaches that are
centered on the principle of systematically exploring more
than one type of neighborhood structure during the search.
VNS iterates over more than one neighborhood structures
until some stopping criterion is met. The basic scheme of
the VNS was proposed by Mladenovic’ and Hansen [71]. Its
advanced principles for solving combinatorial optimization
problems and applications were further introduced in [72–
74] and recently in [75].

VNS uses a finite set of preselected neighborhood struc-
tures denoted as Nk (k = 1, . . . , kmax ). Nk (x) denotes the
set of solutions in the kth neighborhood of solution x .
VNS employs a local search to obtain a solution x ∈ X,

called as a local minimum, such that there exists no solution
x ′ ∈ Nk (x) ⊆ X with f

(
x ′) < f (x). The local search

can be performed in different ways. The generic way con-
sists of choosing an initial solution x , finding a direction of
descent from x within a neighborhood N (x), and moving to
the minimum of f (x) within N (x) in the same direction.
If there is no direction of descent, the heuristic stops; other-
wise, it is iterated. Usually the steepest direction of descent,
also referred to as the best improvement, is used. The steps
of the best improvement are given in Algorithm 1.

After the local search, a change in the neighborhood struc-
ture is performed. The generic form of the neighborhood

change function is given in Algorithm 2. Function Neigh-
borhoodChange compares the value f

(
x ′) of a new solution

x ′ with the value f (x) of the incumbent solution x obtained
in the neighborhood k. If an improvement is obtained, k is
returned to its initial value and the incumbent solution is
updated with the new one. Otherwise, the next neighborhood
is considered.

The VNS can be summarized as in Algorithm 3. VNS uses
two parameters: β, which is the maximum number of itera-
tions allowed as the stopping condition, and kmax , which is
the number of neighborhood structures used. Step 4 of Algo-
rithm 3, which is called shaking, randomly chooses a solution
x ′ from the kth neighborhood of the incumbent solution x .
After improving this solution via the BestImprovement local
search (Algorithm 1), a neighborhood change is employed
with the function NeighborhoodChange (Algorithm 2).

If we eliminate the randomness in VNS, then the Variable
Neighborhood Descent (VND) is obtained (Algorithm 4).
While this deterministic variant of VNS can be used as it is,
it might be useful as a local search within a VNS. In the latter
case, one can obtain a better solution at the end of the local
search since VND itself uses more than one neighborhood
structure. Hence, the chances to reach a global solution are
larger when using VND rather than a single neighborhood
structure [75].

As a variant of the VNS, if the local search step of the
VNS is replaced by VND, then we obtain the GVNS [76].
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Steps of the GVNS are given in Algorithm 5. GVNS uses
one additional parameter other than β and kmax , that is
k′

max , the number of neighborhoods used in the inner VND
loop.

The neighborhood change function described in Algo-
rithm 2 consists of general procedure of fitness evaluation.
But VNS-based job scheduling algorithm consists of GVNS
and BVNS modules, in which neighborhood change function
evaluates the fitness of the solution using Algorithms A.1 and
A.2, respectively.

6 Implementation of Two-Phase VNS Algorithm for
Scheduling Jobs on Computational Grid

The following subsections deal with the representation of
solution, generation of initial solution, explanation of neigh-

borhood structures, and the proposed grid job scheduling
algorithm.

6.1 Solution Representation

The solution is represented as an array of length equal to the
number of jobs. The value corresponding to each position i in
the array represents the node to which job i was allocated. The
representation of the solution for the problem of scheduling
13 jobs to 3 grid nodes is illustrated in Fig. 3. The first element
of the array denotes the first job (J1) in a batch which is
allocated to the grid node 2; the second element of the array
denotes the second job (J2) which is assigned to the grid
node 1, and so on.

6.2 Initial Solution Generation

Numerous methods have been proposed to generate the ini-
tial solution when applying metaheuristics to the scheduling
problem in the heterogeneous environment [32,33,77]. The
deterministic heuristic Min–Min algorithm has been used as a
method to generate the initial solution (Algorithm A.3). This
algorithm leads to more balanced schedules and generally
finds smaller makespan values than other heuristics, since
more tasks are expected to be assigned to the nodes that can
complete them the earliest. As the Min–Min algorithm pro-
vides a good starting solution to the grid job scheduling algo-
rithm, the TPVNS algorithm converges to a desired solution
faster than when using the random initial solution.

6.3 Neighborhood Structures

The neighborhood structure defines the type of modifications
a current solution can undergo, and thus, different neighbor-
hoods offer different ways to explore the solution space. In
other words, definition of the proper neighborhood structures
leads to better exploration and exploitation of the solution
space. Two attributes of the solutions are considered to define
six neighborhood structures so that a larger part of the solu-
tion space can be searched and the chance of finding good
solutions will be enhanced. The attributes that can be altered
from one solution to another are “random assignment of grid
nodes to jobs” and “workload of grid nodes.”

The details of the neighborhood structures experimented
in this paper are given in “Appendix A” (Algorithms A.4, A.5,

Fig. 3 a Solution
representation, b solution for the
problem of 13 jobs and 3 grid
nodes, c mapping of jobs with
grid nodes for the solution given
in (b)

J1 J2 J3 J4 J5 … Ji …
G2 G5 G9 G1 G7 … Gj …

(a)
2 1 2 3 1 2 3 1 2 3 2 1 1 

(b)

Grid Node 1 J2 J5 J8 J12 J13

Grid Node 2 J1 J3 J6 J9 J11

Grid Node 3 J4 J7 J10

(c)
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A.6, A.7, A.8, and A.9). The defined neighborhood structures
and corresponding moves associated with them are explained
in detail below.

6.3.1 SwapMove

This neighborhood structure provides a set of neighbors for
current solution x , based on exchanging the nodes assigned
for the randomly selected three jobs.

6.3.2 Makespan–InsertionMove

This neighborhood assigns the Light node to the randomly
selected job in the job list of Heavy node. Light and Heavy
nodes are the nodes with minimum and maximum local
makespan, respectively, where the local makespan of individ-
ual node gives the completion time of its latest job. Maximum
local makespan is the makespan of the solution.

6.3.3 InsertionMove

Neighbors generated using this neighborhood structure can
be constructed using the assignment of random node G1 in
G to the random job J1 in J .

6.3.4 Weightedmakespan–InsertionMove

Based on this neighborhood structure, solutions are gener-
ated by assigning the random node Lr to the random job J1

selected from the job list of the random node Hr. Lr and Hr
are the nodes having local makespan value less than or equal
to 0.25 and greater than or equal to 0.75 of the makespan of
current solution, respectively.

6.3.5 BestInsertionMove

This neighborhood maps the longest job J1 in the job list of
Heavy to the node having minimum execution time for J1.

6.3.6 Problem Aware Local Search (PALS)

Basic concept of this neighborhood structure has been used
in the literature for the DNA fragment assembly problem [78]
and the heterogeneous computing scheduling problem [79].
Working on a given schedule x , this neighborhood selects a
node Heavy to perform the search. The outer cycle iterates
on “it” number of jobs (where it = endheavy–startheavy + 1)
of the node Heavy, while the inner cycle iterates on “jt” num-
ber of jobs (where jt = endres–startres + 1) of the randomly
selected node G1, other than Heavy. For each pair (i, j), the
double cycle calculates the makespan variation when swap-
ping the nodes assigned for JJ[i] and JJJ[j], where JJ and

JJJ denote the job list of the nodes Heavy and G1, respec-
tively. This neighborhood stores the best improvement on the
makespan value for the whole schedule found in the evalu-
ation process of i t × j t . At the end of the double cycle,
the best move found so far is applied. In this algorithm,
startheavy and endheavy, startres and endres are assigned
with random values based on the length of array JJ and JJJ,
respectively (Refer line 3 and 5 of Algorithm A.9.). The ran-
domness introduced in the parameters endheavy and endres
makes this neighborhood to differ from the concept existing
in the literature.

To illustrate, a small-scale job scheduling problem involv-
ing 3 nodes and 13 jobs is considered. The node speeds are
4, 3, 2 cycles/s, and the job lengths of 13 jobs are 6, 12,
16, 20, 24, 28, 30, 36, 40, 42, 48, 52, and 60 cycles, respec-
tively. Consider the initial solution with makespan 115, which
is represented in Fig. 4a. The SwapMove operator swaps
the nodes assigned for the selected three jobs J9, J2, and
J4 (already mapped with G3, G2, and G1, respectively) and
changes the makespan of the solution as 105 (Fig. 4b). Then,
the job J1 assigned for G3(Heavy—with localmakespan 105)
is mapped with the node G2(Light—with localmakespan 28),
according to the Makespan–InsertionMove neighborhood.
Thus, the makespan of the current solution becomes 102,
which is illustrated in Fig. 4c. Then, InsertionMove neighbor-
hood selects the node G2 and maps with the job J11 (already
mapped with G1). This mapping changes the localmakespan
of G1 and G2 (18 and 46, respectively), but maintains the
makespan of current solution (Fig. 4d). According to the
Weightedmakespan–InsertionMove, the job J13 from the job
list of G3 (considered as Hr) is assigned to the node G1 (con-
sidered as Lr). This neighborhood minimizes the makespan
of current solution as 72 (Fig. 4e). Then, the BestInsertion-
Move neighborhood selects the longest job J12 from G3 (con-
sidered as Heavy) and assigns with G1 (high speed node of
J12) (Fig. 4f). Hence, the final solution has the makespan 46,
which is the optimal result for the example problem.

6.4 Proposed Grid Job Scheduling Algorithm

This section describes the proposed VNS-based job schedul-
ing algorithm. The pseudo code is detailed in Algorithm 6.
The first phase is the generation of initial solution which acts
as the seed for the job scheduling algorithm. The determin-
istic heuristic, Min–Min algorithm helps the job scheduling
algorithm by providing better starting solution to explore into
the solution space, thereby increasing the speed of the search
process.

The proposed algorithm consists of two modules, namely
exploration and diversification. The exploration phase makes
use of GVNS algorithm, which concentrates on the mini-
mization of makespan of the solution. GVNS algorithm has
Nk neighborhood structures, (k = 1 to kmax ) in the shaking
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Fig. 4 Explanation of different
neighborhood structures used in
the proposed TPVNS: a Initial
solution, b SwapMove, c
Makespan–InsertionMove, d
InsertionMove, e
Weightedmakespan–
InsertionMove, and f
BestInsertionMove
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phase to create new solution from the current solution and
Nk′ neighborhood structures, (k′ = 1 to k′

max ) in the VND
phase to improve this new solution, which is framed based
on Eq. (1). After α times execution of GVNS module, the
makespan of the current solution will be improved by the
diversification phase of the scheduling algorithm.

The diversification phase of the scheduling algorithm con-
sists of two modules. The first module consists of BVNS
algorithm, which has k′′

max neighborhood structures, (k′′ = 1
to k′′

max ) in the shaking phase with local search heuristic.
The BVNS algorithm works on different strategy of eval-
uating the fitness of the solution as detailed in Algorithm
A.2. Hence, the fitness of the current solution is calculated
using Algorithm A.2, and then, the solution is submitted to
the BVNS module. Algorithm A.2 is formulated based on
Eq. (9), which considers the average flowtime and makespan
to estimate the fitness of current solution. Flowtime is the
total time consumed by all tasks [29]. Mathematically, we
have

Flowt ime =
m∑

j=1

(∑
C j

)
(8)

Fitness = a × Makespan + (1 − a) ×
(

Flowtime

m

)

(9)

where C j is the completion time of grid node j to com-
plete all its assigned tasks which is defined in Eq. (7), “a” is
fixed as 0.75 [32], and m is the total number of grid nodes.
This module of diversification phase is regularly called by
the scheduling algorithm for β times, after every α times
execution of exploration phase.

In order to further diversify the search, the second mod-
ule is constructed, which evaluates the fitness of the solution
using Algorithm A.1. Hence, before applying the schedule
to the second module of diversification phase, the fitness of
the current solution is modified by Algorithm A.1. Algo-

rithm 7 describes the method of diversification procedure of
second module adopted to improve the speed of the search
process.

The second module is invoked regularly at every φ sec-
onds during the execution of scheduling algorithm and also
whenever there is no improvement in the makespan of the
current solution for successive γ generations. Algorithm 7
considers the current solution and the randomly selected pre-
vious generation solution in order to reassign the grid nodes
with jobs. The previous generation solution is selected by
considering the concept that the previous should differ in at
least 2 bit positions from the current solution. The solutions
generated by Algorithm 7 are manipulated based on two con-
ditions in order to update the current solution. The current
solution is updated by the new one if the new solution has
less makespan than the current or if the difference between
the makespan of new and current is less than threshold.

The diversification phase of the scheduling algorithm may
yield good solution or sometimes deteriorated solution. Even
though this phase yields deteriorated solution, the reassign-
ment of grid nodes with jobs done by the diversification phase
of grid job scheduling algorithm helps the GVNS algorithm
to explore new better solution.

7 Computational Experiments

When facing the heterogeneous computing scheduling prob-
lem, researchers have often used twelve instances proposed
by Braun et al. [5], following the ETC performance estima-
tion model by Ali et al. [80]. ETC takes into account three
key properties: machine heterogeneity, task heterogeneity,
and consistency. Machine heterogeneity evaluates the vari-
ation of execution times for a given task across the hetero-
geneous computing nodes, while task heterogeneity repre-
sents the variation of the tasks execution times for a given
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machine. Regarding the consistency property, in a consis-
tent scenario, whenever a given node Gj executes any task Ji

faster than other machine Gk, then node Gj executes all tasks
faster than machine Gk. In an inconsistent scenario, a given
machine Gj may be faster than machine Gk when executing
some tasks and slower for others. Finally, a semiconsistent
scenario models those inconsistent systems that include a
consistent subsystem.

All instances from Braun et al. [5] are composed of 512
jobs and 16 machines, which is referred as the configuration
512×16. They are labeled as u_ x _ yyzz.k where u means uni-
form distribution (in the ETC matrix generation), x is the type
of consistency (c—consistent, i—inconsistent, and s means
semiconsistent), yy and zz indicate the job and machine het-
erogeneity (hi—high, and lo—low), and k is used to number
instances of the same type. Several test suites were generated,
but only the class 0 (k = 0) gained popularity. Nesmachnow
et al. [8] proposed a test suite of several large dimension
heterogeneous computing scheduling problem instances, in
order to model large heterogeneous computing clusters and
medium-sized grid infrastructures. Each dimension has 24
test instances regarding all the heterogeneity and consistency
combinations, twelve of them considering the parameteriza-

tion values from Ali et al. [80], and twelve using the values
from Braun et al. [5]. The instances are named following the
previously presented convention: The names have the pattern
M.u_ x_ yyzz, where the first letter (M) describes the hetero-
geneity model (A for Ali, and B for Braun). Liu et al. [24]
used a test suite for grid job scheduling problem, which com-
prises 4 different configurations represented as (number of
grid nodes, number of grid jobs), namely (3, 13), (8, 60), (5,
100), and (10, 50).

Braun et al. [5] carried out the experiment for 512×16 con-
figuration with Pentium II 400 MHz processor (1 GB RAM)
and reported the best result using GA with an average exe-
cution time of 60 s. Ritchie et al. [23] took around 3.5 h for
hybrid ACO+TS algorithm to give the best result over GA
with 1.6 GHz processor. Xhafa et al. [27] set 100 s for TS
to provide the best result over hybrid ACO+TS algorithm
with Pentium III 550 MHz processor (256 MB RAM). Nes-
machnow et al. [8] fixed 90 s for pCHC to present best result
over TS (512 × 16) and 120 s for large-scale problems. They
used a cluster with four Dell PowerEdge servers with Quad-
Core Xeon E5430 processors at 2.66 GHz, 8 GB RAM, using
the CentOS Linux 5.2 operating system, connected with a
Gigabit Ethernet LAN for experimentation. Liu et al. [24]
experimented the PSO algorithm by setting 50 ×m × n iter-
ations (m is the number of grid nodes, n is the number of
jobs), which took around 160–1585 s for different dimen-
sion.

This paper considers the test instances with dimension
512 × 16 [19], 1,024 × 32, 2,048 × 64, and 4,096 × 128 [8]
and the test suite used by Liu et al. [24]. Also, it has been
decided to generate 3 different configurations of ETC matrix
considering the parameterization values from Braun et al. [5]
with dimension 100 × 10, 300 × 10, and 512 × 16, and
to develop and run Min–Min algorithm, greedy randomized
adaptive search procedures (GRASP), and SA on the same
platform in order to make a fair comparison. The additional
test instances are named using the pattern x_ yyzz, by follow-
ing the previously presented convention. Thus, 124 different
test instances are used to evaluate the performance of the
proposed algorithm.

The VNS-based grid job scheduling algorithm was devel-
oped using MATLAB R2010a and run on an Intel(R)
Core(TM) i5 2.67 GHz CPU with 4GB RAM. The evalua-
tion of the fitness function usually requires larger comput-
ing time than the application of neighborhood operators. It
is found that fitness evaluation of single solution consumes
2.63, 2.756, 2.812, and 5.827 ms for 512 × 16, 1,024 ×
32, 2,048 × 64, and 4,096 × 128 dimension problems of
Nesmachnow et al., respectively. Hence, the maximum run-
ning time of the algorithm is not set to uniform value for all
configurations. The stopping condition tmax is set to 5, 17, 50,
75, 150, 300, and 700 s for 3×13, 100×10, 300×10, 512×
16, 1,024×32, 2,048×64, and 4,096×128 dimension prob-
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lems, respectively. In reality, the stopping criteria could be
that the algorithm reaches a preset value tmax, which is set
to 50 s for small-sized test instances (≤512×16 dimension),
150 s for medium-sized test instances (512 × 16 < dimen-
sion ≤ 2,048 × 64), and 300 s for large-sized test instances
(2,048 × 64 < dimension ≤ 4,096 × 128).

7.1 Examining the Performance of the Algorithm
Parameters

This section deals with the experimentation to make three
algorithm-specific decisions. First, the order of execu-
tion of neighborhoods in the exploration phase and the
selection of neighborhood in the diversification phase had
been decided. Then, the role of diversification in the
job scheduling algorithm had been emphasized. Next, the
algorithm-specific parameters, namely α, β, γ, φ and thresh-
old had been determined. For taking these decisions, the
proposed algorithm was run for the test instances, namely
A.u_c_hilo and B.u_s_lolo of 1,024 × 32 and 2,048 ×
64 configuration obtained from the test suite proposed
by Nesmachnow et al. [8]. Each experiment (for each
instance) was repeated 50 times, and the best makespan was
tabulated.

In order to establish the best order of the six neighborhood
structures discussed in Sect. 6.3, for the GVNS and BVNS
algorithm, the preliminary computational experiments were
performed with the value of α, β, γ, φ and threshold fixed at
3, 6, 3, 15, and 0.0003, respectively. For this study, Swap-
Move and InsertionMove are used in the VND phase of
GVNS. Makespan–InsertionMove and Problem Aware Local
Search heuristic are used in the shaking and local search
phase of BVNS algorithm, respectively, to carry out the study.
The proposed algorithm uses 8 parameters, and their descrip-
tion is listed below:

• α and β are the maximum number of times of execution
of GVNS and BVNS algorithm per single generation,
respectively.

• γ denotes the maximum number of generations for which
the algorithm yields the same value of makespan.

• At every φ seconds, the crossover heuristic is called
during the execution of job scheduling algorithm. The
crossover heuristic gives different direction for the
GVNS phase to explore into the solution space; γ and φ

are the parameters which decide the process of invoking
the crossover heuristic.

• t_ini tial is the time (in seconds) at which the crossover
heuristic is called initially after starting the execution of
job scheduling algorithm.

• PALS_maxiter is the parameter which decides the maxi-
mum number of times of execution of the PALS heuristic
(Algorithm A.10).

• bit_di f f erence is the number of bits used in the swap-
ping process of crossover heuristic.

The parameters t_ini tial, PALS_maxiter and bit_
di f f erence are set to 10, 5, and 2, respectively.

7.1.1 Order of Neighborhood Structures

Different ordering of the proposed six neighborhoods with
their subsets is listed in Table 1, where the numbers refer to
the test case numbers corresponding to the neighborhood list.
The best makespan obtained during the experimentation of
each test case for the determination of the order of the neigh-
borhood structures in the shaking phase of GVNS is given
in Table 2. As seen from Table 2, three test cases gave better
results compared to other cases which are highlighted in bold.
The best result was obtained for the test case 44. This test
case consists of 2 neighborhood structures, namely Problem
Aware Local Search and SwapMove. With this ordering of
neighborhood structures in the shaking phase, the experiment
was again repeated to determine the order of neighborhood
structures in the VND phase of GVNS algorithm. The results
for the experimentation of different neighborhood structures
in the VND phase of exploration module are given in Table 3.
From Table 3, it is observed that the test case with the combi-
nation of Weightedmakespan–InsertionMove, BestInsertion-
Move, and InsertionMove neighborhoods in the VND phase
of GVNS gave better mapping of jobs with grid nodes, which
is highlighted in bold. Thus, kmax and k′

max are set to 2 and
3, respectively.

The first phase of diversification module of grid job
scheduling algorithm consists of BVNS algorithm, in which
neighborhood change function considers Algorithm A.2 for
fitness evaluation. But the objective of the grid job schedul-
ing algorithm is to find good solution, whose fitness is eval-
uated using Algorithm A.1. Hence, it is required to have
very slight perturbation of incumbent solution, but not to
have more intensification of search process in the solution
space of the BVNS algorithm. Thus, k′′

max is set to 1. Table 4
reports the experimental result of grid job scheduling algo-
rithm for the selection of suitable neighborhood structure in
the shaking phase of BVNS algorithm. Weightedmakespan–
InsertionMove neighborhood (used for the initial study) gave
the minimum makespan value which is highlighted in bold
when compared to other neighborhood structures. Table 5
shows the best makespan value during the experimentation
of different neighborhood structure used in the local search
phase of the BVNS algorithm of the grid job scheduling algo-
rithm. The usage of PALS heuristic reports the minimum
makespan.
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Table 1 Different combinations and orders of the shaking procedures for GVNS

Neighborhood structure test cases (1–44)

1 Problem Aware Local
Search InsertionMove
Makespan–
InsertionMove
BestInsertionMove
Weightedmakespan–
InsertionMove

12 SwapMove
InsertionMove
Makespan–
InsertionMove
BestInsertionMove
Weightedmakespan–
InsertionMove

23 SwapMove
InsertionMove
Problem Aware Local
Search
BestInsertionMove
Weightedmakespan–
InsertionMove

34 SwapMove
InsertionMove
Problem Aware Local
Search
BestInsertionMove
Makespan–
InsertionMove

2 Weightedmakespan–
InsertionMove
Problem Aware Local
Search Makespan–
InsertionMove
BestInsertionMove
InsertionMove

13 Weightedmakespan–
InsertionMove
SwapMove
Makespan–
InsertionMove
BestInsertionMove
InsertionMove

24 Weightedmakespan–
InsertionMove
SwapMove Problem
Aware Local Search
BestInsertionMove
InsertionMove

35 Makespan–
InsertionMove
SwapMove Problem
Aware Local Search
BestInsertionMove
InsertionMove

3 InsertionMove
Makespan–
InsertionMove
BestInsertionMove
Weightedmakespan–
InsertionMove
Problem Aware Local
Search

14 InsertionMove
Makespan–
InsertionMove
BestInsertionMove
Weightedmakespan–
InsertionMove
SwapMove

25 InsertionMove Problem
Aware Local Search
BestInsertionMove
Weightedmakespan–
InsertionMove
SwapMove

36 InsertionMove Problem
Aware Local Search
BestInsertionMove
Makespan–
InsertionMove
SwapMove

4 Makespan–
InsertionMove
InsertionMove
BestInsertionMove
Weightedmakespan–
InsertionMove
Problem Aware Local
Search

15 Makespan–
InsertionMove
InsertionMove
BestInsertionMove
Weightedmakespan–
InsertionMove
SwapMove

26 Problem Aware Local
Search InsertionMove
BestInsertionMove
Weightedmakespan–
InsertionMove
SwapMove

37 Problem Aware Local
Search InsertionMove
BestInsertionMove
Makespan–
InsertionMove
SwapMove

5 BestInsertionMove
InsertionMove
Weightedmakespan–
InsertionMove
Problem Aware Local
Search Makespan–
InsertionMove

16 BestInsertionMove
InsertionMove
Weightedmakespan–
InsertionMove
SwapMove
Makespan–
InsertionMove

27 BestInsertionMove
InsertionMove
Weightedmakespan–
InsertionMove
SwapMove Problem
Aware Local Search

38 BestInsertionMove
InsertionMove
Makespan–
InsertionMove
SwapMove Problem
Aware Local Search

6 Weightedmakespan–
InsertionMove
Problem Aware Local
Search InsertionMove
Makespan–
InsertionMove

17 Weightedmakespan–
InsertionMove
SwapMove
InsertionMove
Makespan–
InsertionMove

28 Weightedmakespan–
InsertionMove
SwapMove
InsertionMove
Problem Aware Local
Search

39 Makespan–
InsertionMove
SwapMove
InsertionMove
Problem Aware Local
Search

7 InsertionMove Problem
Aware Local Search
Makespan–
InsertionMove
BestInsertionMove

18 SwapMove
InsertionMove
Makespan–
InsertionMove
BestInsertionMove

29 SwapMove
InsertionMove
Problem Aware Local
Search
BestInsertionMove

40 InsertionMove Problem
Aware Local Search
BestInsertionMove
SwapMove

8 Problem Aware Local
Search InsertionMove
Makespan–
InsertionMove

19 InsertionMove
SwapMove
Makespan–
InsertionMove

30 InsertionMove
SwapMove Problem
Aware Local Search

41 SwapMove
InsertionMove
Problem Aware Local
Search

9 InsertionMove
Makespan–
InsertionMove
BestInsertionMove

20 InsertionMove
BestInsertionMove
Makespan–
InsertionMove

31 InsertionMove Problem
Aware Local Search
BestInsertionMove

42 InsertionMove
BestInsertionMove
Problem Aware Local
Search
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Table 1 continued

Neighborhood structure test cases (1–44)

10 InsertionMove
Makespan–
InsertionMove

21 BestInsertionMove
Makespan–
InsertionMove

32 InsertionMove Problem
Aware Local Search

43 Problem Aware Local
Search
Weightedmakespan–
InsertionMove

11 Problem Aware Local
Search Makespan–
InsertionMove

22 SwapMove Makespan–
InsertionMove

33 SwapMove
BestInsertionMove

44 Problem Aware Local
Search SwapMove

Table 2 Neighborhood structure testing for the shaking phase of GVNS

Test case Makespan Test case Makespan

B.u_s_lolo (2,048 × 64) A.u_i_hihi (1,024 × 32) B.u_s_lolo (2,048 × 64) A.u_i_hihi (1,024 × 32)

1 1,027.0 5,345,167.7 23 1,050.6 5,423,853.6

2 1,035.8 5,322,253.0 24 1,051.1 5,446,843.0

3 1,044.5 5,346,058.8 25 1,049.9 5,416,835.9

4 1,049.7 5,378,553.7 26 1,023.4 5,382,384.8

5 1,037.7 5,318,607.4 27 1,056.1 5,485,028.4

6 1,035.1 5,369,010.4 28 1,044.3 5,360,014.2

7 1,043.4 5,320,008.8 29 1,051.5 5,467,845.8

8 1,022.7 5,291,502.2 30 1,050.7 5,311,420.2

9 1,049.5 5,344,381.3 31 1,036.4 5,348,914.3

10 1,041.7 5,353,521.0 32 1,051.7 5,429,781.2

11 1,028.3 5,308,613.3 33 1,047.7 5,458,596.7

12 1,027.1 5,368,480.1 34 1,037.8 5,402,048.0

13 1,031.0 5,351,404.9 35 1,028.9 5,393,975.0

14 1,022.6 5,351,057.2 36 1,027.7 5,334,054.5

15 1,029.5 5,310,227.3 37 1,024.1 5,380,725.6

16 1,025.4 5,408,003.1 38 1,038.5 5,342,215.5

17 1,023.5 5,382,143.0 39 1,029.1 5,363,748.5

18 1,026.1 5,304,964.9 40 1,045.1 5,304,345.5

19 1,041.8 5,355,614.6 41 1,023.0 5,303,312.5

20 1,036.6 5,335,828.1 42 1,032.4 5,352,345.5

21 1,030.2 5,352,555.8 43 1,034.2 5,311,498.5

22 1,045.0 5,412,338.2 44 1,021.6 5,269,210.5

7.1.2 Parameter Setting

The proposed grid job scheduling algorithm consists of
exploration and diversification phase. Grid job scheduling
algorithm requires diversification procedure to lead way for
exploring new better solution. But this should not spend much
time in the diversification module. The balanced usage of
exploration and diversification module is important for the
job scheduling algorithm to produce good solution. The first
phase of diversification process is an executed β time, which
is called regularly after α times execution of exploration
module. The parameters γ and φ are used in the second
phase of the diversification process, which decide the fre-
quency of calling the crossover heuristic. The second phase

utilizes different strategy of diversification, which deterio-
rates the incumbent solution if the crossover heuristic fails
to yield good solution. The parameter threshold used by
the second phase has to be tuned properly, since threshold
decides the level of degradation of better solution. Hence,
experiments were conducted to determine suitable value for
the algorithm-specific parameters, namely α, β, γ, φ, and
threshold. Table 6 reports the makespan value for different
combination of α and β. It is observed from Table 6 that the
grid job scheduling algorithm is able to find better mapping
of grid jobs with grid nodes for the combination of α and β

fixed at 3 and 6 (used for the initial study), respectively. The
makespan values obtained during the experimentation of grid
job scheduling algorithm for different combination of γ, φ,
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Table 3 Neighborhood structure testing for the VND

Test case Order of neighborhood Makespan

B.u_s_lolo (2,048 × 64) A.u_i_hihi (1,024 × 32)

1 SwapMove → InsertionMove 1,021.6 5,269,210.5

2 Weightedmakespan–InsertionMove →Makespan–InsertionMove 1,068.1 5,512,662.1

3 BestInsertionMove → Weightedmakespan–InsertionMove 1,052.4 5,486,890.8

4 Weightedmakespan–InsertionMove → BestInsertionMove 1,047.6 5,521,421.3

5 Makespan–InsertionMove→ PALS 1,036.0 5,384,861.1

6 Weightedmakespan–InsertionMove → InsertionMove 1,034.5 5,321,268.0

7 PALS → BestInsertionMove→ InsertionMove 1,027.4 5,388,025.2

8 InsertionMove→ Weightedmakespan–InsertionMove →
Makespan–InsertionMove

1,031.7 5,361,900.8

9 BestInsertionMove → Weightedmakespan–InsertionMove→
InsertionMove

1,016.4 5,300,079.0

10 Makespan–InsertionMove →SwapMove →PALS 1,026.4 5,360,079.5

11 Weightedmakespan–InsertionMove → BestInsertionMove→
InsertionMove

1,010.2 5,200,512.2

Table 4 Neighborhood
structure testing for BVNS Type of neighborhood Makespan

B.u_s_lolo (2,048 × 64) A.u_i_hihi (1,024 × 32)

SwapMove 1,021.6 5,229,200.0

Makespan–InsertionMove 1,010.2 5,200,512.2

InsertionMove 1,020.6 5,299,200.0

Weightedmakespan–InsertionMove 1,001.5 5,186,352.2

BestInsertionMove 1,042.0 5,378,337.9

PALS 1,017.8 5,318,608.4

Table 5 Neighborhood
structure testing for the Local
search of BVNS

Type of neighborhood Makespan

B.u_s_lolo (2,048 × 64) A.u_i_hihi (1,024 × 32)

SwapMove 1,021.6 5,229,200.0

Makespan–InsertionMove 1,016.1 5,330,464.5

InsertionMove 1,020.6 5,299,200.0

Weightedmakespan–InsertionMove 1,010.5 5,201,021.8

BestInsertionMove 1,042.0 5,378,337.9

PALS 1,001.5 5,186,352.2

Table 6 Parameter setting for the grid job scheduling algorithm—α and β

α β Makespan α β Makespan

B.u_s_lolo (2,048 × 64) A.u_i_hihi (1,024 × 32) B.u_s_lolo (2,048 × 64) A.u_i_hihi (1,024 × 32)

1 2 1,026.1 5,441,865.2 4 1 1,032.1 5,469,178.2

2 1 1,035.8 5,495,182.3 4 2 1,034.6 5,420,285.0

2 2 1,026.9 5,422,741.5 4 3 1,031.7 5,361,287.3

3 2 1,029.8 5,362,954.1 4 4 1,025.4 5,342,251.5

3 3 1,027.5 5,305,422.8 4 5 1,015.9 5,242,357.4

3 4 1,021.1 5,316,746.1 4 6 1,016.2 5,265,689.7

3 5 1,012.0 5,222,019.6 4 7 1,018.9 5,324,348.3

3 6 1,001.5 5,186,352.2 4 8 1,014.0 5,267,105.1
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Table 7 Parameter setting for the crossover heuristic of grid job scheduling algorithm

γ φ Threshold Makespan γ φ Threshold Makespan

B.u_s_lolo (2,048 × 32) A.u_i_hihi (1,024 × 16) B.u_s_lolo (2,048 × 32) A.u_i_hihi (1,024 × 16)

3 5 0.0001 1,020.7 5,299,012.6 5 5 0.0001 1,024.0 5,247,216.0

3 5 0.0002 1,027.2 5,356,816.7 5 5 0.0002 1,026.3 5,253,171.1

3 5 0.0003 1,027.6 5,330,182.2 5 5 0.0003 1,014.6 5,223,572.8

3 10 0.0001 1,024.7 5,350,671.9 5 10 0.0001 1,026.6 5,288,196.0

3 10 0.0002 1,022.9 5,362,850.9 5 10 0.0002 1,021.9 5,222,340.7

3 10 0.0003 1,029.7 5,281,775.9 5 10 0.0003 1,017.5 5,203,137.7

3 15 0.0001 1,023.3 5,255,986.1 5 15 0.0001 995.8 5,167,781.0

3 15 0.0002 1,020.8 5,285,861.7 5 15 0.0002 1,016.1 5,216,907.6

3 15 0.0003 1,001.5 5,186,352.2 5 15 0.0003 1,020.4 5,216,143.2

3 20 0.0001 1,018.3 5,294,552.2 5 20 0.0001 1,018.2 5,233,202.7

3 20 0.0002 1,024.9 5,291,188.9 5 20 0.0002 1,021.6 5,230,685.2

3 20 0.0003 1,028.1 5,323,474.8 5 20 0.0003 1,017.9 5,267,414.8

3 25 0.0001 1,021.8 5,266,618.9 5 25 0.0001 1,021.6 5,256,397.7

3 25 0.0002 1,028.0 5,290,149.4 5 25 0.0002 1,012.2 5,245,060.9

3 25 0.0003 1,020.6 5,269,209.8 5 25 0.0003 1,012.6 5,297,869.4

4 5 0.0001 1,016.2 5,249,395.9 6 5 0.0001 1,017.0 5,234,716.3

4 5 0.0002 1,013.8 5,245,015.0 6 5 0.0002 1,021.0 5,255,787.8

4 5 0.0003 1,019.5 5,287,330.0 6 5 0.0003 1,020.9 5,224,064.8

4 10 0.0001 1,023.3 5,230,048.0 6 10 0.0001 1,023.8 5,283,304.3

4 10 0.0002 1,016.3 5,230,750.5 6 10 0.0002 1,011.3 5,205,000.1

4 10 0.0003 1,015.2 5,294,288.6 6 10 0.0003 1,009.7 5,199,400.5

4 15 0.0001 1,012.9 5,293,467.7 6 15 0.0001 1,016.8 5,243,789.8

4 15 0.0002 1,015.9 5,248,398.7 6 15 0.0002 1,023.8 5,292,174.1

4 15 0.0003 1,024.7 5,285,311.3 6 15 0.0003 1,017.1 5,288,434.8

4 20 0.0001 1,015.9 5,221,634.2 6 20 0.0001 1,014.0 5,240,307.8

4 20 0.0002 1,016.4 5,249,023.7 6 20 0.0002 1,018.4 5,217,704.9

4 20 0.0003 1,028.2 5,322,634.8 6 20 0.0003 1,021.7 5,235,787.7

4 25 0.0001 1,017.7 5,225,983.8 6 25 0.0001 1,024.5 5,241,498.1

4 25 0.0002 1,019.1 5,229,429.3 6 25 0.0002 1,026.8 5,200,877.4

4 25 0.0003 1,017.6 5,281,501.5 6 25 0.0003 1,017.2 5,211,054.3

Table 8 Importance of diversification phase

Organization of algorithm Makespan

B.u_s_lolo (2,048 × 64) A.u_i_hihi (1,024 × 32)

Only with exploration phase 1,042.6 5,601,953.9

Exploration + BVNS algorithm 1,024.6 5,261,099.2

Exploration + Crossover heuristic 1,044.5 5,487,141.6

Exploration + Local search(BVNS) + Crossover heuristic 1,019.2 5,306,646.6

Exploration + Shaking phase (BVNS) + Crossover heuristic 1,046.8 5,512,763.2

Exploration + Shaking phase(BVNS) 1,045.7 5,439,469.4

Exploration + Local search(BVNS) 1,037.5 5,416,292.4

Exploration + BVNS + Crossover heuristic 995.8 5,167,781.0
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Fig. 5 a Evolution of
makespan values observed for
the TPVNS algorithm,
b enlarged view of the
occurrence of deteriorated
solutions

and threshold are reported in Table 7. The grid job scheduling
algorithm produces solution with minimum makespan while
testing the algorithm by fixing the value of γ, φ and threshold
at 5, 15, and 0.0001, respectively.

7.1.3 Contribution of Diversification Module to Grid Job
Scheduling Algorithm

As diversification is considered as the part of the job schedul-
ing algorithm, the relevancy of inclusion of that phase has
to be justified. The result of the experiments carried out
to examine the necessity of the diversification phase of job
scheduling algorithm is given in Table 8. It is observed that
the exclusion of diversification phase results in the genera-
tion of poor solution. Also the job scheduling algorithm had
evolved through more number of generation when part of the
diversification phase is excluded from the scheduling algo-

rithm. It is revealed from Table 8 that the grid job scheduling
algorithm requires two modules of diversification phase to
find better mapping of jobs with grid nodes.

Figure 5 shows the evolution of makespan values observed
for the VNS algorithm during the representative execu-
tion over the B.u_s_lolo test instance of the configuration
2,048 × 64. Few deteriorated solutions (marked as 1, 2, 3,
and 4) generated by the diversification module are high-
lighted in Fig. 5a, and their enlarged views are shown in
Fig. 5b. The deteriorated solution obtained at the 159th gen-
eration was improved immediately in the next generation.
But the solution generated during the 530th generation took
10 more generations for getting the better solution. The dete-
riorated solution obtained in the 693rd generation diverts the
scheduling algorithm to explore 3 different solutions, and
then, the better mapping of grid jobs with grid nodes is found.
The scheduling algorithm generated solution with makespan
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1,008.54 at generation 746 and retained the same position for
the next generation. Then, it finds the better mapping with
makespan 1,008.45 and maintained same makespan value for
the next generation also. At generation 750, the diversifica-
tion module yielded the deteriorated solution with makespan
1,008.54. After that, the diversification module triggered the
scheduling algorithm to search in the different direction to
reach the makespan value 1,008.45 through the solution with
makespan 1,008.53 and which in turn yields the schedule
with makespan 1,008.38 at 754th generation. It is found that
half of the decision making duration (tmax ) is spent for the
scheduling algorithm in the diversification module. Also it
is noted that the diversification module is more beneficial
for the scheduling algorithm to explore new better solutions
until the makespan gap between lower bound and incumbent
solution is greater than 10 %. If the gap is less than 10 %, the
scheduling algorithm takes more than 10 generation to find
a better solution from the deteriorated solution.

7.2 Results and Discussion

This section discusses the experimental results of apply-
ing the TPVNS algorithm to solve the grid job scheduling
problem. In the computation experiments, 124 test instances
were solved with the TPVNS algorithm. For each test
instance, the TPVNS algorithm was run for 50 times and
the best of these 50 runs are reported. The experimental
results displayed in bold fonts indicate that the correspond-
ing solution is the best solution obtained out of all algo-
rithms considered for comparison along with TPVNS algo-
rithm. The overall best result produced by the TPVNS algo-
rithm compared with all algorithms is represented in bold
and italic. The relative gap value of the best makespan of
TPVNS algorithm with respect to the correspondent lower
bound is calculated using Eq. (10) (used in Sects. 7.2.1 and
7.2.2).

G AP (L B) = (result − L B)
/

L B (10)

where LB denotes the lower bound reported in the liter-
ature [81] and result indicates the best makespan value
obtained by the TPVNS algorithm for the correspondent test
instance.

The improvement of an algorithm over another is com-
puted using Eq. (11).

I mprovement (%) = δ1 − δ2

δ2
× 100 % (11)

where δ1 and δ2 are the fitness values of two different algo-
rithms. Ta
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Table 10 Percentage improvement of TPVNS over other metaheuristics

Instance GA
[5]

MA+TS
[32]

cMA
[20]

ACO+TS
[23]

TS
[27]

pCHC
[8]

Improvement based on consistency

GA
[5]

MA+TS
[32]

cMA
[20]

ACO+TS
[23]

TS
[27]

pCHC
[8]

u_c_hihi.0 7.59 1.20 3.40 0.77 0.12 0.30 4.67 0.95 2.53 0.8 0.12 0.34

u_c_hilo.0 1.91 0.42 1.33 0.63 −0.004 0.34

u_c_lohi.0 6.94 1.83 4.20 1.35 0.36 0.30

u_c_lolo.0 2.23 0.37 1.21 0.46 0.004 0.44

u_i_hihi.0 5.18 3.74 7.61 0.12 0.47 0.29 4 2.87 5.38 0.32 0.7 0.2

u_i_hilo.0 3.22 2.30 3.27 0.54 0.43 0.36

u_i_lohi.0 5.06 3.55 7.74 0.38 1.74 0.08

u_i_lolo.0 2.54 1.88 2.91 0.22 0.16 0.07

u_s_hihi.0 9.20 4.05 6.30 0.40 0.55 1.26 5.43 2.57 4.12 0.62 0.38 0.63

u_s_hilo.0 2.69 1.34 2.45 0.92 0.32 0.78

u_s_lohi.0 5.84 3.64 5.42 0.76 0.34 0.22

u_s_lolo.0 3.99 1.25 2.32 0.43 0.29 0.28

Average 4.7 2.13 4.01 0.58 0.4 0.39

Table 11 Makespan results for 1,024 × 32 test instances from Nesmachnow et al. [8]

Instance pCHC [8] TPVNS LB [81] GAP
(LB) (%)

Avg. GAP
(LB) (%)

Best Avg. Best Avg. σ (%) Impr. (%)

A.u_c_hihi 20,327,924.0 20,510,300.9 20,194,902.0 20,284,191.0 0.27 0.65 19,449,230.0 3.83 4.44

A.u_c_hilo 2,048,582.7 2,058,352.2 2,046,648.0 2,050,942.2 0.17 0.09 1,951,345.0 4.88

A.u_c_lohi 1,956.7 2,000.0 1,962 1,970.2 0.32 −0.27 1,866.4 5.12

A.u_c_lolo 207.5 217.8 206.7 213.4 0.19 0.39 198.9 3.92

A.u_i_hihi 5,169,960.5 5,244,046.9 5,167,781.0 5,221,702.0 0.23 0.04 5,012,207 3.10 3.44

A.u_i_hilo 490,280.3 492,699.4 489,525.2 493,800.1 0.20 0.15 474,404.6 3.19

A.u_i_lohi 518.2 523.6 522.4 530.1 0.41 −0.80 503.4 3.77

A.u_i_lolo 50.6 51.7 50.8 51.9 0.31 −0.41 49.0 3.69

A.u_s_hihi 12,243,560.0 12,439,843.1 12,155,750 12,306,122.0 0.12 0.72 11,553,632.0 5.21 4.91

A.u_s_hilo 1,187,506.4 1,214,303.0 1,175,338 11,885,443.2 0.16 1.02 1,126,556.0 4.33

A.u_s_lohi 1,186.8 1,199.2 1,184.8 1,194.6 0.25 0.17 1,122.2 5.57

A.u_s_lolo 122.4 126.5 122.0 123.1 0.19 0.33 116.7 4.54

B.u_c_hihi 6,169,823.0 6,200,118.0 6,189,681 6,200,401.5 0.20 −0.32 5,980,872 3.49 3.22

B.u_c_hilo 61,114.7 61,390.1 60,807.5 61,599.2 0.29 0.50 58,942.5 3.16

B.u_c_lohi 215,149.2 218,124.8 214,387.1 216,481.5 0.31 0.35 207,892.8 3.12

B.u_c_lolo 2,164.3 2,208.4 2,142.1 2,158.3 0.19 1.03 2,078.0 3.08

B.u_i_hihi 1,630,288.6 1,670,112.7 1,626,086 1,628,729.6 0.29 0.26 1,567,179 3.76 3.33

B.u_i_hilo 15,121.5 15,464.1 15,003.1 15,715.8 0.21 0.78 14,582.3 2.89

B.u_i_lohi 49,569.9 50,128.2 49,264.1 49,981.2 0.24 0.62 47,606.9 3.48

B.u_i_lolo 496.1 507.4 492.7 501.4 0.18 0.69 477.4 3.20

B.u_s_hihi 3,393,010.2 3,430,218.1 3,344,875 3,392,157.3 0.17 1.42 3,178,482 5.23 4.81

B.u_s_hilo 35,988.4 36,515.6 35,352.2 36,911.2 0.21 1.77 33,948.7 4.13

B.u_s_lohi 115,179.2 118,070.3 114,653.3 117,017.1 0.25 0.46 108,330.1 5.84

B.u_s_lolo 1,191.7 1,230.3 1,173.5 1,196.4 0.19 1.53 1,128.1 4.02

Bold italic values indicate the overall best solution generated by the TPVNS algorithm
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Table 12 Makespan results for 2,048 × 64 test instances from Nesmachnow et al. [8]

Instance pCHC [8] TPVNS LB [81] GAP
(LB) (%)

Avg. GAP
(LB) (%)

Best Avg. Best Avg. σ (%) Impr. (%)

A.u_c_hihi 18,110,479.1 18,218,285.6 17,795,863.0 17,801,492.2 0.21 1.74 17,141,977.4 3.81 3.76

A.u_c_hilo 1,748,509.2 1,760,141.2 1,727,248.0 1,736,971.3 0.15 1.22 1,664,592.8 3.76

A.u_c_lohi 1,798.4 1,804.9 1,761.0 1,770.6 0.29 2.08 1,695.3 3.88

A.u_c_lolo 177.6 178.1 174.3 175.5 0.22 1.86 168.3 3.57

A.u_i_hihi 2,506,258.5 2,546,459.7 2,478,011.0 2,500,937.2 0.33 1.13 2,366,682.1 4.70 5.11

A.u_i_hilo 272,741.3 273,876.3 274,378.4 276,000.1 0.23 −0.60 260,904.5 5.16

A.u_i_lohi 266.3 267.5 265.9 266.2 0.35 0.15 255.2 4.19

A.u_i_lolo 26.4 26.5 26.7 26.9 0.19 −1.13 25.1 6.37

A.u_s_hihi 9,756,499.7 9,821,934.5 9,524,603.0 9,601,364 0.17 2.38 9,050,260.8 5.24 5.06

A.u_s_hilo 924,094.9 937,998.8 894,695.3 909,381.6 0.22 3.18 851,399.9 5.09

A.u_s_lohi 947.1 952.3 931.6 936.1 0.13 1.64 888.9 4.80

A.u_s_lolo 99.6 100.4 97 98.9 0.15 2.61 92.3 5.09

B.u_c_hihi 5,290,128.2 5,300,316.1 5,209,573.0 5,219,961.3 0.19 1.52 4,975,778.8 4.70 4.24

B.u_c_hilo 55,316.2 55,343.1 53,960.3 54,001.5 0.33 2.45 52,240.6 3.30

B.u_c_lohi 177,063.4 177,612.4 175,429.4 176,981.2 0.22 0.92 167,381.1 4.80

B.u_c_lolo 1,814.7 1,818.3 1,786.3 1,791.0 0.34 1.56 1,715 4.16

B.u_i_hihi 770,110.6 774,993.0 765,966.9 769,121.1 0.24 0.54 735,101.5 4.20 5.08

B.u_i_hilo 7,906.5 7,932.9 7,896.9 7,910.1 0.18 0.12 7,536.3 4.78

B.u_i_lohi 26,941.2 27,207.3 27,118.9 27,900.4 0.26 −0.66 25,681.2 5.60

B.u_i_lolo 262.4 264.7 264.9 265.8 0.30 −0.95 250.5 5.75

B.u_s_hihi 2,910,507.6 2,923,857.1 2,865,250.0 2,876,310.0 0.25 1.55 2,710,024.0 5.73 5.20

B.u_s_hilo 29,442.2 29,518.6 28,520.4 28,731.2 0.12 3.13 27,268.0 4.59

B.u_s_lohi 98,607.0 98,758.3 94,777.9 95,101.4 0.10 3.88 90,727.3 4.46

B.u_s_lolo 1,014.3 1,019.7 995.8 1,003.2 0.21 1.82 939.0 6.05

Bold italic values indicate the overall best solution generated by the TPVNS algorithm

Table 13 Makespan results for 4,096 × 128 test instances from Nesmachnow et al. [8]

Instance pCHC [8] TPVNS LB [81] GAP
(LB) (%)

Avg. GAP
(LB) (%)

Best Avg. Best Avg. σ (%) Impr. (%)

A.u_c_hihi 15,722,681.0 15,760,840.0 15,418,041.0 15,701,562.7 0.27 1.94 14,829,360.6 3.97 4.53

A.u_c_hilo 1,562,810.9 1,565,580.1 1,550,224.0 1,559,100.0 0.16 0.81 1,478,358.1 4.86

A.u_c_lohi 1,540.9 1,545.1 1,515.9 1,520.3 0.17 1.62 1,452.5 4.36

A.u_c_lolo 155.7 156.2 154.7 160.1 0.12 0.66 147.4 4.94

A.u_i_hihi 1,309,493.5 1,331,529.0 1,307,049.0 1,319,121.4 0.35 0.19 1,231,099 6.17 8.21

A.u_i_hilo 137,158.4 139,250.8 137,022.0 138,711.3 0.11 0.10 128,539.5 6.60

A.u_i_lohi 136.1 137.7 139.3 140.7 0.22 −2.35 127.6 9.17

A.u_i_lolo 13.7 13.7 14.3 15.0 0.25 −4.45 12.9 10.93

A.u_s_hihi 8,089,853.5 8,121,957.0 7,943,696.0 7,991,425.0 0.27 1.81 7,553,763.4 5.16 6.54

A.u_s_hilo 828,912.4 834,878.5 811,887.1 819,912.3 0.15 2.05 768,703.1 5.62

A.u_s_lohi 807.6 811.9 809.3 810.1 0.29 −0.21 748.5 8.12

A.u_s_lolo 84.2 84.5 84.1 86.2 0.14 0.12 78.4 7.27

B.u_c_hihi 4,767,774.5 4,789,005.9 4,709,910.0 4,720,001.1 0.19 1.21 4,514,305.9 4.33 3.97

B.u_c_hilo 46,350.1 46,470.8 45,782.2 46,001.2 0.22 1.23 44,027 3.99

B.u_c_lohi 158,780.8 159,312.0 156,567.0 157,813.4 0.18 1.39 150,530 4.01
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Table 13 continued

Instance pCHC [8] TPVNS LB [81] GAP (LB)
(%)

Avg. GAP
(LB) (%)

Best Avg. Best Avg. σ (%) Impr. (%)

B.u_c_lolo 1,556.8 1,562.2 1,526.3 1,529.1 0.10 1.96 1,474 3.55

B.u_i_hihi 402,182.1 405,768.5 405,708.8 407,911.5 0.32 −0.88 374,988.9 8.19 9.53

B.u_i_hilo 4,224.8 4,252.2 4,418.8 4,490.8 0.24 −4.59 3,942.5 12.08

B.u_i_lohi 13,847.8 13,905.8 13,760.9 14,250.2 0.21 0.63 12,825.3 7.29

B.u_i_lolo 137.4 138.9 142.4 143.6 0.24 −3.63 128.8 10.56

B.u_s_hihi 2,508,467.3 2,524,194.9 2,362,473.0 2,400,121.0 0.17 5.82 2,353,555.3 0.38 5.88

B.u_s_hilo 25,244.1 25,346.6 25,353.3 25,491.2 0.13 −0.43 23,417.3 8.27

B.u_s_lohi 81,118.5 81,559.4 80,644.5 81,000.1 0.27 0.58 75,488.9 6.83

B.u_s_lolo 825.7 830.9 834.0 838.4 0.32 −1.00 771.8 8.06

Bold italic values indicate the overall best solution generated by the TPVNS algorithm

Table 14 Percentage improvement of TPVNS over pCHC

Model Type Improvement (%) Overall improvement (%)

1,024 × 32 2,048 × 64 4,096 × 128 1,024 × 32 2,048 × 64 4,096 × 128

Ali et al. Consistent 0.22 1.72 1.26 0.17 1.35 0.19

Inconsistent −0.26 −0.11 −1.62

Semiconsistent 0.56 2.45 0.94

Braun et al. Consistent 0.39 1.62 1.45 0.76 1.33 0.19

Inconsistent 0.59 −0.24 −2.12

Semiconsistent 1.29 2.60 1.24

Table 15 Comparative
makespan results of test
instances from Liu et al. [24]

Bold italic values indicate the
overall best solution generated
by the TPVNS algorithm

Instance GA [24] SA [24] fuzzyPSO [24] DE [25] TPVNS

Avg. Avg. Avg. Avg. Best Avg. σ (%)

(3,13) 47.1167 46.6000 46.2667 46.05 46.0000 46.2500 0.11

(8,60) 42.9270 55.4594 41.9489 42.48 41.7227 41.7412 0.12

(5,100) 85.7431 90.7338 84.0544 86.36 85.4345 85.4357 0.10

(10,50) 38.0428 41.7889 37.6668 38.39 35.1586 35.2478 0.13

7.2.1 Results for the Problem Instances of Braun et al. [5]

The results of the computational experiments to demonstrate
the performance of the proposed TPVNS algorithm com-
pared with the former studies, for the set of instances of
512×16 configuration proposed by Braun et al., are presented
in this section. Table 9 reports the best makespan values of
GA, MA+TS, cMA, ACO+TS, TS, pCHC, and TPVNS for
12 test instances. The best, average, and standard deviation
on the makespan results achieved during the experimentation
of TPVNS algorithm are given in column 9, 10, and 11 of
Table 9, respectively. The average makespan result of pCHC
is given in column 8 of Table 9. From Table 9, it is observed
that the results for 11 out of 12 instances are improved.

In columns 12, 13, and 14 of Table 9, the lower bound
values reported in the literature [81], the percentage gap

value, and the average deviation from the lower bounds for
consistent, inconsistent and semiconsistent, respectively, are
reported. The relative gap values are below 1 % for 7 test
instances, around 1.2 % for 3 test instances, and around 2 %
for 2 test instances. The average gap value is around 0.8 % for
consistent and inconsistent test scenarios and around 1.4 %
for semiconsistent test scenarios.

Table 10 summarizes the percentage improvement of
TPVNS algorithm over other metaheuristics. The makespan
improvement factors are greater than 4 % with respect to
GA and cMA, around 2 % with respect to MA+TS, around
0.4 % with respect to TS and pCHC, and around 0.5 %
with respect to ACO+TS. Lower improvement factors are
obtained with respect to ACO+TS, TS, and pCHC methods.
Regarding the consistency classification, TPVNS obtained
slight improvements over pCHC for inconsistent scenarios,
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but the improvements in consistent and semiconsistent sce-
narios are slightly better than the inconsistent scenarios. The
analysis of Tables 9 and 10 shows that TPVNS is able to com-
pute better makespan values than other metaheuristics, out-
performing the ACO+TS [23], the TS [27], and the pCHC [8]
for solving the instances by Braun et al.

7.2.2 Results for Instances from Nesmachnow et al. [8]

This section presents the results for the large heterogeneous
scheduling computing problem instances by Nesmachnow
et al. for the configuration 1,024 × 32, 2,048 × 64, and
4,096×128. For each configuration, the results for the twelve
instances following the heterogeneity model from Ali et al.
and the twelve ones following the heterogeneity model from
Braun et al. are presented.

Tables 11, 12, and 13 present the best and average
makespan values obtained with pCHC, the best, average, and
standard deviation results achieved using TPVNS algorithm
in 50 independent executions, and the percentage improve-
ment factors over the pCHC algorithm result. The lower
bound value reported in the literature [81], the percentage gap
value, and the average gap value for the consistent, inconsis-
tent, and semiconsistent scenarios are also mentioned in the
columns 8, 9, and 10 of Tables 11, 12, and 13, respectively.

From Table 11, it is inferred that the percentage improve-
ment factor of TPVNS over pCHC for the 1,024×32 configu-
ration is slightly better for test instances of Braun et al. model
than the Ali et al. model. The average gap value is around
5 % for inconsistent scenario and around 3 % for consistent
scenario of both models and around 3 and 4 % for consistent
scenario of Braun et al. and Ali et al. models, respectively.

It is observed from Table 12 that the improvement factor
of TPVNS over pCHC is around 1 % for 9 test instances of
2,048 × 64 configuration. But the average gap value varies
from around 3.5–5 % for various consistency configurations.

The TPVNS algorithm gave the best mapping of grid jobs
with grid nodes for the test instance B.u_s_hihi of 4,096 ×
128 configuration. The improvement factor of TPVNS over
pCHC for that test instance is around 6 %, and the average gap
value of TPVNS with respect to the concern lower bound is
also very less (0.38 %) when compared to other test instances
proposed by Nesmachnow et al. The average gap value varies
from around 4–9.5 % for various consistency configurations
of 4,096 × 128 dimension, which is reported in Table 13.

The percentage gap value for semiconsistent configura-
tion is usually greater than other consistency configuration
except for 4,096 × 128 dimension. The gap value for incon-
sistent is greater than semiconsistent for 4,096 × 128 and
is greater than consistent for 2,048 × 64 configuration. It
is observed from Tables 11, 12, and 13 that the percent-
age gap value for inconsistent and semiconsistent scenarios
increases with the increase in the size of the problem. The Ta
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TPVNS algorithm finds better solution for the consistent test
scenario with moderate gap value compared with inconsis-
tent and semiconsistent test scenario and also does not have
abrupt change in the gap value even though the problem size
increases. It is inferred from Tables 11, 12, and 13 that the
TPVNS algorithm produces a better average makespan value
than the pCHC algorithm for 69.5 % of the test instances of
Nesmachnow et al.

Table 14 gives the information about the percentage
improvement factor of TPVNS over pCHC for different con-
figurations of Braun et al. and Ali et al. models. The overall
improvement factor is greater (around 1.3 %) for both mod-
els of 2,048 × 64 configuration and less (0.17 %) for Ali et
al. model of 1,024 × 32 configuration. It is observed from
Table 14 that the TPVNS algorithm has better percentage
improvement factor over pCHC for consistent and semicon-
sistent scenario compared with inconsistent scenario. The
TPVNS algorithm outperforms pCHC algorithm in produc-
ing better results for 56 test instances out of 72 instances of
Nesmachnow et al.

7.2.3 Results for Instances from Liu et al. [24]

PSO [24] and DE [25] algorithms were experimented with
the test instance of configurations (3, 13), (8, 60), (5,100), and
(10, 50) proposed by Liu et al., and the average makespan for
10 different trials for each instance was reported. There is no
information provided regarding the best makespan obtained
during the experimentation of proposed algorithms for dif-
ferent 10 trials in both papers. Thus, the average makespan
obtained for 50 different trials during the experimentation of
TPVNS was considered for comparison with the results of
DE [25] and with the work published by Liu et al. [24].

Table 15 reports the average makespan values of GA, SA,
PSO, and DE, and the best, average, and standard deviation
of makespan values obtained during the experimentation of
TPVNS for each configuration. TPVNS had better average
makespan values for the configurations (8,60) and (10,50)
when compared to other metaheuristics. From Table 15, it
is observed that the results for 2 out of 4 instances are
improved.

7.2.4 Results for the Additional Problem Instances

Tables 16, 17, and 18 show the TPVNS result for 100 × 10,
300 × 10, and 512 × 16 configurations. The TPVNS results
are compared with the deterministic heuristic Min–Min algo-
rithm, simulated annealing algorithm, and GRASP algo-
rithm. For SA, initial temperature, temperature reduction
factor, and reannealing interval are set to 50, 0.95, and 10,
respectively. GRASP was experimented with PALS heuris-
tic (Algorithm A.10) in the local search phase, in which

Fig. 6 Average improvements of TPVNS over other heuristics

Fig. 7 Convergence of TPVNS, GRASP, and SA

PALS_maxiter and threshold parameter are set to 50 and 0.2,
respectively.

The simulated annealing and TPVNS algorithm were run
with Min–Min seed and random seed for all test instances.
The best makespan values of SA and TPVNS with Min–Min
seed are noted in the column 3 and 10 of Tables 16, 17,
and 18. The best, average, and standard deviation of SA and
TPVNS with random seed and GRASP were also reported.
The TPVNS algorithm produces a good quality schedule for
all newly generated test instances. The percentage improve-
ment of VNS with random seed over SA with random seed,
GRASP, and Min–Min are reported in column 14, 15, and 16
of Tables 16, 17, and 18, respectively.

Figure 6 shows the average improvement of TPVNS over
the heuristic algorithms for the additional test instances of
different configurations. It is revealed from Fig. 6 that the
percentage improvement of TPVNS is gradually increased
when the problem dimension grows for SA and GRASP. Even
though TPVNS has better improvement over Min–Min algo-
rithm, the percentage of improvement is gradually decreased
for increasing problem dimension.

Figure 7 illustrates the convergence of algorithms for
s_lolo test instance of 512 × 16 configuration. The conver-
gence speed of TPVNS is better than SA.
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7.2.5 Summary

The pairwise comparison of the results of TPVNS algorithm
with other reported algorithms is given in Table 19, which
exhibits the number of improved and unimproved solutions
of the TPVNS algorithm with respect to other algorithms.
TPVNS improves the makespan of 105 test instances out
of 124 test instances considered for the experimentation. In
order to have a fair comparison with the previously pub-
lished algorithms, a clear comparison concerns not only the
best solution value achieved by the TPVNS, but also the aver-
age one. It is found that TPVNS algorithm achieves a better
average makespan value than the best value of the reported
algorithms of this article for 70 % of test instances considered
for the experimentation.

8 Conclusion

Grid computing has emerged as one of the hot research
areas in the field of computer networking. Scheduling, which
decides how to distribute tasks to resources, is one of the
most important issues. This paper presents a novel two-phase
heuristic based on VNS algorithm for grid job scheduling
problem to minimize the makespan. Extensive computational
experiments have been devised to select a proper neighbor-
hood order as well as to decide the parameters of the pro-
posed algorithm. The performance of TPVNS was evaluated
with other optimization algorithms, for a large variety of test
cases, and with the consideration of the heterogeneous envi-
ronment of different configurations. The results of TPVNS
are better for most of the instances. The computational results
demonstrate the value of the proposed TPVNS in solving the
grid job scheduling problem and its computational efficiency.
In future work, VNS algorithm for multi-objective complex
scheduling problems and workflow model of grid scheduling
problems will be developed.

Appendix A
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