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Abstract Cloud computing is currently one of the fastest
growing segments of IT. To date, and according to a recent
survey conducted by the International Data Corporation,
security is the biggest challenge to cloud computing. A
cloud introduces resource-rich computing platforms, where
adopters are charged based on the usage of the cloud’s
resources, known as “pay-as-you-use” or utility comput-
ing. However, a conventional Distributed Denial-of-Service
(DDoS) attack on server and network resources compro-
mises cloud computing services by charging cloud adopters
more cost due to the attack activities that consume cloud’s
resources. In such case, the main goal of such attack is to
make the cloud computing unsustainable by targeting the
cloud adopter’s economic resources. Thus, it constitutes a
new breed of DDoS attacks, namely Economic Denial of Sus-
tainability (EDoS) attack. In this paper, we study the impact
of EDoS attacks on the cloud computing services, consid-
ering only a single class of service. We developed an ana-
lytical model verified by a simulation model to study such
impact of EDoS attacks on the cloud computing. The ana-
lytical model relies on the queuing model that captures the
cloud services and considers a number of performance and
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cost metrics including end-to-end response time, utilization
of computing resources, throughput, and the incurred cost
resulting from the attack.
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1 Introduction

Cloud computing continues to evolve as one of the most
hyped information technology areas and has become the
fastest growing segment of IT industry. Due to the flexibil-
ity, pay per use, elasticity, scalability, and other attributes
promised by this paradigm, it has gained the interest of large
organizations and corporates for hosting their services onto
the cloud. Gartner has identified cloud computing as the first
of the top 10 technologies with the potential for a significant
impact on organizations for few years to come [1].

Cloud computing is designed to scale computation
resources and servers in magnitude and availability based
on the demand and the requested usage by end users. More-
over, adopters of the cloud service model are charged based
on a pay-per-use basis of the cloud’s server and network
resources, which is widely known as utility computing. Such
a service model may appear to overcome the effects of a
DDoS attack, i.e., resource bottlenecks are eliminated. How-
ever, the cloud merely transforms a conventional DDoS
attack on server and network resources to a new breed of
attacks that target the cloud adopter’s economic resources,
originally labeled as Economic Denial of Sustainability
(EDoS) attack by Hoff [2]. Therefore, unlike conventional
DDoS attacks, an EDoS attack ultimately targets the finan-
cial resources of an organization, but not its physical network
or server resources.
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An EDoS attack occurs when zombie machines (part of
a botnet) send a large amount of undesired traffic toward
the cloud, exploiting the cloud’s scalability, to chalk up an
exorbitant amount of cost on a cloud adopter’s bill. In other
words, the attack is making the cloud unsustainable by fad-
ing the cloud billing mechanism to charge the cloud user’s
bill for the attack’s activities. For example, a company taps
into Amazon EC2 or Google App Engine for their applica-
tion, and pays for the computing and bandwidth costs based
on usage. Depending on the traffic, the service usage can be
scaled up or down. Attackers could send malformed requests
blended with legitimate ones to the applications running on
these services. Since these requests are consuming the com-
puting resources including inbound and outbound bandwidth
traffic, and the CPU cycles for processing such requests, the
applications vendor’s cloud bill gets charged an excessive
amount of expenditure. Unless the application vendor or the
cloud providers have a smart technique to stop such risk,
a sustained attack like this could ramp up the applications
vendor’s cloud infrastructure bill.

In this paper, we present an analytical model to study the
impact of EDoS attacks on a single-class cloud services in
which there is only one type of application service provided
in the datacenter. The model considers a number of perfor-
mance metrics. These metrics include end-to-end response
time, utilization of computing resources being consumed,
and the incurred cost resulting from the attack. Such model is
convenient to show the impact of an EDoS attack on both per-
formance and cost of the cloud computing services. Although
we concentrate on modeling the EDoS attack against cloud
computing, the proposed model is also suitable for other sim-
ilarly behaving attacks such as DDoS attacks discussed by
Zlomislic et al. [3].

The rest of the paper is organized as follows. Sections 2, 3,
and 4 present the proposed architecture, analytical model-
ing, and simulation model for the cloud service under an
EDoS attack, respectively. Section 5 presents the results
and discussions. In Sect. 6, we discuss the related works.

Finally, the conclusion and the future work are presented in
Sect. 7.

2 Proposed Architecture of Cloud Web Service

Our study, in this paper, focuses on the evaluation of the
EDoS attack on a cloud service of Software as a Service
type (SaaS) such as a web application service. This could be
considered as a single-class service in which there is only one
kind of application service provided in the datacenter. The
attack utilizes the scalability nature of the cloud to charge
the cloud adopters an extra cost for the attack activities. For
the attack to have higher malicious influence on the cloud
economics, it is required to flood the cloud service by heavy
workload. The goal is to force the cloud provision technique
to add more instances to manage this workload and satisfy the
Service Level Agreement (SLA) requirements for the target
cloud service.

Figure 1 shows a cloud-based web service architecture
drawn based on the given specifications and architecture of
most cloud computing providers like Amazon Web Appli-
cation Hosting [4]. The main components are the Load Bal-
ancer (LB) service, Virtual Machine (VM) instances, and the
storage service.

The LB passes the clients’ requests through to a pool of
available VM instances that represent the web/application
service [5]. VM instances are clustered in elastic groups to
which users associate triggers. These triggers will automat-
ically scale VM resources based on bandwidth or CPU uti-
lization measured by a monitoring system such as Amazon
CloudWatch web service. The LB ensures an even distribu-
tion of the incoming load among all running VM instances
in a group [6,7].

VM instances run simultaneously as web application ser-
vice centers, each potentially having a queue to process client
requests [8]. The scalability of the service can be controlled
by varying automatically the size of the group based on para-
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meters such as the average CPU utilization of the running
instances [9]. For example, when the average CPU utiliza-
tion for a group exceeds an upper threshold, a trigger is fired
to create a new instance that will be attached to the group
and registered at the LB.

Like most web application architectures, a cloud-based
web application service has a database server to be used
for caching and storing configuration information [10]. For
example, a Relational Database Service (RDS) could be used
to enable a web application caching tier.

For most of the web applications, the number of client
requests and the service rate are considered to be random vari-
ables having Poisson distribution [11–14]. Similarly, it is an
adequate and reasonable assumption for a cloud-based web
application to consider that the requests arrival rate and their
service rate follow a Poisson distribution. Several studies
have assumed exponential distribution for both the requests
inter-arrival time and the requests service time in a cloud
service [15–18]. In addition, we are focusing on the EDoS
attack targeting a single-class service where all cloud cus-
tomers’ requests have the same processing procedure as it
is in a web service that delivers content, such as web pages,
using Hypertext Transfer Protocol (HTTP) over the Internet.
Thus, considering a Poisson distribution for the service rate
in our case is a valid assumption that also helps in simplifying
the proposed performance model.

The cloud-based web application architecture shown in
Fig. 1 can be reasonably approximated using an open queu-
ing network. Figure 2 shows an open queuing network model
that mimics the required cloud-based web application stages
including the load balancing service, the computing tier rep-
resented by a group of parallel VM instances, and the cloud
storage tier.

The LB is modeled as M/M/1 queuing model, consid-
ering the use of a randomized algorithm to balance the load
among the available instances so that each instance has an
equal probability of receiving a request [8].

VM instances are modeled as parallel queuing models
each as M/M/1. It is worth noting that, in reality, a cloud
instance has a bounded buffer queue, i.e., M/M/1/k, but
for approximation and convenience, we use M/M/1. Such

approximation is highly accurate for systems with large finite
buffers, such as cloud computing systems, where the proba-
bility of overflow of the buffer is negligible [19,20].

Modeling each compute instance as M/M/1 corresponds
to the architecture of the instance as it has its own network
interface (NIC), computing resources (CPUs), memory, and
storage [8,21]. For example, with using Single Root I/O Vir-
tualization (SRIOV)-capable Network Interface Card (NIC)
[22], a VM could be bound to a Virtual Function (VF) driver
that provides an abstraction of a dedicated NIC. Thus, when
a packet is routed to the VM, it will be copied to the local
queue assigned to the VM by the VF that gets executed with
the virtual interrupt controlled by the SRIOV [23]. In addi-
tion, the LB is considered to be efficient and fast; otherwise,
it will be a bottleneck in the cloud as it represents the pub-
lic access point to the cloud services. Thus, the other side
(receiver), which is the computing instance, should have a
queue to hold the arriving requests. Moreover, several stud-
ies have modeled a web service as a network of queues, in
which each machine in the distributed system is modeled as
a single queue [14,24,25]. Other studies have also proposed
modeling each VM as a single queue for different purposes
[8,16,18,26,27].

The storage tier can be implemented using RDS, such as
Amazon RDS which provides a managed relational database
in the cloud as a web service. RDS offers several capabili-
ties such as scaling up the compute and storage resources,
monitoring the database health, point-in-time recovery for
the database instance, and managing automated backups.
Accordingly, RDS is considered to be vertically scalable on
the database tier, and it is not able to scale-out by adding
database servers due to its classic architecture [28]. Thus,
the cloud storage service with such characteristics could be
modeled as a single M/M/1 queue as it also has been dis-
cussed in [21,29].

However, since the EDoS attack mainly utilizes the scal-
ability of the computing resources to maliciously charge the
user, we concentrate on modeling the computing layer of the
cloud service to analyze the impact of such attacks on the cost
and performance of the targeted cloud service. Furthermore,
the utilization of cloud storage can be ignored by assuming
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Fig. 3 Queuing model for the computing resources

that all data requirements for the execution of a request are
met by the virtual web application instance that has its net-
working, computing, and storage resources to process the
requests [8,16]. Thus, the problem can be reduced to the
queuing model presented in Fig. 3 as an open queuing net-
work model.

Since the LB ensures an even distribution of the traf-
fic among the instances, the transition probability shown in
Fig. 2, Pi , will be equal to 1/S for all the computing instances,
where S is the number of running instances in the auto-scaling
group. Assuming that all the computing instances have the
same computing power capacity, μi = μ, and the arrival rate
at each instance is λi = λ/S, the equations of such model
will be as follows.

The mean computing utilization U is calculated as fol-
lows:

U =
∑S

i
λi
Sμ

S
= λ

Sμ
(1)

The mean response time, based on the given open queuing
network model of S parallel single queues [30], can be cal-
culated as described below.

Since the LB is presumed to evenly distribute the requests
among the S running instances, the routing matrix will have
probabilities, Pi, that are equal to 1/S, where Pi is the routing
probability to the i th instance. As a result, the total input into
each instance is:

�i = λ

S

The average delay of a request in instance i can be calculated
based on M/M/1 queuing theory to be:

T̄ = 1

μ − �i

Using Little’s formula [31], the average number of requests
in instance i is �i T̄i . Thus, the total number of requests in
the network is:

N̄ =
S∑

i=1

�i T̄i =
S∑

i=1

�i

μ − �i

In addition, the total rate of the request flow into the network
is

∑S
i=1 �i = λ. Thus, by applying Little’s formula, the

average delay of the network is:

T̄ = 1

λ

S∑

i=1

�i

μ − �i

Assuming that auto-scaling of cloud instances is enabled and
there is no delay in binding new instances to the group, the
average response time of a request in the network, Rt will be:

Rt = S

Sμ − λ
(2)

It should be noted that when comparing the obtained equa-
tions for the given queuing model to M/M/1 model with
service rate of Sμ both have the same mean computing uti-
lization, U .

The mean response time, considering a single queuing
model [30], is as follows:

Rtmm1 = S

Sμ − λ

3 Analytical Modeling of the EDoS Attack

Figure 4 shows the proposed queuing model for capturing the
cloud service considering an EDoS attack with a rate of λm ,
and legitimate traffic with a rate of λl requests per second.

The assumption of Poisson arrival for the DDoS attack
has been discussed in [32–35]. Since the EDoS behaves sim-
ilarly to DDoS in generating malicious flooding traffic, we
have assumed Poisson traffic for the EDoS attack. Although
attackers can choose any distribution to generate the traffic,
the more attractive one is the distribution that is closer to the
behavior of the legitimate traffic.

According to Poisson composition property [30], the
aggregated traffic from multi sources each having an arrival
of Poisson process follows a Poisson process with an average
arrival rate of λ = λi + λm . Thus, each node in the proposed
queuing model has a Poisson arrival.

The intended metrics for the proposed model can be cal-
culated as described below.

The mean utilization of the computing resources of the
running instances can be calculated as:

U = λl + λm

Sμ
(3)
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Fig. 4 Queuing model for an EDoS attack against a cloud service

The utilization incurred by the attack is:

Um = λm

Sμ

It has an impact on both cost and performance metrics of the
offered cloud services.

The average response time Rt, can be calculated based on
Eq. (2) to be:

Rt = S

Sμ − (λl + λm)
(4)

For the throughput, it can be calculated directly from Little’s
formula. When the number of running instances at the cloud
service side is S, the arrival rate λ = λl + λm will be distrib-
uted among S instances due to load balancing. Thus, each
instance will have (λl + λm)/S as its arrival rate. According
to Little’s formula, the throughput of an M/M/1 queuing sys-
tem, with arrival rate of (λl + λm)/S and a service rate of
μ, is μ × ρ = μ × ((λl + λm)/Sμ) = (λl + λm)/S, where
ρ ≤ 1. As a result, the average throughput at the cloud service
with S running instances will be λl + λm .

One of the measurements that we have studied, and which
is the target of an EDoS attack, is the cost associated with
both the computing resources and the bandwidth on the cloud
service side.

There are several pricing models that could be adapted
to the cloud computing system. Currently, Amazon mainly
offers computing instances with three pricing models includ-
ing on-demand, spot pricing, and fixed pricing models [36].
The on-demand model allows the cloud user to pay for
the used resources by the hour with no long-term commit-
ments. In the fixed pricing model, a cloud user reserves
cloud instances with one-time payment for each instance,

e.g., for a 1 or 3 year period; and in turn receives a signif-
icant discounted hourly pricing on usage. The spot pricing
model, offered by Amazon EC2, allows a cloud user to bid
for available EC2 capacity and grants the user the requested
resource only if the user’s bid price is above the current spot
instance price, which fluctuates periodically based on supply
and demand.

A cloud user has to pay for the computing resources,
the network traffic volume, and for the storage service, if
required. In our work, we follow the on-demand pricing
model considering only the cost related to both the com-
puting usage and bandwidth usage.

The cost with regard to the computing resources has been
calculated based on as follows:

COSTcom =
n∑

i

Pr icecom × ti × Si (5)

where Pricecom is the base price charged for the amount
of computing resources per hour per instance, and Si is the
number of running instances during the period ti .

Since we are interested in calculating the cost incurred by
the attack, assuming it lasts for T hours, the total cost for the
duration of the attack can be expressed as follows:

COSTcom = Pr icecom × T × S (6)

The cost related to the bandwidth can be calculated as fol-
lows:

COSTbw = Pr icebw × λ̄ × T

where λ̄ is the effective arrival rate measured in GB/s,
and Pricebw is the price per GB. When assuming that the
queuing-based loss probability of cloud service is zero, the
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effective arrival rate λ̄ equals the arrival rate λ. Thus, the total
cost can be expressed as follows:

C O ST = (
Pr icebw × λG B/s + Pr icecom × S

) × T (7)

where λG B/s is the effective arrival rate in GB/s, and is equal
to λl + λm .

The number of instances committed to the cloud appli-
cation service could be calculated based on Eq. (3), when
assuming 100 % as the upper threshold utilization for provi-
sioning, to be as follows:

Srequired =
⌊

λl + λm

μ
+ 1

⌋

Thus, the number of instances is changed based on the arrival
rate of requests and the capacity of the cloud instance.

One of the main characteristics of the cloud computing is
its elasticity which allows for the resources to be scaled up
or down based on some monitored metrics of the cloud com-
puting services. Statistics about these metrics are collected
during a window time called the monitoring window. When
a particular metric indicates a value above a given upper
threshold, a policy is triggered to provision more resources
so as to enhance its performance with respect to this met-
ric. On the other hand, when a metric has a value below a
given lower threshold, a policy is triggered to terminate some
resources. This will enhance the usage of resources and keep
the monitored metric value above the given lower threshold.

According to the auto-scaling service offered by Amazon
[9], thresholds are used to trigger the provision mechanism
to increase or decrease the number of running instances com-
mitted to an auto-scaling group. When the mean of CPU uti-
lization, U , is above the upper threshold, Upper, the number
of instances should be increased either by a specific number
of instances or by a percentage of the current used resources
to handle an increase in traffic. Similarly, when U is below the
lower threshold, Lower, the number of instances should be
decreased to more efficiently use the committed computing
resources. For example, when we consider adding or remov-
ing instances by 10 % of the running instances at the time of
the threshold triggering, the provisioning can be expressed
as follows:

When U > Upper, Snew = [S + �0.1 × S�]

U < Lower, Snew = [S − �0.1 × S�]

where S is the current number of running instances, and Snew

is the updated number of instances after the occurrence of the
trigger.

The optimal number of instances required to process an
observed load of λ can be calculated as follows:

λ

Sμ
≤ Upper_threshold

Thus,

S =
⌈

Upper_threshold−1 × λ/μ + 1
⌉

(8)

where λ and μ represent the arrival rate into the auto-scaling
group and the service rate of one instance, respectively.

In the case of 80 % as the upper utilization threshold, the
number of required instances can be calculated using Eq. (8)
as follows:

S = �1.25 × λ/μ + 1�
Thus, the optimal number of instances required to be added
to cope with the spike of λ is:

needed_res = 1.25 × λ/μ + 1 − run_res,

where run_res is the number of already running instances.
The required instances will gradually be committed to the

service by adding a specific number of instances every time
the provisioning takes place.

However, there are many factors related to the resource
provisioning in cloud computing that might affect the per-
formance of the cloud services. These factors include the
overhead when allocating an instance to the cloud service,
thresholds used to control the provisioning event such as the
utilization threshold, the number of instances added every
time the provisioning takes place, and the monitoring win-
dow time used for collecting the statistics.

4 Simulation Model

We have conducted a discrete-event simulation experiment to
evaluate the performance of the cloud service under the EDoS
attack in terms of key performance indicators including end-
to-end response time, computing resources utilization, and
throughput. Since the EDoS attack is mainly targeting the
cloud adopter, we have also evaluated the cost associated
with the computing resources and bandwidth allocations at
the cloud service side.

The simulation followed closely the guidelines given by
Law and Kelton [37], including the use of initial seeds that
were ten million apart, and avoiding any overlapping in the
random number streams during the simulation. Proper seed
selections have to be made in order to avoid wrong combina-
tions of seeds and random number generators that may lead
to erroneous results. A different stream is generated for each
simulation variable. Here are briefly some of the guidelines
that are followed in selecting seeds [37]:

• Arbitrary values for seeds were not used. Also, the values
of zero and even values were not used.

• Every simulation variable has its own stream, and
streams were not subdivided.
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• Overlapping of streams, to prevent correlation, was
avoided by choosing seeds spaced 10,000,000 apart.

Figure 5 depicts the general flowchart of the simulation model
that is applied for each queue in our simulation. Our simula-
tion model has two types of events including the ARRIVAL
and DEPARTURE events. The ARRIVAL event occurs when
a new request arrives to the system. The DEPARTURE event
occurs when a request is completely processed by the sys-
tem. The two events are generated independently such that
each event has its own seed and random number stream.
Algorithm-1 and Algorithm-2 show the implementation of
Arrival and Departure routines, respectively.

In addition, we have considered a Monitoring time event
for the whole system. By the Monitoring event, we have simu-
lated and controlled the provisioning mechanism of the cloud
computing resources. Based on the cloud computing elastic-
ity, the resources can be scaled up or down based on some
monitored metrics of the cloud computing services. Statistics
about these metrics are collected during a window time called
the monitoring window. When a particular metric indicates
a value above a given upper threshold, a policy is triggered
to provide more resources. On the other hand, when a metric
has a value below a given lower threshold, a policy is trig-
gered to terminate some resources. Algorithm-3 shows the
implementation of the Monitoring routine.

Fig. 5 Simulation flowchart
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Algorithm-1: Arrival_routine
Begin

Add request to the queue
if (Instance_Status=IDLE)

Begin
Instance_Status BUSY
Schedule the next DEPARTURE event
Update the statistics

End
else

Begin
if (Space available)

Queued the request
else

Drop the request
End

Schedule the next ARRIVAL event
End

Algorithm-2: Departure_routine
Begin

Update the statistics
Remove  request from the queue
if (queue not empty)

Begin
Pick a request from the queue
Schedule the next DEPARTURE event
Update the statistics

End
else

Instance_Status=IDLE
End

The simulation has been implemented using C language as
it provides the best flexibility in coding the queue structure
and events, random number generation, and other features
necessary for simulation validation.

Algorithm-3: Monitoring routine
Begin

Avg_Util Calculate average CPU utilization of the group
if (Avg_Util > Upper-Threshold)

Begin
X Determines number of extra instances
Schedule the Add_Instances (X) event

End
else if (Avg_Util < Lower-Threshold)

Begin
Y Determines number of instances to be terminated
Schedule the Terminate_Instances (Y) event

End
Update the Monitoring_Time
Schedule Monitoring-Event()

End

Each instance has been implemented as a FIFO queue
that holds the packets arrival times currently in the system to
be used for statistic gathering. The ARRIVAL and DEPAR-
TURE events related to each instance have been implemented
as it is described in Algorithms 1 and 2. A priority queue is
used to invoke the next event based on a “time” value assigned
from the random number generator.

We have followed the Inverse Transformation [38] method
to generate random number varieties for the exponential dis-

tribution. The Inverse Transformation method uses uniform
deviates, U(0,1), which are random numbers uniformly dis-
tributed between 0 and 1. For the uniform deviates, we have
used PMMLCG (prime modulus multiplicative linear con-
gruential generator) as recommended by [37].

Finally, the relative error is used to measure the accuracy of
the queuing model results compared to the simulation model
results. The percentage of the relative error is defined as fol-
lows:

Relative Error

=
∣
∣
∣
∣
Queuing Results − Simulation Results

Simulation Results

∣
∣
∣
∣ × 100

(9)

5 Results and Discussion

We have considered two simulation scenarios using the sim-
ulation model discussed in the previous section. In the first
scenario, we have considered different attack rates to show
the impact of the attack on the targeted cloud service. The
second scenario is for the optimal case where there is no
attack targeting the cloud service. In addition, the output of
the proposed analytical model has been compared to the sim-
ulation results.

In the simulation experiment, we have considered the same
setup as that of the queuing model presented in Fig. 4. The
input to the simulation is an aggregated traffic from different
sources including attackers’ traffic. We have considered the
Poisson nature of the incoming traffic as was clarified in
Sect. 2. We have assumed a fixed input rate of 400 Req/sec
(request per second) representing the rate of the legitimate
requests coming from clients and a variable input rate ranging
from 400 to 8,000 Req/sec representing the rate of the attack
traffic.

To determine the simulation run length, we first applied
the Welch technique to eliminate the warm-up period [37].
Welch’s technique is based on the plotting of moving aver-
ages calculated for the means of the observations made in
replications. The warm-up period is selected at the point at
which the plot becomes smooth. Then, the length of the sim-
ulation is set to five times the length of the warm-up period.
The number of arrival events was found to be about 5 million
to reach the steady state.

We assume a high load spike similar to the ones caused
by DDoS attacks. Thus, we have only considered the upper
threshold for adding more instances so as to cope with the
load spikes. Such upper threshold has been discussed in pre-
vious works [7,16] to be 80 %. We considered the scaling
size to be two instances per provisioning occurrence. The
time window that we have used to monitor the resources uti-
lization is 5 min, as it is the default period used in the Amazon
auto-scaling mechanism [9].
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We assumed using a small instance that has a capacity
of 100 requests per second as it was discussed by Catteddu
and Hogben [39]. The number of initial running instances
is 5 instances which can handle 200 Req/sec assuming 50 %
utilization. Furthermore, we considered the overhead caused
by committing instances to the cloud service to be 55.4 s for
provisioning one VM instance, as was measured by Islam et
al. [40].

The cost has been calculated based on Eq. (7). The
Pricecom has been set to $0.115 as it is recently reported
in Amazon for small on-demand instances running on the
Windows operating system [36]. Regarding the cost associ-
ated with the bandwidth allocation, we have used a base price
of $0.01 per GB in/out data transferred based on the reported
prices of Internet data transfer “in” and “out” of Amazon
EC2 [36].

Figure 6 shows the obtained results regarding the end-to-
end response time of the legitimate requests. The results show
that when the load increases, the corresponding response time
also increases. It is obvious that the response time does not
go up considerably when the attack traffic increases to very
high values. This is due to the auto-scaling mechanism that
allocates more instances to process the high load caused by
the attack traffic. However, the results show that, in general,
the attack makes the legitimate clients suffer more response
time compared to the optimal case.

Figure 7 shows the evaluation of the computing resources
utilization. Results show a trend similar to the one of the
end-to-end response time in Fig. 6 such that as the attack
rate increases, the utilization increases. It is obvious from
the results that the average utilization does not exceed the
upper threshold, 80 %, used in both simulation and analyti-
cal models. Moreover, the results show that the EDoS attack
consumes more computing resources when compared to the
optimal case where there is no attack. For instance, based
on the numerical results obtained from the simulation, at an
attack rate of 6 KReq/sec, the mean utilization for 79 run-
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Fig. 7 Compute utilization in relation to attack rate
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Fig. 8 Throughput of legitimate requests in relation to attack rate

ning instances is about 79 %, whereas for the normal case,
the mean utilization is only about 67 % while using only 6
instances.

Regarding the throughput rate, it is expected that the
throughput of the legitimate requests will not be affected
by the attack rate due to the fact that the targeted cloud ser-
vice is an on-demand cloud-based. According to scalabil-
ity nature of the cloud computing system, we are assum-
ing that there are enough on-demand cloud resources to be
provisioned to the cloud instances executing the service. As
a result, there is no or little noticeable degradation of the
throughput rate of the legitimate requests. Figure 8 shows
the same expected trend of the throughput of the legitimate
requests.

As for the cost evaluation, Fig. 9 shows an increase in
the cost when the attack rate increases. In fact, the extra
cost added because of the EDoS attack is very high when
compared to the optimal cost where no attack takes place.
For instance, at an attack rate of 6 KReq/sec, the total cost is
about 15 times the normal one.

Figure 10 shows the resulted relative error percentage for
the response time, utilization, throughput, and cost results
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Fig. 9 Incurred cost in relation to attack rate

when comparing the queuing model to the simulation model.
It shows a good accuracy for all the studied metrics with
maximum error of about 0.1 %.

As a verification of the simulation results, we have con-
ducted a simulation experiment to show the number of allo-
cated instances along the simulation time. In this simulation
run, the arrival requests rate was assumed to be 200 Req/sec
during the early periods of the simulation and then it increases
to be 2,400 Req/sec after 25 min. The number of initial run-
ning instances is 5 instances which can handle 200 Req/sec.
This means that the load was increased 12 times indicating a
high load peak.

Figure 11 shows the results of the number of instances allo-
cated during the simulation run. For the load of 2,400 Req/sec,
results show that 31 instance is the minimum number
of instances required to insure that the average utiliza-
tion is below 80 %. According to Eq. (8), the number of
required instances can be calculated analytically as: S =
�1.25 × 2,400/100 + 1� = 31, which comes in line with
the simulation results.

6 Related Work

There are several proposed works in the literature to model a
service exposed through cloud computing. Xiong et al. [41]
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Fig. 11 Simulation results of the number of allocated instances

have proposed a queuing theory-based method for studying
the performance of a cloud service in terms of the response
time. In their model, the cloud computing service has been
modeled as a tandem of two M/M/1 queues representing the
web server and the service center for single-class customers.

Chen and Li [11] have proposed a queuing-based model
for dynamically provisioning cloud computing virtual
machines to meet the service level agreement (SLA). They
have proposed using M/M/S/k queuing model to capture
the architecture of the web application in the cloud comput-
ing. In their work, they have considered the web application
as a centralized queue and the virtual machines as service cen-
ters with finite caches and buffers. Similarly, Hu et al. [42]
have proposed modeling computing resources in the cloud
as a multi-server queuing model, M/M/S. The purpose of
such model is to guide resource allocation decisions in terms
of the minimum number of servers that should be allocated
to each application environment to meet the SLA.

Bi et al. [26] have proposed a dynamic provisioning model
for virtualized multi-tier applications in cloud data centers
based on open queuing networks. The virtualized multi-tier
application in cloud computing is deployed on multiple VMs
for each tier that provides certain functionality to its pre-
ceding tier (e.g., web server, database). They constructed a
hybrid model that represents the scheduling tier as an M/M/s

Fig. 10 Relative error
percentage when comparing
simulation and analysis results
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queuing system, and multiple M/M/1 queuing systems for
the other tiers.

Shi et al. [18] have developed efficient energy saving
methods in the cloud datacenter by dynamically allocating
resources based on utilization analysis and prediction. The
main prediction scheme that has been used in their work
was an M/M/1 queuing model that captures the cloud-based
web service. Similarly, Calheiros et al. [16] have proposed an
adaptive provisioning technique for cloud-based resources to
deliver cloud-based applications that meet QoS targets based
on queuing network system model and workload informa-
tion. They model each virtualized application instance as an
M/M/1/k queuing model, where k refers to a finite queue
of length k.

However, we believe that the structure of a cloud is sim-
ilar to multiple queues rather than a centralized queue with
multiple servers; since each cloud instance has its own net-
work interface, computing resources, memory, and storage
[8]. Several studies have modeled a web service as a network
of queues, in which each machine in the distributed system
is modeled as a single queue [14,24–26]. A VM in the cloud
computing system can be viewed as a machine in a distributed
system offering a web service, and which could be modeled
as a single queue [21]. Thus, modeling each cloud instance
as an M/M/1 is closer to the real-world deployments.

In addition, according to the elasticity of the cloud com-
puting system, a cloud-based service usually has multi-cloud
instances (like EC2) offering the service to the cloud users.
Thus, modeling a cloud service by using a multi M/M/1
queuing model is closer to the reality.

Sqalli et al. [43] and Al-Haidari et al. [44] have proposed
mitigation techniques to overcome the impact of an EDoS
attack on cloud computing. The proposed techniques depend
on the collaboration between a firewall and a verifier node
for the purpose of detecting and then dropping the mali-
cious requests before reaching the protected server. How-
ever, the focus in our prior works [43,44] was on studying
the performance and the capabilities of the proposed mitiga-
tion techniques rather than studying the impact of the EDoS
attack.

In contrast to previously published work, our paper has
the following distinct contributions. First, the paper intro-
duces an analytical model to study the impact of the EDoS
attack on the cloud computing services. Our analytical model
makes it easy to understand the behavior of the EDoS attack
and its impact on the cloud computing services, since we
have derived key important parameters of both the cloud
computing service and the EDoS attack. Moreover, obtained
results from the analytical model have been verified by the
simulation model that mimics the cloud computing envi-
ronment and the attack behavior. Second, in this paper, we
have considered more detailed and realistic parameters for
the simulation model such as the parameters of the provi-

sioning mechanism (provisioning overhead, monitoring win-
dow time, and scaling factors) and the characteristics of the
cloud computing services (realistic instance capacity and
load balancing service). All of such parameters have been
obtained from the Amazon cloud computing environment
which makes the study more realistic. Third, we have stud-
ied and analyzed the cost metric, which has been ignored
in the previous discussed works as they have only focused
on the performance of the cloud computing system. In our
work, we have calculated the cost based on queuing theory
and using the on-demand pricing model offered by Amazon
AWS Cloud service. Finally, the models will help in analyz-
ing and studying the mitigation techniques against the EDoS
attacks.

7 Conclusion

Security of cloud computing has been identified as a major
concern and challenge to the adoption of this emerging tech-
nology. The paper presented a study about the impact of the
EDoS attacks on the cloud computing services, consider-
ing only single-class services. We developed an analytical
model verified by a simulation model to study such impact of
EDoS attacks, considering a number of performance metrics.
These metrics include end-to-end response time, utilization
of computing resources being consumed, throughput, and the
incurred cost resulting from the attack. The obtained simula-
tion results are found to be in agreement with the analytical
results, with a maximum relative error of about 0.1 %. Based
on the obtained results, we found that the EDoS attack has
a considerable impact on both the performance and the cost
of the cloud services. For instance, results showed that at an
attack rate of 6,000 Req/sec, the total cost can be as high as
15 times more than the normal usage with no attack. In addi-
tion to charging the cloud adopters more cost, EDoS attacks
have an impact on the performance of the cloud comput-
ing services such as the end-to-end response time whereby
unacceptable delays can be incurred. In addition, results have
shown that there was little or no noticeable impact of the
attack on the throughput of the legitimate requests as it is
expected due to the scalability and availability of the cloud
services. As a future work, we propose to study the impact
of the EDoS attack while considering different pricing mod-
els such as the fixed and spot pricing models. In addition,
we propose to study the impact of such attack on the cloud
computing using an experimental test-bed.
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