
Arab J Sci Eng (2015) 40:475–486
DOI 10.1007/s13369-014-1454-3

RESEARCH ARTICLE - COMPUTER ENGINEERING AND COMPUTER SCIENCE

Resolving Aspect Dependencies for Composition of Aspects

K. Santhi · G. Zayaraz · V. Vijayalakshmi

Received: 24 May 2014 / Accepted: 30 September 2014 / Published online: 26 November 2014
© King Fahd University of Petroleum and Minerals 2014

Abstract A new modularization technique is used in
Aspect-oriented software development for the separation of
widely used functions such as logging, caching, synchro-
nization, and exception handling from the core business logic
functions. Aspects are identified using the mathematical
modeling tool, Colored Petri nets. During the software devel-
opment process, dependencies may arise as a result of using
operators such as Before, After, Around, and Replace; such
dependencies are consumed by our framework. Using the
specification of aspects, we generate a composition rule for
every match point, which directs the composition process at
the initial requirements phase of software development. The
proposed FTS approach, incorporating a feedback edge set,
topological ordering, and second valid ordering, is efficient
in resolving conflicts and dependencies among the aspects.
To analyze the second valid ordering, grey relational analysis
is used to rank the aspects, while analysis of variance method
is used for the verification thereof. The proposed approach
is illustrated by a case study.

Keywords Colored Petri net · Feedback edge set · Grey
relational analysis · Match point · Second valid ordering ·
Topological ordering

K. Santhi (B) · G. Zayaraz
Department of CSE, Pondicherry Engineering College,
Puducherry India
e-mail: santhikrishnan@pec.edu

G. Zayaraz
e-mail: gzayaraz@pec.edu

V. Vijayalakshmi
Department of ECE, Pondicherry Engineering College,
Puducherry India
e-mail: vvijizai@pec.edu

1 Introduction

The software development life cycle (SDLC) gives a basic
structure for developing software products. In software devel-
opment, coupling is defined by the number of dependencies
between two subsystems, while cohesion is calculated as the
number of dependencies within a subsystem [1–4]. Scat-
tering and tangling behaviors arise as a result of crosscut-
ting concerns in software development; these behaviors are
encapsulated in separate modules and referred to as aspects
[3–5].

Aspect-oriented requirements engineering, otherwise
known as “early aspects,” focuses on the detection, encap-
sulation, description, and composition of crosscutting prop-
erties at the requirement level itself [6]. In the past few
years, there has been mounting interest in propagating the
aspect model. In the core module, aspects are separated from
one another to reduce dependencies between modules, so
as to automatically increase the modularity of the system;
hence, a high level of cohesion and low level of coupling are
achieved [4,5]. To improve the quality of the software sys-
tem, it should have high maintainability, which is achieved
only if the system is modifiable, extensible, and reusable [7–
10]. Some interactions between modules may generate the
anticipated behavior, whereas others may cause unantici-
pated behavior of the system. Thus, it is feasible to identify
the interactions and possible inconsistencies in the software
development process, if possible, at the requirements phase
itself [8,11]. Resolving such conflicts at the requirements
stage is more efficient, faster, cheaper, and more desirable
than carrying out essential code later on-the-fly [11,12].

Therefore, it is necessary to include aspects as essential
modeling primitives at the initial requirements phase of the
software development engineering process. The objectives
of our framework are twofold:

123

476 Arab J Sci Eng (2015) 40:475–486

(a) Identifying crosscutting concerns are achieved using
Colored Petri nets (CPNs).

(b) Detecting and resolving the conflicting concerns early,
before the architecture has been designed, using the FTS
(feedback edge set, topological ordering, and second
valid ordering) approach.

The rest of the paper is organized as follows: Sect. 2 briefly
describes an existing aspect-oriented approaches, CPNs,
topological ordering, and second valid ordering. Section 3
describes related works in aspect-oriented requirements engi-
neering, while Sect. 4 summarizes the FTS approach. Sec-
tion 5 shows how the main idea can be implemented in a
case study, and finally, Sect. 6 draws some conclusions and
presents suggestions for future work.

2 Background

Throughout the software development process, the Aspect
Oriented Software Engineering Group has aimed to develop
systematic means for the detection, encapsulation, descrip-
tion, and composition of crosscutting concerns, otherwise
known as aspects [13–15]. The approach in aspect-oriented
programming (AOP) is supplemented by analogous tech-
niques previously used with regard to realizing crosscutting
concerns, which pervade throughout all phases of the SDLC.
The inspiration for AOP approaches is to modularize cross-
cutting concerns. In a module, there is the chance that con-
cerns overlap each other; if this is the case, it is referred to
as tangling. Likewise, there is a chance that concerns can
isolate a module from other modules, which is referred to as
scattering. Even though scattering and tangling are different
concepts, they can exist together in modules. The execution
of a concern is scattered over multiple modules and can affect
the execution of multiple modules as shown in [4,5]. Hence,
the goal of our work is to develop a framework for aspect-
oriented requirements engineering (AORE) at the require-
ment level itself, which supports the detection and separation
of functional and non-functional concerns and the compo-
sition specification of match points, in which one or more
aspects are applied, and which is used to detect conflicts.

AORE methods are used to address the composability
and subsequent analysis of crosscutting concerns during the
requirements engineering (RE) process [16–19]. However,
performing aspect composition in AORE is based on syntac-
tic references to requirements in the base; for instance, direct
references to requirement identifiers in the system. Based on
a simplistic view, the AORE process is divided into two main
parts:

(1) Crosscutting concerns: The process first handles non-
functional requirements by identifying which concerns
crosscut other concerns and then performs a traditional

specification of the functional requirements of the soft-
ware system by identifying which concerns are crosscut
by other concerns.

(2) Composed requirements: The process starts by compos-
ing functional requirements with aspects and then iden-
tifies and resolves conflicts that may arise from the com-
position process. This is accomplished through the use
of the following operators.
Overlapping: The requirements of the aspect modify the
functional requirements they crosscut. Overriding: The
aspect requirements superpose the functional require-
ments they transverse. Wrapping: The aspect require-
ments are “encapsulated” with the functional require-
ments they transverse.

Figure 1 gives an overview of the model for
aspect-oriented requirements analysis. Many design prob-
lems, such as errors and flaws, can be identified and resolved
in the requirements and design phases rather than in the
implementation phase [2,21]. This process can reduce the
difficulties in the implementation and test phases of the soft-
ware cycle. CPNs describe the states of the system and the
events (transitions) that cause changes in these states. By per-
forming simulations in a CPN model, it is possible to inspect
different states and explore the behavior of the system as
in [1,20,22], which are very useful for debugging and investi-
gating the system design for simulating CPN tools. Topologi-
cal ordering is possible only for DAGs [23]; if a cycle occurs,
it is not possible to perform this ordering. To overcome this
problem, the feedback edge set method can be used to remove
any cycles in the graph after which topological ordering can
be performed. While performing topological ordering, con-
flicts may occur, causing there to be more than one possible
ordering. In this situation, to overcome the conflict a sec-
ond valid ordering method is used. This method swaps the
order of the conflicting vertices by considering their priority
and gives a valid and unique topological ordering. Second
valid ordering is needed whenever the topological ordering
is not unique. In this case, it is always possible to swap two
consecutive vertices that do not have an edge between them.

3 Related Work

Several methods, such as those applying formal languages,
syntactical analysis, and composition filters, among others,
are concerned with aspect interactions and their dependen-
cies. These methods are used to focus on the analysis and ver-
ification of aspects as in [24,25] which provides the key for
aspect interaction. Formal language and syntactical analysis
are used to detect interactions between aspects and to resolve
conflicts.

123

Arab J Sci Eng (2015) 40:475–486 477

Fig. 1 AORE analysis

Mehner et al. [6] focused on crosscutting concerns that
caused conflicts to occur between them. Their method used
composition filters to deal with the difficulty of handling
crosscutting concerns and their interactions. During the
analysis phase, a number of techniques and results have been
considered to deal with conflicting conditions, such as [2,
4,6,13,16]. Estimated a method for analyzing and detecting
interactions between functional and non-functional concerns,
crosscutting each other. Using a graph transformation tool,
the performance of detecting conflicts and their dependen-
cies is analyzed through the activities used to process the use
cases.

Shen et al. [8] provided a method applied in the require-
ments phase to deal with non-functional crosscutting con-
cerns. They used UML models to identify the functional
and non-functional concerns. If any conflict occurs between
these, it is resolved based on the stakeholder’s opinions. If a

negative contribution of crosscutting concerns occurs, affect-
ing a single concern, the authors recommend trade-off analy-
sis based on the stakeholder’s opinions.

Brito and Moreira [10] explained the constitution of cross-
cutting concerns with functional concerns. In their model,
match point identification is used to generate a composition
rule and if conflict occurs at the match point, dominant cross-
cutting concerns are used to resolve it. A composition rule is
defined for a match point; to resolve the conflicts, there is a
need to identify the dominant crosscutting concerns.

Rachid et al. [11] suggested a generic aspect-oriented
requirements model based on viewpoints and the eXtensible
Markup Language (XML) to separate the aspectual require-
ments and non-aspectual requirements. Aspectual require-
ments assist in the generation of composition rules; when a
conflict occurs, trade-off analysis is performed in the system
based on the stakeholders’ opinions. A contribution matrix
and attribute weights are used to resolve the conflicting
aspects.

Sofian et al. [26] explained the requirements negotiation
process used to reach agreement among stakeholders regard-
ing the requirements of the software to be developed. The
process is an abstract representation of activities involved
in performing requirements negotiation, in which the out-
comes are agreed requirements defining the functionality
and non-functionality of the software. Misunderstanding or
misidentification of the functionality of software attributes
may result in decreased quality of the software application [3,
12,27]. Additionally, the negotiation process may identify
unresolved issues that must be considered, since these may
dramatically affect the functional and non-functional
attributes of the software. Identification of requirements
entails the involvement of numerous heterogeneous stake-
holders with different roles, responsibilities, and priorities;
hence, conflicts are likely to occur in some requirements [28].
As the group learns aspect-oriented programming and begins
including more aspects into projects, there is the possibil-
ity that several aspects could be added to the same point-
cut or match point. Aspects should be ordered; for instance,
an authorization aspect must be executed before a caching
aspect. Even if some aspects do not lend themselves to order-
ing, they should be applied in a predictable order, otherwise,
an aspect that functions correctly today, may not do so the
next time simply because the aspects were applied in a totally
different order. Since some aspects may be conflicting, they
cannot be added to the same pointcut without being ordered.
For instance, it does not make sense to make an object per-
sistent using two different aspects: one causing persistence
to the database, the other to the registry. Moreover, some
aspects require other aspects to be applied; for instance, an
aspect changing the mouse pointer to an hourglass requires
the method to execute asynchronously; otherwise, the cur-
sor shape would never be restructured. Thus, an effective

123

478 Arab J Sci Eng (2015) 40:475–486

Fig. 2 FTS approach

requirements negotiation process is vital for stakeholders to
discuss and resolve inconsistencies and conflicts [28,31] to
view the software to be developed from the same perspective.

Boubendir and Chaoui [4,5] proposed a method to help
the user identify interactions between aspects and resolve the
conflicts between them at the requirements analysis phase.
Operators such as Before, After, Around, and Replace is
used to generate various dependencies, which are used in this
framework. Then, a composition rule is generated using the
Hamiltonian path. If a Hamiltonian path is not available in the
graph, the longest path is used to resolve conflicts among the
concerns. In this paper, we propose a method that extends the
work done by [4,5], which enables the user to detect interac-
tions between crosscutting concerns and identify and resolve
the conflicts between them in the requirements phase. The
extensions include reducing the time complexity of comput-
ing the composition rule by using an efficient algorithm such
as topological ordering, second valid ordering, or grey rela-
tional analysis. The time complexity of the proposed algo-
rithm is cubic, as opposed to the algorithm in [4,5], which is
NP-complete.

4 FTS Approach

A software system comprises a number of concerns, each
of which consists of one or more functional requirements,

non-functional requirements, or a combination of these. We
propose that FTS approach for analyzing interactions in a
match point is shown in Fig. 2.

Operators such as Before, After, Around, and Replace can
generate dependencies, which are used to specify the compo-
sition of aspects. By considering this, the dependency graph,
fictive dependencies (artificial dependencies) if any, and tran-
sitive closure of the graphs can also be generated. This allows
composition rules to be generated for every match point,
which can be used to guide the process of composition in
the requirements phase itself [29]. If the resulting graph is
cyclic, the feedback edge set method is applied to acquire a
DAG so that topological ordering can be performed. Topo-
logical ordering is possible only for DAGs; if a cycle occurs
it is not possible to perform this ordering. To overcome this
problem, the feedback edge set method can be used to remove
any cycles in the graph after which topological ordering can
be performed. While performing topological ordering, con-
flicts may occur, causing there to be more than one possible
ordering. In this situation, to overcome the conflict a sec-
ond valid ordering method is used. This method swaps the
order of the conflicting vertices by considering their priority
and gives a valid and unique topological ordering. Second
valid ordering is needed whenever the topological ordering
is not unique. In the second valid ordering, grey relational
analysis [30–32] is used to solve multiple attribute decision
making by the groups of stakeholders.

123

Arab J Sci Eng (2015) 40:475–486 479

FTS Algorithm

1. MatchPointIdentify (Transitions)
2. {
3. while (! EOF (concern)) do
4. Perform Requirements Analysis
5. For each requirement
6. {
7. Construct Requirement Net (RN) = (PN, LE)

//PN pertinent
8. Construct (LE= (O1, O2, O3…………., On))

//LE logical entity
9. }
10. Construct Concern Net & Execution Order
11. if (Dependency && Relations) then
12. Specify Tokens and Transition T
13. else
14. Declare No crosscutting exists in T
15. end if
16. end while
17. while(!EOF(Transition))do
18. {

// Deg - (T) is functional and non-functional
concern

19. if (Deg - (Candidate Aspects (T) > =1))then
20. T is designated as Match Point

// Generate Composition Specification
21. for each Candidate Aspect
22. if (CA(i) > T) then T→ CA(i)

// Before Operator
23. else if (CA(i) < T)then T ←CA(i)

// After Operator
24. else if (CA(i)|| T) then T =>CA(i)

// Around Operator

The working principle of the proposed FTS algorithm is
that each and every requirement is considered an independent
Petri net. For each requirement, we define a requirement net,
and for each requirement net logical entities are found. A
requirement net is defined by the 2-tuple, RN= (PN, LE),
where PN is the Petri net, |P| = 2, |T| = 1, |F| = 2, and
LE= (O1, O2, . . . , On) is a set of logical entities. The exe-
cution order is specified for each concern thereby constituting
a concern net, which is defined by the 2-tuple, CN= (SoR,
SoE), where SoR = (RN1, RN2, …, RNn) (n > 0), is a finite
set of requirement nets, and SoE = (EO1, EO2, …, EOn) (n >

0), is a finite set of execution orders. An execution order
is a sequence of requirement nets, EO= (RN1, RN2, …,
RNn).

Requirement nets and the execution order are needed to
create a concern net, and the execution of which requires that
the correct token is placed in the first space in the concern net.
If there are not enough tokens in the first space, the concern
net cannot be executed correctly in the final Petri net model
and it is impossible to identify the aspects of the system.

41. do Grey relational analysis
42. end while
43. Generate Composition Rule
44. }
45. end while

25. else CA(i) ·····> T
// Modify Operator

26. end if
27. end for
28. else
29. Tis designated as No Match Point
30. end if
31. }
32. end while
33. Generate Initial Dependency, Fictive & Transitive

Closure Graph
34. while! (Is DAG ())do
35. {
36. Perform Feedback Edge Set

// Remove an edge in the graph
37. }
38. Compute Deg - (v)[N]

//Find the in-degree of the nodes
39. Perform Topological Ordering
40. while Second Valid Ordering needed

We identify the dependencies, restrictions, and relation-
ships among the requirement and concern nets. A new space
is created temporarily if a dependency occurs between two
requirement nets and a dependency token is placed in it. Com-
plete execution of the system is achieved through the names
of the token and requirement nets. After specifying the tran-
sitions of each concern net with more entry points, if the
values of the entrance tokens are distinct, both the entrance
and transition tokens are taken as token1, token2. Next we
determine the logical entities related to the requirement nets.
The tangling problem arises in logical entities that belong
to two requirement nets with the 2-tuple (token1, token2).
Once crosscutting concerns have been identified, we calcu-
late the in degree of the transition. An in degree greater than
one implies that both functional and non-functional require-
ments of the system exist, resulting in a match point. The
aspect takes an action at this match point at the appropriate
time such as Before, After, Around, and Modify.

By considering this, the dependency graph, fictive depen-
dencies (artificial dependencies) if any, and transitive closure
of the graphs can also be generated. If the resulting graph is
cyclic, the feedback edge set method is applied to acquire
a DAG so that topological ordering can be performed by
calculating the in degrees of aspects in the graph. While per-
forming topological ordering, conflicts may occur, causing
there to be more than one possible ordering. In this situation,
to overcome the conflict, a second valid ordering method is
used, which in turn uses grey relational analysis to resolve
conflicts.

123

480 Arab J Sci Eng (2015) 40:475–486

Table 1 Topological ordering process

V In-degree

P 3 2 1 0 – – – –

A1 5 4 3 2 1 0 – –

A2 0 – – – – – – –

A3 4 3 2 1 0 – – –

A4 2 1 0 – – – – –

A5 5 4 3 2 1 0 0 –

A6 0 0 – – – – – –

Enqueue A2 A6 A6 A4 P A3 A1 A5 A5 Nil

Dequeue A2 A6 A4 P A3 A1 A5 Nil

Consider the example discussed in [4,5], where the can-
didate’s aspects A1, A2, A3, A4, A5 and A6 affect match
point (join point) P. A match point is where the behavior of
functional and non-functional concerns join [6]. Suppose that
aspect A1 overlaps before the match point, aspect A2 over-
laps after the match point, aspect A3 wraps the match point,
aspect A4 is a substitute for the match point, aspect A5 over-
laps before the match point, and aspect A6 overlaps after the
match point. For the Before operator (→), the match point
is satisfied only after the aspect’s satisfaction. Thus, match
point P is satisfied by the satisfaction of aspects A1 and A5;
hence, P→A1 and P→A5.

For the After operator (←), the match point must be satis-
fied before satisfying the aspects and the behavior of aspects
A2 and A6 must be attached after P; hence, P←A2 and
P←A6. For the Around operator (⇒), the behavior of aspect
A3 must be satisfied in parallel with the behavior of join
point P; P⇒A3. For the Replace operator (���), the oper-
ator substitutes the behavior of A4 for the behavior of P;
hence, A4���P. To locate the fictive dependencies, Around
and Replace operators are used. For operator Around, the
behavior of aspect A3 must be satisfied in parallel with the
behavior of join point P; hence, A3→A1 and A3→A5 are
identified.

For operator Replace, aspect A4 modifies the behavior
of join point P. Therefore, it is concluded that, there exists a
concrete probability that all aspects depending on join point P
are dependent on aspect A4. Fictive dependencies A6→A4
and A2→A4 are identified. For aspects X, Y, and Z, if X
depends on Y and Y depends on Z, this implies that X depends
on Z (X→Z).

In Fig. 3. topological ordering is carried out and conflicts
occur between nodes A2, A6 and A1, A5 which is shown in
Table 1. To resolve these conflicts, second valid ordering is
performed which in turn uses grey relational analysis, shows
that A6 has a higher priority than A2, thus, A2→A6, and
A1 has a higher priority than A5, thus, A5→A1 which is
shown in Fig. 4. The topological order of the nodes is output
when the graph is empty.

Fig. 3 Topological ordering of a DAG

Fig. 4 Resolved DAG

The composition rules are created according to the direc-
tion of the small arrow as discussed in the topological order-
ing method given in [33].

Topological Ordering: A2A6A4PA3A5A1←
Composition Rule: A1A5A3PA4A6A2
This means that A1 overlaps before P, A5 overlaps before

P, A3 wraps P, A4 replaces P, A6 overlaps after P, and A2
overlaps after P.

5 Case Study

The Movie Theater Chain Portal needs a specially designed
system to provide the vast functionality required for public
access [15]. The system has been designed mainly to provide
all the facilities for integrated online ticket sales. Among oth-
ers, this system provides online facilities for buying tickets,
reserving tickets, paying for tickets, and canceling tickets.
Other important services provided by the system are checking

123

Arab J Sci Eng (2015) 40:475–486 481

Fig. 5 Crosscutting analysis of functional and non-functional concerns

ticket availability, user registration, reserving, paying and
canceling tickets by consultants, and transaction statistics.
To identify the match points, we need to consider the func-
tional and non-functional concerns presented in the system.
In a system, match points usually occur where functional
and non-functional concerns meet. In this system, the func-
tional concerns are user registration, ticket booking, ticket
payment, cancellation through consultation, and transaction
statistics.

On the other hand, the non-functional concerns in this
system are response time, precision, security, and reliabil-
ity. Here, user registration involves security, ticket booking
or reservation requires accuracy, response time, and secu-
rity, and ticket payment requires security, response time, and
accuracy.

By simulating the Movie Theater Chain Portal System
using CPNs, the functional crosscutting concerns in this sys-
tem are identified as payment and booking of tickets and user
registration, while the non-functional concerns that cross-
cut the functional concerns are security, logging, accuracy,

response time, availability, and precision which is shown in
Fig. 5.

As the aspects are After, Before, Around, and Modify, the
satisfaction of ticket payment depends on the satisfaction of
ticket booking and registration. The dependencies identified
are ticket payment→ ticket booking and ticket payment→
registration. Thus, ticket booking is processed as a before
aspect with ticket payment, and similarly ticket registration
(ticket booking) is processed as a before aspect with ticket
booking and ticket payment in Fig. 5.

By taking into consideration operators such as Before,
After, Around, and Replace, the composition specification
of the match point ticket payment is given below:

• Response Time (RT) around Ticket Payment (TP): TP⇒
RT
• Security. Availability (S.AV) before Ticket Payment: TP→

S.AV
• Precision after Ticket Payment: Precision→TP

123

482 Arab J Sci Eng (2015) 40:475–486

Fig. 6 Initial dependency graph

Fig. 7 Transitive dependency graph

• Security. Accuracy (S.AC) around Ticket Payment: TP⇒
S.AC
• Ticket Booking (TB) before Ticket Payment: TP→TB

In the system, a fictive dependency is identified from the
use of the Around operator. RT and Ticket Payment are par-
allel. So, RT is dependent on all aspects on which Ticket
Payment depends.

RT→ Ticket Booking; RT→ S.AC; RT→ S.AV.S.AC
and Ticket Payment are parallel. So, S.AC is dependent on all
aspects on which Ticket Payment depends. S.AC→ Ticket
Booking; S.AC→ RT; and S.AC→ S.AV.

Figure 6 shows the initial dependency graph for these fic-
tive dependencies, from which transitive dependencies are
identified as shown in Fig. 7.

A transitive relationship occurs between the aspects Preci-
sion, Ticket Booking, and Ticket Payment: Precision depends
on Ticket Payment, and Ticket Payment depends on Ticket
Booking, which implies that Precision depends on Ticket
booking (Precision→Ticket Booking). The other transitive
relationship that occurs is as follows: Precision depends on
S.AC (Precision→S.AC), Precision depends on RT (Preci-
sion→RT), and Precision depends on S.AV (Precision→
S.AV).

While processing these aspects, we found that the graph
was not a DAG. Therefore, the feedback edge set method was
used to eliminate the edge between S.AC and RT (S.AC→
RT) since it is a weaker dependency. Thereafter, topologi-
cal ordering was applied to the resolved DAG, yielding an
ordering of the aspects which is shown in Table 2.

In the obtained ordering, if there are any conflicts between
the aspects, a second valid ordering approach is used. We
compare each element in the first column of the adjacency
matrix with the remaining column elements. If no column is
the same as the first column, there are no conflicts between
the first and remaining aspects. However, it is possible that a
column is the same as the previous column, in which case, a
conflict arises between them. By repeating the procedure with
the remaining columns, we can identify all such conflicts. In
the case that conflicts exist, grey relational analysis is carried
out [30–35]. In our case study on the Movie Theater Chain
Portal System, conflicts exist between S.AV and TB, and
thus, grey relational analysis is applied as follows. The data
processing steps for grey relational analysis are given below.
Step 1: Create a standard array and comparison arrays. We
give the details for calculating grey relations using the results
of integrating the five stakeholder groups in the example [36].
a. Standard array X0 (k) = {10, 10, 10, 10, 10, 10, 10}, the
full credit “10” is set as the standard array which is shown in
Table 3.
b. Questionnaire on the concerns for the movie theater chain
portal system is shown in Table 4.

Comparison arrays can be calculated by integrating the
five stakeholders groups which is shown in Table 5.

Comparison arrays:

X1 = {6, 4, 5, 5, 3}
X2 = {8, 7, 9, 7, 9}
X3 = {9, 9, 8, 9, 9}
X4 = {7, 8, 9, 6, 7}
X5 = {6, 7, 8, 7, 6}
X6 = {7, 6, 7, 5, 6}

The standard and comparison arrays are represented as X0 (k)

and Xi (k) , i = 1, 2, . . ., m; k = 1, 2, . . ., n, respectively,
where m is the total number of aspects and n is the total
number of stakeholders.
Step 2: The difference arrays �0i are calculated as

�0i = |X O(k)− Xi (k)|
�01 = {4, 6, 5, 5, 7}
�02 = {2, 3, 1, 3, 1}
�03 = {1, 1, 2, 1, 1}
�04 = {3, 2, 1, 4, 3}
�05 = {4, 3, 2, 3, 4}

123

Arab J Sci Eng (2015) 40:475–486 483

Table 2 Topological ordering
process Vertices In-degree

S.AV 4 3 2 1 0 – –

TP 1 0 – – – – –

P 0 – – – – – –

S.AC 3 2 1 0 – – –

RT 2 1 0 – – – –

TB 4 3 2 1 0 – –

Enqueue P TP RT S.AC S.AV,TB TB Nil

Dequeue P TP RT S.AC S.AV TB Nil

Table 3 Relationship between functional and non-functional aspects
specified by stakeholders in the Movie Theater Chain Portal System

Non-functional and functional aspects Standard

Precision 10

Ticket Booking 10

Security. Availability 10

Ticket Payment 10

Response Time 10

Security Accuracy 10

Table 4 Questionnaire on the concerns for the Movie Theater Chain
Portal System

�06 = {3, 4, 3, 5, 4} .

From �max = max∀ j∈i max∀k |X0 (k) − Xi (k) |, the max-
imum value in the difference arrays is Max=7, and from
�min = min∀ j∈i min∀k |X0 (k)− Xi (k) | the minimum value
in the difference arrays is Min=1. The distinguishing coef-
ficient value ς is 0.5, where ς ∈ [0, 1].

Step 3: The grey relational coefficient γ0i = γ (X0 (k) ,

Xi (k)) values are calculated as

γ (Xo (k) , Xi (k)) = �min + ς�max

�0i (k)+ ς�max

0 ≺ γ (X0 (k) , Xi (k)) ≤ 1.

X1 : γ (X0(1), X1(1)) = 0.6γ (X0(2), X1(2)) = 0.47

γ (X0(3), X1(3)) = 0.53γ (X0(4), X1(4)) = 0.53

γ (X0(5), X1(5)) = 0.43

X2 : γ (X0(1), X2(1)) = 0.81γ (X0(2), X2(2)) = 0.69

γ (X0(3), X2(3)) = 1γ (X0(4), X2(4)) = 0.69

γ (X0(5), X2(5)) = 1

X3 : γ (X0(1), X3(1)) = 1γ (X0(2), X3(2)) = 1

γ (X0(3), X3(3)) = 0.81γ (X0(4), X3(4)) = 1

γ (X0(5), X3(5)) = 1

X4 : γ (X0(1), X4(1)) = 0.69γ (X0(2), X4(2)) = 0.81

γ (X0(3), X4(3)) = 1γ (X0(4), X4(4)) = 0.6

γ (X0(5), X4(5)) = 0.69

X5 : γ (X0(1), X5(1)) = 0.6γ (X0(2), X5(2)) = 0.69

γ (X0(3), X5(3)) = 0.81γ (X0(4), X5(4)) = 0.69

γ (X0(5), X5(5)) = 0.6

X6 : γ (X0(1), X6(1)) = 0.69γ (X0(2), X6(2)) = 0.6

γ (X0(3), X6(3)) = 0.69γ (X0(4), X6(4)) = 0.53

γ (X0(5), X6(5)) = 0.6

Step 4: Calculate the value of the grey relation

γ (X0, Xi) = 1

n

n∑

k=1

γ (X0 (k) , Xi (k)).

γ (X0, X1) = (1/5)(2.56) = 0.512

γ (X0, X2) = (1/5)(4.19) = 0.838

γ (X0, X3) = (1/5)(4.81) = 0.962

γ (X0, X4) = (1/5)(3.79) = 0.758

γ (X0, X5) = (1/5)(3.39) = 0.678

γ (X0, X6) = (1/5)(3.11) = 0.622

123

484 Arab J Sci Eng (2015) 40:475–486

Table 5 Outcome of integrating
the five stakeholder (SH) groups Non-functional and functional aspects SH group 1 SH group 2 SH group 3 SH group 4 SH group 5

Precision 6 4 5 5 3

Ticket Booking 8 7 9 7 9

Security. Availability 9 9 8 9 9

Ticket Payment 7 8 9 6 7

Response Time 6 7 8 7 6

Security Accuracy 7 6 7 5 6

Table 6 Final ranking of aspects in Movie Theater Chain Portal System

Non-functional and
functional aspects

Grey relational
values

Ranking
order

Security. Accuracy 0.622 5

Ticket Payment 0.758 3

Security. Availability 0.962 1

Ticket Booking 0.838 2

Response Time 0.678 4

Precision 0.512 6

Fig. 8 Comparison of grey relational values between aspects

Step 5: Arrange the grey relational values in decreasing order:

0.962 > 0.838 > 0.758 > 0.678 > 0.622 > 0.512

Thus, the final ranking of aspects is:
S.AV > Ticket Booking > Ticket Payment > S.AC > RT >

Precision. This shows that S.AV has a higher priority than
TB since TB depends on S.AV (TB→S.AV). According to
this ordering, the conflicting aspects are arranged in order by
swapping them (Table 6; Fig. 8).

Topological order: P TP RT S.AC S.AV TB←
Grey relational order: S.AV > TB > TP > S.AC >

RT > P
Composition Rule: S.AV TB S.AC RT TP P

Table 7 ANOVA for aspects and stakeholders

S.V SS D.F M.S F

Between aspects 50.7 5 10.14 10.67

Between stakeholders 5 4 1.25 1.32

Residual 19 20 0.95 –

Using the FTS approach, the composition rule obtained for
the match point Ticket Payment in the Movie Theater Chain
Portal is represented using LOTOS operators [33] as: S.AV
	 Ticket Booking	 (Ticket Payment || S.AC ||RT)	 Pre-
cision. Additionally, Table 7 gives the results of the analysis
of variance (ANOVA) for the aspects and stakeholders using
the experiential values [37]. According to this table, there is
no significant difference among stakeholders, but there is a
significant difference between aspects.

This composition rule expresses the sequential order in
which each candidate aspect must be composed. Availabil-
ity, a sub-concern of security must be satisfied first before
the ticket booking aspect. Then, ticket payment needs to be
fulfilled in parallel with accuracy, a sub-concern of security,
and response time. Finally, precision must be satisfied. The
time complexity of the second valid ordering algorithm is
calculated as

T (n, n) =
n−1∑

i=1

n∗ (n − i)

T (n, n) = O
(

n3
)

where n represents the number of nodes in the graph. Hence,
the time complexity for the second valid ordering algorithm
is O(n3) and the time complexity for topological ordering is
O(V + E). Therefore, considering the properties of Big O
notation, the overall time complexity of the FTS approach is
O

(
n3

)
. The time complexity of the longest path algorithm,

which is used by the existing method, is given by O(n*n!).
The recurrence relation for the longest path algorithm is given
by T (n · m) = mT (n, m − 1) + O (n), where n denotes
the number of nodes in the graph, m denotes the number of

123

Arab J Sci Eng (2015) 40:475–486 485

Fig. 9 Performance analysis

unvisited nodes in the graph and T (n, 0) = O (n).

T (n, n) = nT (n, n − 1)+ O (n)

T (n, n) = O (n∗n!)

From the performance analysis graph of time complexity in
Fig. 9, we can see that the execution performance of the
proposed approach is superior to existing approaches with
the number of vertices greater than or equal to four.

6 Conclusion

Our proposed framework describes the role of CPNs in iden-
tifying aspects during requirements engineering itself and
imposing constraints on the aspects (After, Before, Around,
and Replace) by providing new methods for the identifica-
tion, specification, and composition of crosscutting concerns
used in our FTS approach. This approach minimizes the time
complexity when considering four or more vertices by creat-
ing a composition rule from the composition specifications,
which requires O(n3) time rather than O(n*n!). Hence, our
proposed approach FTS provides a better performance. In
future work, we intend to focus on the following tasks: defin-
ing composition rules at a finer level of granularity, i.e., com-
posing crosscutting actions; and studying the level of granu-
larity at which conflicting situations can be handled.

References

1. Cancila, D.; Passerone, R.; Vardanega, T.; Panunzio, M.: Toward
correctness in the specification and handling of non-functional
attributes of high-integrity real-time embedded systems. IEEE
Trans. Ind. Inform. 6(2), 181–194 (2010). doi:10.1109/TII.2010.
2043741

2. Abdelzad, V.; Aliee, F.S.: A method based on petri nets for identi-
fication of aspects. Inf. Sci. Technol. Bull. ACM Slovak. 2(1), 43–
49 (2010)

3. Ali, R.; Dalpiaz, F.; Giorgini, P.: Reasoning with contextual require-
ments: detecting inconsistency and conflicts. Inf. Softw. Tech-
nol. 55(1), 35–57 (2013). doi:10.1016/j.infsof.2012.06.013

4. Boubendir, A.; Chaoui, A.: On analyzing interactions between
aspects at requirements phase. J. Theor. Appl. Inf. Technol.
18(2): JATIT & LLS (2010a), http://www.jatit.org/volumes/
research-papers/Vol18No2/3Vol18No2.pdf

5. Boubendir, A.; Chaoui, A.: Towards a generic technique for analyz-
ing interactions between aspects at requirement phase. In: Digital
Information Management (ICDIM), Canada, pp. 507–512 (2010b).
doi:10.1109/ICDIM.2010.5664647

6. Mehner, K.; Monga, M.; Taentzer, G..: Interaction analysis in
aspect-oriented models. In: 14th IEEE International Requirements
Engineering Conference (RE’06), pp. 69–78 (2006). doi:10.1109/
RE.2006.35

7. Zayaraz, G.; Thambidurai, P.D.; Srinivasan, M.; Rodrigues,
P.D.: Software quality assurance through COSMIC FFP. ACM
SIGSOFT Softw. Eng. Notes 30(5), 1–5 (2005). doi:10.1145/
1095430.1095445

8. Shen, H.; Dorina, C.; Petriu.: Performance analysis of UML models
using aspect-oriented modeling techniques. In: 8th International
Conference MoDELS 2005, pp 156–170 (2005).

9. Beniassad, E.; Clements, P.C.; Araujo, J.; Moriera, A.; Rachid, A.;
Tekmerdogan, B.: Discovering early aspects. IEEE Softw. 1, 61–
70 (2006). doi:10.1007/978-1-4614-33637

10. Brito, I.; Moreira, A.: Towards a composition process for aspect-
oriented requirements. In: Proceeding of AOSD’03 Workshop on
Early Aspects: Aspect Oriented Requirements Engineering and
Architecture, March 17, Boston USA (2003)

11. Rachid, A., Moreira, A., Araujo, J.: Modularization and compo-
sition of aspectual requirements. In: 2nd International Conference
on Aspect Oriented Software Development (AOSD), pp. 11–20,
ACM, Boston, USA (2003). doi:10.1145/643603.643605

12. Alshayeb, M.: The impact of refactoring to patterns on software
quality attributes. Arab. J. Sci. Eng. 36(7), 1241–1251 (2011).
doi:10.1007/s13369-011-0111-3

13. Zhang, L.; Feng, S.: Aspect-oriented QoS modeling of cyber-
physical systems by the extension of architecture analysis and
design language. In: Computer Engineering and Networking,
pp. 1125–1131. Springer International Publishing (2014). doi:10.
1007/978-3-319-01766-2_128

14. Fuentes, L.; Sanchez, P.: Towards executable aspect-oriented UML
models. In: Proceedings of the 10th International Workshop on
Aspect-Oriented Modeling, New York, pp. 28–34 (2007). doi:10.
1145/1229375.1229380

15. Susanne, C.: UML extensions for aspect oriented software devel-
opment. J. Object Technol. 8(5), 85–104 (2009)

16. Douance, R.; Frader, P.: Detection and Resolution of
Aspect Interactions. INRIA Technical Report N◦RR 4435
(2002)

17. Binder, W.; Ansaloni, D.; Villazón, A.; Moret, P.: Flexible and effi-
cient profiling with aspect-oriented programming. Concurr. Com-
put. Pract. Exp. 23(15), 1749–1773 (2011). doi:10.1002/cpe.1760

18. Cemus, K.; Cerny, T.: Aspect-driven design of information systems.
In: SOFSEM 2014: Theory and Practice of Computer Science, pp.
174–186. Springer International Publishing (2014). doi:10.1007/
978-3-319-04298-5_16

19. Zhang, L.: QoS modeling of cyber physical systems by the integra-
tion of AADL and aspect-oriented methods. In: Advanced Tech-
nologies, Embedded and Multimedia for Human-Centric Com-
puting, pp. 419–428. Springer Netherlands (2014). doi:10.1007/
978-94-007-7262-5_49

20. Santhi, K.; Zayaraz, G.; Vijayalakshmi, V.; Santhi, K.; Zayaraz,
G.; Vijayalakshmi, V.: Aspect-oriented analyzer framework for
aspect oriented requirements. In: Proceedings of the 3rd Interna-
tional Conference on Trends in Information, Telecommunicating

123

http://dx.doi.org/10.1109/TII.2010.2043741
http://dx.doi.org/10.1109/TII.2010.2043741
http://dx.doi.org/10.1016/j.infsof.2012.06.013
http://www.jatit.org/volumes/research-papers/Vol18No2/3Vol18No2.pdf
http://www.jatit.org/volumes/research-papers/Vol18No2/3Vol18No2.pdf
http://dx.doi.org/10.1109/ICDIM.2010.5664647
http://dx.doi.org/10.1109/RE.2006.35
http://dx.doi.org/10.1109/RE.2006.35
http://dx.doi.org/10.1145/1095430.1095445
http://dx.doi.org/10.1145/1095430.1095445
http://dx.doi.org/10.1007/978-1-4614-33637
http://dx.doi.org/10.1145/643603.643605
http://dx.doi.org/10.1007/s13369-011-0111-3
http://dx.doi.org/10.1007/978-3-319-01766-2_128
http://dx.doi.org/10.1007/978-3-319-01766-2_128
http://dx.doi.org/10.1145/1229375.1229380
http://dx.doi.org/10.1145/1229375.1229380
http://dx.doi.org/10.1002/cpe.1760
http://dx.doi.org/10.1007/978-3-319-04298-5_16
http://dx.doi.org/10.1007/978-3-319-04298-5_16
http://dx.doi.org/10.1007/978-94-007-7262-5_49
http://dx.doi.org/10.1007/978-94-007-7262-5_49

486 Arab J Sci Eng (2015) 40:475–486

and Computing Lecture Notes in Electrical Engineering, vol. 150,
pp. 75–81 (2013). doi:10.1007/978-1-4614-3363-7_9

21. Santhi, K.; Zayaraz, G.: An approach based on colored petri net
for analysing and modelling the aspects. Int. J. Hybrid Inf. Tech-
nol. 6(5), 25–36 (2013). doi:10.14257/ijhit.2013.6.5.03

22. Lianwei, G.; Li, X.; Hu, H.: Petri net-based approach for supporting
aspect oriented modeling. In: 2nd IFIP/IEEE International Sym-
posium on Theoretical Aspects of Software Engineering (2008).
doi:10.1109/TASE.2008.32

23. Kahn, A.B.: Topological sorting of large networks. Commun.
ACM 5, 558–562 (1962). doi:10.1145/368996.369025

24. Silveira, F.F.; da Cunha, A.M.; Lisbôa, M.L.: A state-based test-
ing method for detecting aspect composition faults. In: Computa-
tional Science and Its Applications—ICCSA 2014, Lecture Notes
in Computer Science, vol. 8583, pp. 418–433 (2014)

25. Broy, M.: Multifunctional software systems: structured modeling
and specification of functional requirements. Sci. Comput. Pro-
gram. 75(12), 1193–1214 (2010). doi:10.1016/j.scico.2010.06.007

26. Sofian, H.B.; Salim, S.S.B.; Shahamiri, S.R.: A requirements nego-
tiation process model that integrates EasyWinWin with quality
assurance and multi-criteria preference technique. Arab. J. Sci.
Eng. 39(6), 4667–4681 (2014). doi:10.1007/s13369-014-1150-3

27. Elish, K.; Alshayeb, M.: A classification of refactoring methods
based on software quality attributes. Arab. J. Sci. Eng. 36(7), 1253–
1267 (2011). doi:10.1007/s13369-011-0117-x

28. Saberi, S.; Nookabadi, A.S.; Hejazi, S.R.: Applying agent-based
system and negotiation mechanism in improvement of inventory
management and customer order fulfilment in multi echelon sup-
ply chain. Arab. J. Sci. Eng. 37(3), 851–861 (2012). doi:10.1007/
s13369-012-0197-2

29. Lee, S.-H.; Yoo, H.: Requirement analysis for aspect-oriented sys-
tem development. In: IT Convergence and Security 2012, Lecture
Notes in Electrical Engineering, vol. 215, pp. 1201–1209 (2013).
doi:10.1007/978-94-007-5860-5_144

30. Chan, W.K.; Tong, T.K.L.: Multi-criteria material selections
and end-of-life product strategy: grey relational analysis
approach. Mater. Des. 28(5), 1539–1546 (2007). doi:10.1016/j.
matdes.2006.02.016

31. Feng, L.,; Yuan, R.: Study on grey relation analysis based on
entropy method in evaluation of logistics center location. In: Third
International Conference on Measuring Technology and Mecha-
tronics Automation, vol. 3, pp. 474–477. doi:10.1109/ICMTMA.
2011.689

32. Rao, R.V.; Singh, D.: An improved grey relational analysis as a
decision-making method for manufacturing situations. Int. J. Decis.
Sci. Risk Manag. 2(1/2), 1–23 (2010). doi:10.1504/IJDSRM.2010.
034668

33. Logrippo, L.; Faci, M.; Haj-Hussein, M.: An introduction to
LOTOS: learning by examples. Comput. Netw. ISDN Syst. 23(5),
325–342 (1992). doi:10.1016/0169-7552(92)90011-E

34. Mehat, N.M.; Kamaruddin, S.; Othman, A.R.: Hybrid integration
of taguchi parametric design, grey relational analysis, and principal
component analysis optimization for plastic gear production. Chin.
J. Eng. 2014, Article ID 351206, 11 p (2014). doi:10.1155/2014/
351206

35. Xie, Y.; Chengdu. Yin, S.; Luo, Z.: Robust optimization for deep-
drawing process of sheet metal based on CAE with grey relational
analysis method. In: Fifth International Conference on Fuzzy Sys-
tems and Knowledge Discovery, vol. 4, pp. 345–349 (2008). doi:10.
1109/FSKD.2008.418

36. Yu, Y.-L.; Cho, L.-C.; Liao, B.-T.: The influenced factors in buy-
ing cell phones by grey relational analysis. WSEAS Trans. Inf.
Sci. Appl. 4 (6), 1151–1156 (2013), http://140.128.103.12/handle/
310901/22021

37. Goel, P.; Khan, Z.A; Siddiquee, A.N.; Kamaruddin, S.; Gupta,
R.K.: Influence of slab milling process parameters on surface
integrity of HSLA: a multi-performance characteristics optimiza-
tion. Int. J. Adv. Manuf. Technol. 61(9-12), 859–871 (2012).
doi:10.1007/s00170-011-3763-y

123

http://dx.doi.org/10.1007/978-1-4614-3363-7_9
http://dx.doi.org/10.14257/ijhit.2013.6.5.03
http://dx.doi.org/10.1109/TASE.2008.32
http://dx.doi.org/10.1145/368996.369025
http://dx.doi.org/10.1016/j.scico.2010.06.007
http://dx.doi.org/10.1007/s13369-014-1150-3
http://dx.doi.org/10.1007/s13369-011-0117-x
http://dx.doi.org/10.1007/s13369-012-0197-2
http://dx.doi.org/10.1007/s13369-012-0197-2
http://dx.doi.org/10.1007/978-94-007-5860-5_144
http://dx.doi.org/10.1016/j.matdes.2006.02.016
http://dx.doi.org/10.1016/j.matdes.2006.02.016
http://dx.doi.org/10.1109/ICMTMA.2011.689
http://dx.doi.org/10.1109/ICMTMA.2011.689
http://dx.doi.org/10.1504/IJDSRM.2010.034668
http://dx.doi.org/10.1504/IJDSRM.2010.034668
http://dx.doi.org/10.1016/0169-7552(92)90011-E
http://dx.doi.org/10.1155/2014/351206
http://dx.doi.org/10.1155/2014/351206
http://dx.doi.org/10.1109/FSKD.2008.418
http://dx.doi.org/10.1109/FSKD.2008.418
http://140.128.103.12/handle/310901/22021
http://140.128.103.12/handle/310901/22021
http://dx.doi.org/10.1007/s00170-011-3763-y

	Resolving Aspect Dependencies for Composition of Aspects
	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 FTS Approach
	5 Case Study
	6 Conclusion
	References

