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Abstract Buckling mode interaction of elastic systems in
the presence of initial imperfections is well known to have a
detrimental effect on the response of a wide range of struc-
tural systems. This has been demonstrated mostly analyti-
cally for simple models, assuming small displacements, thus
obtaining results with questionable validity in the
post-buckling range. In order to acquire additional insight
into this issue, in the first part of the present paper, two dif-
ferent versions of the well-known 2-DOF Augusti model,
whose independent buckling modes are both stable, are stud-
ied analytically without any simplifying assumptions with
respect to the magnitude of deformation, in order to accu-
rately demonstrate the coupling phenomena in the presence
of imperfections in the pre- and post-buckling range. De-
pending on the nature of the structure’s rotational springs,
its post-buckling equilibrium path may be either stable or
unstable. Afterward, the elastic response of two examples of
laced built-up columns is illustrated numerically, one char-
acterized by interaction between in-plane global and local
buckling and the other by in- and out-of-plane global buck-
ling, featuring similar response to that of the two 2-DOF
models, respectively, thus demonstrating occurrence of such
behavior in actual structural systems.
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1 Introduction

Optimizing the weight of a structure based on the first critical
buckling load of the perfect structure may often produce a
design for which the critical loads for several buckling modes
coincide [1]. It is well known that if the critical loads corre-
sponding to at least two buckling modes are equal, or nearly
so, the elastic post-buckling response involves coupling be-
tween them [2]. The phenomenon of buckling mode interac-
tion has been first studied by Koiter [3] and later by Chilver
[2] and Supple [4] for 2-DOF systems and by Johns and Chil-
ver [5] for N-DOF systems, without taking into account the
presence of initial imperfections.
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Fig. 1 a Geometry of examined model and b stable post-buckling equi-
librium paths of the two independent buckling modes

At the same time, many researchers investigated the effect
of initial imperfections on the buckling of elastic structures.
Koiter [3] has shown that the critical load of a structure which
loses its stability at a bifurcation point may be extremely sen-
sitive to the presence of small imperfections, leading to the
conversion of a bifurcation point into a limit point occurring
at a lower load. Roorda [6] showed that the effect of small
initial imperfections on the limit point load is largely depen-
dent on the slope of the initial post-buckling curve of the
perfect system and that the change in limit point load varies
with the square root of initial imperfections. Similarly, many
other authors, such as Ho [7] and Thompson [8] studied the
same issue.

The phenomenon of buckling mode interaction leads to
increased imperfection sensitivity [1]. The effect of coexis-
tence of coupled buckling and imperfections in elastic struc-
tures has been investigated by Supple [9], Ho [10,11] and
Johns [12]. A thorough review of the general theory of cou-
pled instabilities in the presence of imperfections has been
previously presented by Gioncu [13].

The present paper deals with the buckling mode interac-
tion of elastic systems and the effect of initial imperfections
on their behavior. More specifically, two different versions of
a 2-DOF model initially introduced by Augusti [14] are stud-
ied analytically via the energy method, accounting for geo-
metrical nonlinearities and without making any mathemati-
cal simplifications during the solution process, thus account-
ing for arbitrarily large displacements. The model consists
of a cantilever rigid rod, with fully restrained displacements
and elastically restrained rotations at the bottom, subjected
to a concentrated load at the top, which retains its direction
throughout the analysis (Fig. 1a). The two independent buck-
ling modes of this system present both stable post-buckling
equilibrium paths (Fig. 1b).

In the second part of the paper, two examples of built-up
columns, which are well known to exhibit buckling mode
interaction [1], are presented and their structural behavior

Fig. 2 Geometry of the first 2-DOF model

is demonstrated by means of geometrically nonlinear finite
element analyses carried out with software ADINA [15]. In
the first example, the in-plane elastic behavior of a simply
supported laced built-up column is studied, for which the two
first modes, representing local buckling of the column flanges
and in-plane global buckling, exhibit stable post-buckling
equilibrium paths. In the second example, a similar built-
up column is studied but the geometry and section of the
flanges are appropriately chosen in order to avoid in-plane lo-
cal buckling. Thus, interaction between in- and out-of-plane
global buckling is investigated in the presence of imperfec-
tions. Both of them individually present stable post-buckling
response. Initial results of this research have been recently
presented by the authors [16].

2 2-DOF Model with Unstable Post-buckling Behavior

In the first 2-DOF model, the two rotational springs are con-
sidered to have reactions proportional to the angles AOD =
θx and AOC = θy of the rod with its projections on the planes
yz and xz, respectively (Fig. 2). In the case of initial imper-
fections, denoted by corresponding inclination εx and εy of
the rod with respect to the vertical position, the springs are
considered to be undeformed; thus, their reactions are zero in
the initial inclined position of the rod. The deformation is ex-
pressed with respect to the two rotational degrees of freedom
θx and θy , and the equilibrium equations are derived by means
of the energy method, taking into consideration geometrical
nonlinearities. In the following sections, the formulation of
the model’s equilibrium equations and their numerical treat-
ment are presented.

2.1 Formulation of Equilibrium Equations

The geometry of the model is illustrated in Fig. 2. The rod’s
length is equal to L . The springs exhibit linearly elastic re-
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sponse, with rotational stiffness coefficients cx and cy in x
and y direction, respectively. The critical loads corresponding
to the two independent buckling modes of the system, which
exhibit stable post-buckling response [14], are Pcr,x = cx/L
and Pcr,y = cy/L . In an arbitrary position, the rod forms with
the vertical axis z angle equal to θ , while the corresponding
initial angle is equal to ε.

By geometrical formulations, and without making any
simplifying assumption, the exact relationship describing the
geometry of the system is derived:

cos θ =
√

1 − sin2 θy − sin2 θx (1)

The total potential energy Π of the system can then be written
as:

Π = 1

2
cx (θx−εx )

2+1

2
cy(θy − εy)

2 − P L(cos ε − cos θ)

(2)

By setting equal to zero, the derivatives of the total potential
energy with respect to the two degrees of freedom θx and
θy , and by normalizing the external force P with respect
to the critical buckling load Pcr,y = cy/L , the following
equilibrium equations are obtained:

∂Π

∂θx
= cx

cy
(θx − εx ) − λ

sin θx cos θx√
1 − sin2 θx − sin2 θy

= 0 (3)

∂Π

∂θy
= (θy − εy) − λ

sin θy cos θy√
1 − sin2 θx − sin2 θy

= 0 (4)

where λ = P/Pcr,y is the normalized load. Each triad θx ,

θy, λ that satisfies the above equations, constitutes an equi-
librium position of the system.

2.2 Numerical Treatment of Equilibrium Equations

The numerical solution of Eqs. (3), (4) was carried out by
means of MATLAB software [17]. A simplified version of
the basic principle of the arc length method [18] has been
applied, searching for a solution on the surface of a properly
selected sphere, in order to capture possible snap-through or
snap-back phenomena. Therefore, three simultaneous non-
linear equations, the two equations of equilibrium and the
geometrical equation of the sphere, are solved with respect
to the variables θx , θy, λ. At every step, the previous triad of
solutions is selected as the new sphere’s center, while its ra-
dius is assigned a small positive value. Convergence tests of
the nonlinear solution algorithm have been performed, to en-
sure that the solution step is sufficiently small and that there
is numerical stability. The non-linear system of equations has
been solved successively for different values of the control
parameters, which are chosen to be:

Fig. 3 Equilibrium paths of first 2-DOF model for RP = 1.00, Rε =
1.00, εx = 0.001 rad

1. The ratio between the two buckling loads: RP = Pcr,y/

Pcr,x = cy/cx

2. The ratio between the imperfections in each direction:
Rε = εy/εx

3. The magnitude of initial imperfection in x-direction: εx

By substituting the selected values of RP, Rε and εx , the
curves of Figs. 3 and 9 are obtained for seven different cases:

1. RP = 1.00, Rε = 1.00, εx = 0.001 rad
2. RP = 1.00, Rε = 1.00, εx = 0.01 rad
3. RP = 1.00, Rε = 0.25, εx = 0.01 rad
4. RP = 1.00, Rε = 50, εx = 0.01 rad
5. RP = 0.25, Rε = 0.25, εx = 0.01 rad
6. RP = 0.25, Rε = 50, εx = 0.01 rad
7. RP = 0.25, Rε = 1.00, εx = 0.01 rad

The results are presented by means of equilibrium dia-
grams, shown in 3D (θx , θy, λ) form as well as in the form
of 2D projections on the (θx , θy), (θx , λ), (θy, λ) planes,
for easier comprehension of the system’s response.

The post-buckling behavior of the system proves to be un-
stable in all cases, despite the stability of the two independent
buckling modes. In the first case (Fig. 3), the system’s re-
sponse is entirely symmetric in both directions, as expected.
Buckling mode interaction is activated at small values of
deformation, rendering the response clearly unstable. Nev-
ertheless, the limit point is observed at a value of λ, denoted
a λlp, practically equal to 1. Thus, no significant strength
reduction is observed and this because of the small magni-
tude of initial imperfections. This is verified by comparing
the results with the case illustrated in Fig. 4, correspond-
ing also to a symmetric system, but having 10 times larger
initial imperfections. The structure’s bearing capacity when
εx = 0.001 rad is equal to λlp = 0.9868 (Fig. 3), while in the
case of εx = 0.01 rad (Fig. 4), the strength of the rod is equal
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Fig. 4 Equilibrium paths of first 2-DOF model for RP = 1.00, Rε =
1.00, εx = 0.01 rad

Fig. 5 Equilibrium paths of first 2-DOF model for RP = 1.00, Rε =
0.25, εx = 0.01 rad

to λlp = 0.9382. Thus, the reduction of the system’s bearing
capacity due to the increase of the initial imperfections is up
to 5 %.

In Fig. 5, the two buckling loads are equal but the ini-
tial imperfection in x-direction is 4 times larger than the
one in y-direction. The deformation is initially mainly in
x-direction (θx rotation) due to the large initial disturbance,
but afterward, the structure deforms almost the same in both
directions. Similarly, in Fig. 6, the deformation in y-direction
(θy rotation) dominates, while a significant reduction in the
model’s bearing capacity due to the large initial imperfection
is observed.

In the fifth case (Fig. 7), the deformation in x-direction ( θx

rotation) dominates initially because of the larger associated
imperfection, however eventually y-direction ( θy rotation)
attracts the response, which is the critical one, as it corre-
sponds to a lower buckling load. It is noted, however, that this
interaction is activated at very large values of deformation,
as expressed by θy . The system’s post-buckling response re-
mains stable up to that level, denoting that in actual structural
systems, where material nonlinearity will likely have devel-

Fig. 6 Equilibrium paths of first 2-DOF model for RP = 1.00, Rε =
50, εx = 0.01 rad

Fig. 7 Equilibrium paths of first 2-DOF model for RP = 0.25, Rε =
0.25, εx = 0.01 rad

Fig. 8 Equilibrium paths of first 2-DOF model for RP = 0.25, Rε =
50, εx = 0.01 rad

oped at such high deformations, mode interaction would not
be of practical significance.

In Fig. 8, the deformation in y-direction (θy rotation),
which is the critical one, as it corresponds to a lower buckling
load, dominates from the beginning due to the increased ini-
tial imperfection εy . As in the previous example (Fig. 7), the
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Fig. 9 Equilibrium paths of first 2-DOF model for RP = 0.25, Rε =
1.00, εx = 0.01 rad

Fig. 10 Three-dimensional illustration of λlp with respect to Rε and
RP for the first 2-DOF model

buckling mode interaction is activated at very large values of
deformation θy .

In Fig. 9, the deformation in y-direction (θy rotation),
which corresponds to the lower buckling load, dominates.
Similarly to the previous examples (Figs. 7, 8), the model’s
coupled behavior is observed at very large values of defor-
mation θy .

Following the qualitative understanding of the system’s
response for different values of the control parameters, a
series of parametric studies are carried out in order to in-
vestigate the influence of coupling phenomena and initial
imperfections on the model’s behavior. The range of values
of the control parameters, for which the parametric study is
performed, is the following:

RP: 0.25, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 1.00
Rε: 0.25, 0.50, 1.00, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50
εx : 0.001 rad, 0.005 rad, 0.01 rad

A qualitatively similar behavior as in Figs. 3, 4, 5, 6, 7, 8
and 9 has been obtained for all combinations of values of
the control parameters. In Fig. 10, the variation of the limit
point load λlp with respect to the ratio of initial imperfections
Rε and the ratio of the two buckling loads RP is presented
in a three-dimensional graph. Each surface corresponds to

Fig. 11 Variation of λlp for constant Rε (first 2-DOF model)

a constant value of εx . The limit point load λlp represents
the maximum load normalized with respect to the critical
buckling load Pcr,y .

In Figs. 11 and 12, vertical sections of the above graph are
illustrated in order to provide a deeper insight into the prob-
lem. In Fig. 11, the ratio between the initial imperfections Rε

is constant and the reduction of the structure’s strength as RP

increases is demonstrated. In Fig. 12, the ratio between the
buckling loads RP remains fixed and the limit point load λlp

with respect to Rε is illustrated.
As the ratio between the buckling loads approaches unity, a

stronger reduction of the system’s bearing capacity due to the
buckling mode interaction is observed. The limit point load
λlp when RP = 0.25, Rε = 50, εx = 0.01 rad is equal to
0.82, while when RP = 1.00, Rε = 50, εx = 0.01 rad, λlp

is equal to 0.53. It is also demonstrated, that as the initial im-
perfections increase, the phenomenon of coupled buckling
becomes more intense. The increased imperfection sensitiv-
ity due to the buckling mode interaction is obvious. Finally,
the reduction of the system’s bearing capacity due to the in-
crease of the initial imperfection εy , corresponding to the
direction with the lower buckling load, is up to 45 % for the
chosen values of the control parameters.

Then, a series of additional parametric studies are carried
out in the region of RP = 1.00, in order to demonstrate with
more detail, the decrease of the column’s bearing capacity
when the two buckling loads interact. The range of values of
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Fig. 12 Variation of λlp for constant RP (first 2-DOF model)

Fig. 13 Three-dimensional illustration of λlp with respect to Rε and
RP in the region of RP = 1.00 for the first 2-DOF model

the control parameters, for which the new parametric study
is performed, is the following:

RP: 0.90, 0.92, 0.94, 0.96, 0.97, 0.98, 0.99, 0.995, 0.997,
1.00
Rε: 0.25, 0.30, 0.40, 0.50, 0.60, 0.80, 1.00, 1.20, 1.50, 2.00,
2.50, 3.00
εx : 0.001 rad, 0.005 rad, 0.01 rad

In Fig. 13, the variation of the limit point load λlp with
respect to the ratio of initial imperfections Rε and the ratio of
the two buckling loads RP is presented in a three-dimensional
graph. Each surface corresponds to a constant value of εx .

In Figs. 14 and 15, vertical sections of the above graph are
also illustrated. In Fig. 14, the ratio between the initial im-

Fig. 14 Variation of λlp for constant Rε in the region of RP = 1.00
(first 2-DOF model)

Fig. 15 Variation of λlp for constant RP in the region of RP = 1.00
(first 2-DOF model)
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perfections Rε is constant, while in Fig. 15, the ratio between
the buckling loads RP remains fixed.

2.3 Approximate Analytical Evaluation of the System’s
Bearing Capacity

By appropriate fitting of the above numerical results, an an-
alytical expression has been derived for determining the sys-
tem’s strength with respect to the initial imperfection εx , the
ratio between the initial imperfections Rε and the ratio be-
tween the buckling loads RP:

λlp = [−0.0069 ln(εx ) + 1.353] exp[−(3.2663εx

+0.3555)RP ] exp(−εx Rε) (5)

The results obtained from Eq. (5) are very close to those
derived from the numerical solution of the equilibrium equa-
tions. The maximum divergence between the two solutions
is in the order of 7 %.

3 2-DOF Model with Stable Post-buckling Behavior

In the second model, the reactions of the rotational springs
are chosen to be proportional to the angles BOC = θ ′

x and
BOD = θ ′

yof the rod’s projections on each plane with the
vertical axis z (Fig. 16). In the case of initial imperfections,
denoted by corresponding inclination ε′

x and ε′
yof the rod

with respect to the vertical position, the springs are consid-
ered to be undeformed, thus their reactions are zero in the
initial inclined position of the rod. The deformation is ex-
pressed with respect to the two rotational degrees of freedom
θ ′

x and θ ′
y , and the equilibrium equations are derived by means

of the energy method, accounting also for geometrical non-
linearities. In the following sections, the formulation of the
model’s equilibrium equations and their numerical treatment
are presented.

Fig. 16 Geometry of the second 2-DOF model

3.1 Formulation of Equilibrium Equations

The geometry of the model is demonstrated in Fig. 16. The
springs exhibit linearly elastic response, with coefficients c′

x
and c′

y in each direction, respectively. The critical loads of
the two independent buckling modes of the system, which
exhibit stable post-buckling response [14], are P ′

cr,x = c′
x/L

and P ′
cr,y = c′

y/L . In an arbitrary position, the rod forms
with the vertical axis z angle equal to θ , the same as in the
first example, while the corresponding initial angle is equal
to ε.

By geometrical formulations, and without making any
simplifying assumption, the exact relationship describing the
geometry of the system is derived:

cos θ = 1√
tan2 θ ′

y + tan2 θ ′
x + 1

(6)

The total potential energy Π of the system can then be written
as:

Π = 1

2
c′

x

(
θ ′

x − ε′
x

)2+ 1

2
c′

y

(
θ ′

y − ε′
y

)2−P L (cos ε − cos θ)

(7)

By setting equal to zero, the derivatives of the total potential
energy with respect to the two degrees of freedom θ ′

x and
θ ′

y , and by normalizing the external force P with respect
to the critical buckling load P ′

cr,y = c′
y/L , the following

equilibrium equations are obtained:

∂Π

∂θ ′
x

= c′
x

c′
y
(θ ′

x − ε′
x ) − λ

tan θ ′
x

(
cos θ ′

x

)−2

(
tan2 θ ′

y + tan2 θ ′
x + 1

)3/2 = 0

(8)

∂Π

∂θ ′
y

= (θ ′
y − ε′

y) − λ
tan θ ′

y

(
cos θ ′

y

)−2

(
tan2 θ ′

y + tan2 θ ′
x + 1

)3/2 = 0 (9)

where λ = P/P ′
cr,y is the normalized load. Each triad θ ′

x , θ ′
y,

λ that satisfies the above equations, constitutes an equilibrium
position of the system.

3.2 Numerical Treatment of Equilibrium Equations

The numerical solution of Eqs. (8), (9) was performed fol-
lowing the same process and selecting the same control pa-
rameters described in Sect. 2.2. By substituting the selected
values of RP, Rε and ε′

x , the curves of Figs. 17 and 18 are
obtained for two different cases:

1. RP = 1.00, Rε = 1.00, ε′
x = 0.001 rad

2. RP = 0.25, Rε = 0.25, ε′
x = 0.001 rad
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Fig. 17 Equilibrium paths of second 2-DOF model for RP =
1.00, Rε = 1.00, ε′

x = 0.001 rad

Fig. 18 Equilibrium paths of second 2-DOF model for RP =
0.25, Rε = 0.25, ε′

x = 0.001 rad

The post-buckling behavior of the 2-DOF system proves
to be stable for all chosen values of the control parameters. In
the first case (Fig. 17), the system’s response is totally sym-
metric in both directions, as expected. In the second case
(Fig. 18), the rod is initially deformed mainly in x-direction
due to the increased initial imperfection ε′

x , but subsequently
the deformation in y-direction dominates, which is the crit-
ical one, as it corresponds to a lower buckling load. In such
systems, whose post-buckling equilibrium paths are stable,
the effect of initial imperfections proves to be insignificant
for the elastic post-buckling response beyond a certain load
level.

4 First Example of Built-Up Column: In-Plane Behavior

Built-up columns are well known for exhibiting buckling
mode interaction and imperfection sensitivity. The effect of
the interaction between global and local buckling in built-up
members has been investigated by many researchers, among
them by Bažant and Cedolin [1], Svensson and Kragerup

Fig. 19 First examined built-up column

[19], Miller and Hedgepeth [20] and recently by Kalochairetis
and Gantes [21]. In this example, a simply supported laced
built-up column under compressive load is investigated, in or-
der to demonstrate the buckling mode interaction between the
local buckling of the flanges and the in-plane global buckling,
considering linearly elastic material behavior. The geome-
try and the section properties of the system are shown in
Fig. 19.

4.1 Critical Buckling Loads

The buckling loads of the in-plane global and flanges local
buckling are first calculated according to the EC3 provisions
[22] concerning built-up columns. Global buckling of the
member occurs at load level:

Pcr,g,EC3 = 1
1

PE
+ 1

SV

= 1,894 kN (10)

where PE is the Euler critical buckling load and SV the shear
rigidity of the built-up column. The Euler critical load is
given by:

PE = π2 E Ieff

(kL)2 = 2,674 kN (11)

where E Ieff is the effective bending rigidity of the column
and k the effective length factor. The effective bending rigid-
ity is primarily due to the Steiner term of the moment of
inertia of the cross-section and is given by:
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Fig. 20 Global and local in-plane buckling modes of built-up column
from FEM linearized buckling analysis (first example)

E Ieff = 0.5h2
o E Ach = 4,779 kNm2 (12)

The shear rigidity of the considered laced built-up column is
equal to:

SV = nE Adah2
o

d3 = 6,490 kN (13)

where n is the number of the planes of lacing, Ad is the
cross-sectional area of the lacing bars and d is the length of
diagonal elements.

The column’s flanges buckle as a simply supported rod
and therefore, local buckling occurs at the load level:

Pcr,l,EC3 = 2
π2 E Ich,z

a2 = 1,833 kN (14)

The ratio between the two buckling loads calculated accord-
ing to EC3 can then be obtained as:

n = Pcr,g,EC3

Pcr,l,EC3
= 1.03 (15)

Similar results are obtained making use of software ADINA.
After performing a linearized buckling analysis, the derived
buckling loads are Pcr,g,FEM = 1,812 kN and Pcr,l,FEM =
1,861 kN. Thus, the ratio between the numerically calculated
buckling loads is obtained as:

n = Pcr,g,FEM

Pcr,l,FEM
= 0.97 (16)

The corresponding buckling modes are shown in Fig. 20.

Fig. 21 Equilibrium path and deformation of local buckling of built-up
column (first example)

Fig. 22 Equilibrium path and deformation of in-plane global buckling
of built-up column (first example)

4.2 Geometrically Nonlinear Finite Element Analyses

In the present section, geometrically nonlinear elastic analy-
ses in the presence of initial imperfections (GNIA) are per-
formed with the finite element software ADINA, in order to
investigate the stability of the column’s post-buckling equi-
librium path. The two independent buckling modes exhibit
stable post-buckling behavior, as shown in Figs. 21 and 22.
The vertical axis represents the load normalized with respect
to the local (Fig. 21) or global (Fig. 22) buckling load, re-
spectively. In order to avoid global buckling, the horizon-
tal displacement of the lacing joints of flanges is restrained.
Thus, the column’s flanges are allowed to buckle locally. On
the other hand, local buckling was prevented by modeling
the equivalent solid section of the built-up column, account-
ing also for the effect of shear deformations, so that all local
buckling phenomena are eliminated.

Subsequently, the coupled behavior of the column is in-
vestigated. The imposed global and local imperfections are
chosen to be equal to the buckling length divided by 500.
Thus, global imperfection is equal to εg = L/500 = 8.4 mm
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Fig. 23 Equilibrium path and deformation of built-up column exhibit-
ing interaction between local and in-plane global buckling (first exam-
ple)

(according to the first buckling mode) and local imperfection
is equal to εl = a/500 = 1.2 mm (according to the second
buckling mode), respectively. The vertical axis represents the
load normalized with respect to the global buckling load. The
post-buckling equilibrium path proves to be unstable despite
the stability of both independent buckling modes, as shown
in Fig. 23. From the deformed shape at the limit point, it is
evident that failure is characterized by coupling of local and
global buckling. The limit point load is approximately equal
to 70 % of the first critical buckling load for the chosen initial
imperfections. The post-buckling response of the considered
built-up column is similar to the corresponding one of the
first among the two studied 2-DOF models.

Then, a series of parametric analyses are carried out in
order to investigate the influence of coupling phenomena and
initial imperfections on the column’s behavior. The control
parameters are the ratio between the buckling loads n =
Pcr,g,FEM/Pcr,l,FEM, as well as the global and local initial
imperfections. The change of ratio n is achieved by variation
of the section properties of the flanges. The range of values of
the control parameters, for which the analyses are performed,
is the following:

n: 0.50, 0.67, 0.91, 0.97, 0.99, 1.00, 1.02, 1.04, 1.15, 1.52,
1.92
εl: 0, 0.0006 m, 0.0012 m, 0.0024 m
εg: 0.0021 m, 0.0042 m, 0.0084 m, 0.0168 m

The built-up column exhibits unstable post-buckling be-
havior for all values of the control parameters. In Fig. 24, the
variation of the limit point load normalized with respect to the
minimum buckling load is presented in a three-dimensional
graph for a wide range of values of the ratio n between the
two buckling loads and the local initial imperfection εl. Each

Fig. 24 Three-dimensional illustration of limit point load λlp with re-
spect to the buckling loads ratio n and the local imperfection εl for the
first built-up column (in-plane behavior)

Fig. 25 Variation of λlp for constant εl for the first built-up column
(in-plane behavior)

surface corresponds to a constant value of the global initial
imperfection εg.

In addition, vertical sections of the above graph are plot-
ted in order to provide a deeper insight into the problem.
In Fig. 25, the initial imperfection εl is constant and the
limit point load λlp with respect to buckling loads’ ratio n
is demonstrated in a two-dimensional graph. In Fig. 26, the
ratio n between the buckling loads remains constant and the
limit point load λlp with respect to the local initial imperfec-
tion εl is presented.

Then, the imperfection sensitivity diagrams are demon-
strated in Fig. 27. The vertical axis represents the limit point
load Pmax normalized with respect to the local buckling load
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Fig. 26 Variation of λlp for constant n for the first built-up column
(in-plane behavior)

Pcr,l,FEM, while the horizontal axis represents the buckling
modes ratio n.

Based on this parametric study, it can be concluded that as
the ratio between the buckling loads n approaches unity, the
system’s bearing capacity decreases due to buckling mode
interaction. The limit point load λlp when n = 0.50, εl =

Fig. 27 Imperfection sensitivity diagrams for the first built-up column
(in-plane behavior)

0.0024m, εg = 0.0168 m is equal to 0.82, while when n =
1.00, εl = 0.0024 m, εg = 0.0168 m, λlp is equal to 0.49.
It is also demonstrated that local buckling is more critical
than in-plane global buckling for such columns. The coupling
phenomena are more intense when the local buckling load is
smaller than the global one, accompanied by a larger reduc-
tion in the column’s bearing capacity. The effect of global
initial imperfections remains similar for all values of control
parameters, even if the two buckling loads interact. Lastly,
the column proves to be very sensitive to the increase of the
local initial imperfection, leading to a decrease of the struc-
ture’s strength up to 34 %. This sensitivity becomes more
intense as the ratio n approaches unity.

5 Second Example of Built-Up Column: In- and
Out-of-Plane Behavior

In the second example, a similar built-up column with dif-
ferent section properties is studied but out-of-plane defor-
mations are now allowed. The geometry and section of the
flanges are appropriately chosen in order to avoid in-plane
local buckling. Thus, interaction between in-plane and out-
of-plane global buckling is investigated. The column is sim-
ulated by its equivalent solid section taking into considera-
tion the effect of the in-plane shear deformations, in order to
avoid any local buckling phenomena that could modify the
system’s response.
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Fig. 28 In-plane and out-of-plane global buckling modes of built-up
column from FEM linearized buckling analysis (second example)

5.1 Critical Buckling Loads

Performing a linearized buckling analysis using the software
ADINA, the derived buckling loads are Pcr,x = 6,985 kN,
representing in-plane global buckling, and Pcr,y = 7,011 kN
associated with out-of-plane global buckling. Therefore, the
ratio between the buckling loads is obtained equal to:

m = Pcr,x

Pcr,y
= 1.00 (17)

The corresponding buckling modes are shown in Fig. 28.

5.2 Geometrically Nonlinear Finite Element Analyses

Subsequently, geometrically nonlinear analyses are
performed in order to investigate the stability of the column’s
post-buckling equilibrium path. The two independent global
buckling modes exhibit stable post-buckling behavior, as has
been shown for the in-plane case in Sect. 4.2 (Fig. 22). A se-
ries of parametric analyses are carried out in order to examine
the effect of buckling mode interaction and initial imperfec-
tions on the system’s response. The control parameters are
the ratio between the buckling loads m = Pcr,x/Pcr,y , and
the in-plane and out-of-plane global initial imperfection, εx

and εy , respectively. The change of the ratio m is achieved
by variation of the flanges section properties. The values of
the control parameters, for which the analyses are performed,
are the following:

1. m: 0.55, 1.00, 1.99
2. εx : 0, 0.0042 m, 0.0084 m
3. εy : 0.0021 m, 0.0042 m, 0.0084 m

In Figs. 29, 30 and 31, the system’s post-buckling equi-
librium paths for different values of the control parameters

Fig. 29 Equilibrium paths for constant values m = 0.55 and εx = 0
(second example)

are demonstrated. The vertical axis represents the load nor-
malized with respect to the first buckling load. Each curve
corresponds to a different value of the out-of-plane global
initial imperfection εy .

In contrast to the previous example, the post-buckling be-
havior of the second built-up column proves to be stable for
all values of the control parameters, similarly to the second
2-DOF model discussed in Sect. 3. Thus, the influence of
the magnitude of initial imperfections on the system’s elastic
post-buckling response is insignificant above a certain load
level. In addition, the coupling phenomena prove to be in-
capable of modifying the equilibrium path’s stability. In any
case, the deformation in the critical direction, which corre-
sponds to the minimum buckling load, dominates.

6 Summary and Conclusions

The well-known fact that two independent stable buckling
modes can interact in the presence of imperfections has been
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Fig. 30 Equilibrium paths for constant values m = 1.00 and εx = 0
(second example)

first demonstrated for simple 2-DOF structural systems de-
rived from Augusti’s model. By employing large displace-
ment analysis and avoiding mathematical simplifications that
are commonly adopted in pertinent studies, it has been shown
that this interaction may result either in stable or unstable
post-buckling response.

This is then verified by two examples of built-up columns,
a structural typology which is well known to exhibit buckling
mode interaction. Depending on the kind of the coupled buck-
ling modes, the column’s elastic post-buckling equilibrium
path can be either stable or unstable. In the case of instability,
encountered for coupling between global and local in-plane
modes, the buckling mode interaction leads to a significant
reduction of the system’s bearing capacity, which is accom-
panied by increased imperfection sensitivity. In the case of
stability, exhibited for coupling between in- and out-of-plane
global buckling modes, the effect of coupling phenomena
and imperfections proves to be insignificant and incapable
of modifying the equilibrium path’s stability. It should be
noted that material nonlinearity, which is an additional very

Fig. 31 Equilibrium paths for constant values m = 1.99 and εx =
0.0042 m (second example)

important factor for determining bearing capacity of built-up
columns, has not been taken into account in this investigation.

References

1. Bažant, Z.P.; Cedolin, L.: Stability of Structures. Oxford University
Press, Oxford (1991)

2. Chilver, A.H.: Coupled modes of elastic buckling. J. Mech. Phys.
Solids 15, 15–28 (1967)

3. Koiter, W.T.: On the stability of elastic equilibrium. Dissertation,
Holland, Delft (1945)

4. Supple, W.J.: Coupled branching configurations in the elastic buck-
ling of symmetric structural systems. Int. J. Mech. Sci. 9, 97–
112 (1967)

5. Johns, K.C.; Chilver, A.H.: Multiple path generation at coincident
branching points. Int. J. Mech. Sci. 13, 889–910 (1971)

6. Roorda, J.: Stability of structures with small imperfections. J. Eng.
Mech. Div. (ASCE) 91(1), 87–106 (1965)

7. Ho, D.: Higher order approximations in the calculation of elas-
tic buckling loads of imperfect systems. Int. J. Non Linear
Mech. 6, 649–661 (1971)

123



8572 Arab J Sci Eng (2014) 39:8559–8572

8. Thompson, J.M.T.: A new approach to elastic branching analysis. J.
Mech. Phys. Solids 18, 29–42 (1970)

9. Supple, W.J.: Initial post-buckling behaviour of a class of elastic
structural systems. Int. J. Non Linear Mech. 4, 23–36 (1969)

10. Ho, D.: The influence of imperfections on systems with coincident
buckling loads. Int. J. Non Linear Mech. 7, 311–321 (1972)

11. Ho, D.: Buckling load of non-linear systems with multiple eigen-
values. Int. J. Solids Struct. 10, 1315–1330 (1974)

12. Johns, K.C.: Imperfection sensitivity of coincident buckling sys-
tems. Int. J. Non Linear Mech. 9, 1–21 (1974)

13. Gioncu, V.: General theory of coupled instabilities. Thin Wall.
Struct. 19, 81–127 (1994)

14. Augusti, G.: Stabilita di strutture elastiche elementari in presenza di
grandi spostamenti. Atti dell’ Accademia Scienze fisiche e matem-
atiche. Napoli 4(5) (1964)

15. ADINA system 8.5. Release Notes. ADINA R&D Inc. (2008)
16. Livanou, M.A.; Gantes, C.J.; Avraam, T.P.: Revisiting the prob-

lem of buckling mode interaction in 2-DOF models and built-up
columns. In: Obre bski, J.B.; Tarczewski, R. (eds.) Proceeding of
International Association for Shell and Spatial Structures (IASS)
Symposium. “Beyond the Limits of Man”, Wroclaw (2013)

17. MATLAB R2008b. The MathWorks Inc. (2008)
18. Crisfield, M.A.: A fast incremental/iterative solution procedure that

handles “snap-through”. Comput. Struct. 13, 55–62 (1981)
19. Svensson, S.E.; Kragerup, J.: Collapse loads of laced columns. J.

Struct. Div. (ASCE) 108(ST6), 1367–1384 (1982)
20. Miller, R.K.; Hedgepeth, J.M.: The buckling of lattice columns with

stochastic imperfections. Int. J. Solids Struct. 15, 73–84 (1979)
21. Kalochairetis, K.E.; Gantes, C.J.: Numerical and analytical in-

vestigation of collapse loads of laced built-up columns. Comput.
Struct. 89, 1166–1176 (2011)

22. Eurocode 3: Design of steel structures. Part 1.1: General structural
rules. CEN-European Committee for Standardisation. EN1993-1-
1. Brussels (2002)

123


	New Insight into Interaction of Buckling Modes with Stable Post-buckling Response
	Abstract
	1 Introduction
	2 2-DOF Model with Unstable Post-buckling Behavior
	2.1 Formulation of Equilibrium Equations
	2.2 Numerical Treatment of Equilibrium Equations
	2.3 Approximate Analytical Evaluation of the System's Bearing Capacity

	3 2-DOF Model with Stable Post-buckling Behavior
	3.1 Formulation of Equilibrium Equations
	3.2 Numerical Treatment of Equilibrium Equations

	4 First Example of Built-Up Column: In-Plane Behavior
	4.1 Critical Buckling Loads
	4.2 Geometrically Nonlinear Finite Element Analyses

	5 Second Example of Built-Up Column: In- and Out-of-Plane Behavior
	5.1 Critical Buckling Loads
	5.2 Geometrically Nonlinear Finite Element Analyses

	6 Summary and Conclusions
	References


