
Arab J Sci Eng (2014) 39:7907–7921
DOI 10.1007/s13369-014-1406-y

RESEARCH ARTICLE - COMPUTER ENGINEERING AND COMPUTER SCIENCE

A Generic Paradigm for Accelerating Laplacian-Based Mesh
Smoothing on the GPU

Gang Mei · John C. Tipper · Nengxiong Xu

Received: 4 February 2014 / Accepted: 30 May 2014 / Published online: 12 October 2014
© King Fahd University of Petroleum and Minerals 2014

Abstract General purpose computing on Graphics Proces-
sor Units (GPGPU) can significantly reduce computational
cost by performing massively parallel computing. The ben-
efits of GPGPU have been exploited in mesh generation and
mesh optimization. Mesh smoothing is one of the most popu-
lar approaches that are capable of improving mesh quality by
repositioning nodes in meshes without altering the topology
of meshes. In this paper, specifically aiming at Laplacian-
based mesh smoothing, a generic paradigm for exploiting
the power of GPU-acceleration is developed to improve the
computational efficiency. The data layouts for representing
mesh data structures on the GPU are first discussed; and
then a practical solution to dealing with the data dependen-
cies in the iterative smoothing procedure is introduced. Two
forms of iteration in Laplacian smoothing (LS) are also ana-
lyzed, including the form that needs to swap intermediate
nodal coordinates and the other form that does not swap data.
In addition, the standard LS is implemented to demonstrate
the effectiveness of the presented paradigm. Experimental
results show that: on single and double precision, the GPU
implementations developed using the data structures repre-
sented by aligned array-of-structures layout achieve the best
efficiency. It is also demonstrated that the form that needs to
swap intermediate nodal coordinates is always slower than
the one that does not swap data.

G. Mei (B) · N. Xu
School of Engineering and Technology, China University of
Geosciences (Beijing), Beijing 100083, China
e-mail: gangmeiphd@gmail.com

G. Mei · J. C. Tipper
Institute of Earth and Environmental Science, University
of Freiburg, Albertstr. 23B, 79104 Freiburg, Germany

Keywords GPU · Mesh smoothing · Iteration ·
Data layout · Data dependencies

1 Introduction

General purpose computing on modern Graphics Processor
Units (GPGPU) can significantly reduce computational cost
by performing massively parallel computing. The GPU archi-
tecture is ideally suitable for data-parallel computations with
high arithmetic intensity such as numerical computations and
related applications. For example, the benefits of GPGPU
have been exploited in computational fluid dynamics [1,2],
mesh generation [3,4], and mesh optimization [5,6] by using

123

7908 Arab J Sci Eng (2014) 39:7907–7921

GPU programming models such as CUDA [7] and OpenCL
[8].

In numerical analysis such as FEM, the quality of com-
putational meshes plays a key role on the accuracy and effi-
ciency of final results [9–11]. Therefore, numerous mesh gen-
eration approaches have been proposed to obtain high qual-
ity meshes; see a survey in [12]. In addition, original meshes
are needed to be optimized after being created to improve
the mesh quality. A variety of methods have been developed
to deal with this issue. Mesh smoothing is one of the most
commonly used strategies for improving the mesh quality by
adjusting the positions of mesh vertices/nodes without alter-
ing the topology of the mesh. The basic idea behind mesh
smoothing is to make a mesh achieve its highest quality by
repositioning all vertices in the mesh.

Mesh smoothing for large meshes are generally computa-
tional expensive. In order to reduce the computational time
cost, several efforts have been carried out to implement mesh
smoothing in parallel on shared-/distributed- memory com-
puters. For example, Freitag et al. [13] designed a parallel
algorithm for smoothing independent sets of vertices simul-
taneously on a parallel random access machine (PRAM)
model. Jiao et al. [14] developed a parallel feature preserving
mesh smoothing algorithm for surface meshes on distributed
memory computers with up to 128 processors. Gorman et al.
[15] presented an optimization based mesh smoothing algo-
rithm for anisotropic mesh adaptivity by using hybrid Open-
MP/MPI programming methods and graph coloring. Bentez
et al. [16] proposed a new parallel algorithm for simulta-
neous untangling and smoothing of tetrahedral meshes by
taking advantage of OpenMP on many-core shared mem-
ory computers. Most recently, Sastry and Shontz [17] devel-
oped a parallel log barrier mesh untangling and mesh qual-
ity improvement algorithm for distributed-memory machines
using OpenMPI 2.0.

Most of the above implementations of mesh smoothing are
conducted using the parallel programming models OpenMP
and/or MPI. These parallel implementations are fast and
effective; but an obvious problem is that high performance
computers or clusters are needed to develop such implemen-
tations, which leads to high resource cost. An alternative and
practical solution is to develop the parallel implementations
on modern GPUs since massively parallel computing per-
formed on GPUs requires relatively low cost.

D’Amato and Lotito [18] proposed an efficient and par-
allelizable method to perform mesh optimizations including
mesh smoothing and topological changes for surface trian-
gular meshes on the GPU. In combination with matrix-based
multigrid methods, Heuveline et al. [19] developed paral-
lel smoothers for smoothing unstructured, locally refined
meshes using multicore CPUs and GPUs. Based on a
GPU mesh smoothing filter, Monch et al. [20] designed an

OpenGL-based mesh smoothing filter for surface mesh mod-
els derived from medical image data.

In order to guarantee that there are no inverted elements
created in mesh smoothing and mesh quality is constantly
improved, D’Amato and Vnere [5] proposed an efficient but
expensive strategy for smoothing tetrahedral meshes: when
moving a node to improve the quality of a set of local ele-
ments, several “candidate positions” are first created accord-
ing to the distances to the original location; and then the best
position will be selected by comparing the quality of local
elements.

The studies described above are mostly problem-specific
and based on vertices’ movement. Among the mesh smooth-
ing approaches that are computationally iterative and vertex-
based, the most popular and simplest method is Laplacian
smoothing, which in its original form [21] moves each node
to be at the average of its incident neighboring nodes.

A key design issue for generating efficient GPU code is the
form in which data should be organized. There are generally
two major choices of the data layout: the array-of-structures
(AoS) and the structure-of-arrays (SoA); see Fig. 3. Orga-
nizing data in AoS layout leads to coalescing issues as the
data are interleaved, while the organizing of data according
to the SoA layout can typically make full use of the memory
bandwidth since there is no data interleaving. Furthermore,
global memory accesses are always coalesced when using
the SoA layout.

In this paper, specifically aiming at the Laplacian-based
mesh smoothing, a generic paradigm for utilizing the power
of a single NVIDIA GPU is developed to improve the com-
putational efficiency by using the GPU programming model
CUDA [7]. The data layouts such as AoS and SoA for rep-
resenting mesh data structures on the GPU are first dis-
cussed; and then a practical solution to dealing with the
data dependencies in the iterative mesh smoothing process
is introduced. Two forms of iteration in mesh smoothing
also analyzed by comparing the performances when select-
ing different intermediate data (i.e., the coordinates of all
vertices in previous pass of iteration, or alternately in the
current pass) for calculating the smoothed vertices’ posi-
tions. In addition, the standard Laplacian smoothing is imple-
mented to demonstrate the effectiveness of the proposed
paradigm.

The rest of this paper is organized as follows. Section 2
gives a brief introduction to the Laplacian mesh smoothing.
Section 3 introduces the generic paradigm for accelerating
Laplacian-based mesh smoothing on the GPU. Section 4 con-
centrates mainly on the presented GPU implementations of
the standard Laplacian smoothing using three sets of mesh
data structures represented by different data layouts. Sec-
tion 5 presents several experimental tests and discusses the
results. Finally, Sect. 6 draws some conclusions.

123

Arab J Sci Eng (2014) 39:7907–7921 7909

2 Laplacian Mesh Smoothing

Mesh smoothing is one of the most popular approaches that
are capable of improving mesh quality by repositioning nodes
/vertices in meshes while keeping the mesh topology
unchanged. One of the widely used mesh smoothing method
is the Laplacian smoothing [21], which relocates each node
in a mesh to the geometric center of its neighboring nodes.
Laplacian smoothing is straightforward and easy to imple-
ment but does not always guarantee improvement in mesh
quality. In fact, it is possible to create inverted or even
invalid elements in concave regions. Hence, various varia-
tions such as the weighted Laplacian smoothing [22,23] and
constrained / smart Laplacian smoothing [24,25] have been
developed to improve the performance of the original form
of Laplacian smoothing.

2.1 Commonly-Used Variations

2.1.1 Standard Laplacian Smoothing

In the standard form of Laplacian smoothing [21], a newly
smoothed position of a node in a mesh is directly the geo-
metric center of its neighbors (i.e., incident nodes). More
formally, the smoothing operation can be simply described
as follows:

xi = 1

N

N∑

j=1

x j , (1)

where N is the number of neighboring nodes to node i ,
and xi is the new position for node i .

2.1.2 Weighted Laplacian Smoothing

An improved version of the standard Laplacian smoothing
is the weighted variation [22], where the weights are cal-
culated according to some kinds of factors such as edge-
length or face-area. For example, the length-weighted Lapla-
cian smoothing calculates the weights according to the length
of edges that locate around the mesh node being smoothed.
Therefore, this variation is highly sensitive to element edge
lengths and attempts to average these lengths to form better
shaped elements. However, similar to the standard version,
the length-weighted Laplacian smoothing still has difficul-
ties when smoothing elements in the concave regions. The
smoothing operation of the weighted Laplacian smoothing
can be simply described as follows:

xi =
N∑

j=1

ω j · x j ,

N∑

j=1

ω j = 1, (2)

where N is the number of neighboring nodes to node i ,
and xi is the new position for node i, ω j is the weight for
the neighboring node j . Obviously, The standard Laplacian
smoothing is the special and simpler form of weighted ver-
sion, in which all the weights for a vertex are equivalent (i.e.,
ω j = 1/N).

2.1.3 Smart Laplacian Smoothing

As mentioned above, inverted or even invalid elements are
possibly created in highly concave regions when using Lapla-
cian smoothing. This negative behavior is certainly needed
to be avoided. An effective solution to the above problem is
to check whether there is an improvement in mesh quality
when repositioning a node. This solution is ”smart” to deter-
mine whether or not to relocate a node; and the variation in
this case is referred to as smart Laplacian smoothing [24].

The basic idea behind smart Laplacian smoothing is sim-
ple. For a node being smoothed, a patch of elements sharing
this node are first recorded and accessed the mesh quality.
Then a newly smoothed position of this node is calculated
according to the Laplacian smoothing operations such as the
ones described in Eqs. (1) and (2). The quality of the patch
is assessed again using the new nodal position. If there is an
improvement in the quality of the elements in the patch, the
new nodal position will be accepted; otherwise, the node will
not be relocated. In short, smart Laplacian smoothing relo-
cates a node at a new position only when the mesh quality is
improved.

2.2 Iteration Forms

When calculating the smoothed coordinates of vertices
according to the smoothing operations, there are typically
two forms in terms of selecting the coordinates of neigh-
boring nodes. More specifically, in one pass of iteratively
calculating all smoothed nodal positions, the coordinates of
neighboring nodes to a smoothed node can be derived from:
(1) the old coordinates calculated in previous pass of iterat-
ing, and (2) the new coordinates that have been calculated in
current pass of iterating. For example, when calculating the
smoothed coordinates xi of the node i in the iteration pass
(q + 1), the coordinates of the neighboring nodes to the node
i can be completely derived from the previous iteration pass
q or partially derived from both the previous iteration pass q
and the current iteration pass (q + 1). The above two forms of
the standard Laplacian smoothing can be simply illustrated
using the following formulations.

Form A:

xq+1
i = 1

N

N∑

j=1

xq
j , (3)

123

7910 Arab J Sci Eng (2014) 39:7907–7921

where N is the number of neighboring nodes to node i and

xq+1
i is the new position for node i in the iteration pass (q + 1).

Form B:

xq+1
i = 1

N

⎛

⎝
Nq∑

j=1

xq
j +

Nq+1∑

k=1

xq+1
k

⎞

⎠ ,

⎧
⎨

⎩

0 � Nq � N
0 � Nq+1 � N
Nq + Nq+1 = N

,

(4)

where N is the number of neighboring nodes to node i and

xq+1
i is the new position for node i in the iteration pass (q + 1).

Nq and Nq+1 are numbers of neighboring nodes derived from
the iteration passes q and (q+1), respectively. Obviously, the
Form A is a special case of the Form B where Nq+1 = 0.

3 The Paradigm

3.1 The Working Process

Laplacian smoothing is an iterative process, where in each
step every vertex of the mesh is moved to the barycenter of its
neighbors. In this context, boundary vertices of the mesh are
constrained not to be moved, but internal vertices are simul-
taneously moved to the averaging center of its neighboring
vertices. And then the process is iterated a number of times.

According to the working process of Laplacian mesh
smoothing, the entire procedure can be divided into four sub-
procedures. Each sub-procedure is responsible for perform-
ing a task in the process of Laplacian smoothing that can
be parallelized on the GPU; and each sub-procedure is then
mapped to a CUDA kernel; see Fig. 1. The ideas and consid-
erations behind those four sub-procedures will be described
in more details.

3.1.1 Finding Neighbors

Typically, in Laplacian mesh smoothing, the neighbors (i.e.,
adjacent nodes) of each mesh node need to be found before

Mesh stored in global memory

Find
neighbors

Determine
constraints Iterate

Kernel 1 Kernel 2 Kernel 3 Kernel 4

Read & Write

Fig. 1 The working process

iteratively calculating the smoothed nodal location. A Brute-
Force method is to loop over all elements and check which
elements contain a specific node; and thus it needs to loop n
times, where n is the number of vertices.

An improved and practical approach is to find the neigh-
bors according to the topology of elements. For example,
for a triangle, both the second and the third vertices are the
neighbors of the first vertices; for a quadrilateral, the sec-
ond and the fourth vertices are the neighbors of the first ver-
tex. In this approach, only one time of looping over all ele-
ments is needed. The neighbors of a vertex in an elements can
be directly determined according to the connectivity of the
element.

The above method is well suited to be implemented in
sequential programming pattern on CPU. When program-
ming on the GPU, a potential useful consideration is that
whether it is possible to determine the neighbors for all ver-
tices in parallel. For example, if there are m elements, then m
threads will be allocated; and each thread is responsible for
finding the neighbors of each vertex within only one element.

This idea seems to be effective. However, a problem arises
due to the data conflict. For a mesh node, a private array is
usually allocated to store the indices of its neighboring nodes.
When only one thread finds one of the node’s neighbors and
then writes the index of the neighbor into the private array for
storing, there is only one operation of writing in this case, and
thus there is no data conflict. Unfortunately, the above safe
condition cannot be guaranteed in parallel pattern: there are
probably more than two threads finding and then writing the
indices of the neighboring nodes into the same element of the
same array (i.e., the same memory address) simultaneously.
Hence, data conflict arises and eventually leads to failures.

In order to deal with the above problem, the practical
approach that is generally implemented in sequential pro-
gramming pattern is still adopted. However, it is implemented
on the GPU rather than on the CPU; and only one thread and
one thread block is allocated to determine the neighbors of all
vertices. Obviously, this solution is inefficient but effective.

3.1.2 Determining Constrained Vertices

In all types of mesh smoothing, constrained vertices are those
nodes that cannot be moved completely freely. Those ver-
tices (1) cannot be moved or (2) can only be relocated while
meeting some constraints such as lying on a plane. These
constrained vertices are used to preserve the features such
as shape and volume of mesh models being smoothed. Typ-
ically, constrained vertices are derived from (1) boundary
of mesh models and (2) user-specified constraints such as
fixed edges or faces. More sources of constrained vertices
are usually needed to be determined according to the type of
meshes (e.g., planar mesh, surface mesh, or volume mesh).
In this paper, only the Laplacian-based mesh smoothing

123

Arab J Sci Eng (2014) 39:7907–7921 7911

Fig. 2 Determining boundary
vertices according to neighbors

v1

v0

v2

v3

v4

v5

T1

T2

T3T4

T5

v0

v1

v2

v3

v4

v5

T1

T2

T3

T4

(b)(a)

approaches applied for planar meshes are discussed. Thus,
the constrained vertices are only the boundary nodes.

Before determining the boundary vertices, the neighbor-
ing nodes of each vertex have been found in previous step. An
efficient method for checking whether a node is a boundary
one is to take advantage of its neighbors. For example, for
the node v0 in Fig. 2a, its neighbors are the nodes {v1, v2},
{v2, v3}, {v3, v4}, {v4, v5}, and {v5, v1}. Each of its neigh-
bors are recorded twice due to calculating from two adjacent
triangles. In other words, any edge containing a internal ver-
tex would be shared by two adjacent triangles. Therefore,
the basic idea behind determining the boundary vertices is
straightforward: if all the neighbors of a vertex, e.g., the node
v0 in Fig. 2a, have been recorded twice, then the vertex is
internal; otherwise, it is a boundary vertex (e.g., the node v0

in Fig. 2b).
Obviously, the above approach for determining boundary

vertices can be easily implemented in parallel on the GPU: if
there are n vertices in a mesh, then n threads need to be allo-
cated; and each thread is responsible for checking a vertex
whether it is boundary vertex or not. The indices of neighbor-
ing nodes of each vertex are stored in an array that is owned
by the target vertex, and thus can be accessed without having
conflicts with that of other vertices.

3.1.3 Iterating

Laplacian smoothing is computationally iterative. The itera-
tive process of calculating smoothed nodal positions can be
very easily implemented in sequential programming pattern.
However, when programming parallel computations on the
GPU, the procedure of iterating in Laplacian smoothing is
not easy to implement. Several important issues need to be
carefully handled.

The first issue that needs to be considered is the data depen-
dency. In each pass of iteration, the new smoothed nodal posi-
tions are calculated according to the old nodal coordinates
obtained in previous pass of iteration. Thus, in the parallel

implementation of Laplacian smoothing on the GPU, the next
pass of iteration can only be performed when all the threads
have finished their calculating of smoothed positions in the
previous pass of iteration.

However, the above condition cannot be guaranteed in
practice. This is due to the inherent features of current GPU
programming model: in CUDA, a set of threads are grouped
into thread blocks; all threads within the same thread block
can be synchronized; but the synchronization between dif-
ferent thread blocks does not exist. If threads are grouped
into more than one block, then the computations carried out
by all threads cannot be guaranteed to be finished at a user-
specified moment. In short, there is no barrier of synchro-
nization between thread blocks.

A practical solution to above problem is to map the cal-
culating of smoothed nodal positions into only one block.
More specifically, each thread within the only one block is
responsible for calculating the smoothed positions of sev-
eral nodes; and thus the calculation of new positions for all
vertices can be synchronized in one iteration step. For exam-
ple, assuming there are 2,048 vertices being smoothed, each
thread is responsible for calculating the smoothed locations
of 4 vertices when there are 512 threads allocated in the
thread block. Before calculating the next pass of smoothed
positions of the total 2,048 vertices, current pass of calcula-
tion can be guaranteed to be completely finished using the
barrier __syncthreads().

3.2 Key Issues in Design

3.2.1 Data Layout in Memory

A key design issue for generating efficient GPU code is the
form in which data should be organized when operating on
multi-valued data such as sets of points or pixels. In general,
there are two major choices of the data layout: the AoS and
the SoA; see Fig. 3.

123

7912 Arab J Sci Eng (2014) 39:7907–7921

struct Pt {
float x;
float y;

};
struct Pt myPts[N];

struct Pt {
float x[N];
float y[N];

};
struct Pt myPts;

(b)(a)

Fig. 3 Data layouts: a AoS and b SoA

Organizing data in AoS layout leads to coalescing issues
as the data are interleaved. For example, without forcing to
be aligned (e.g., having not to use the alignment specifier
__align__() in CUDA), performing an operation on a
set of 2D points illustrated in Fig. 3a that only requires the
variable x will result in a 50 % loss of bandwidth and waste
of L2 cache memory.

In contrast, the organizing of data according to the SoA
layout (see Fig. 3b) can typically make full use of the memory
bandwidth since there is no data interleaving. In addition,
global memory accesses are always coalesced when using
this type of data layout; and usually high global memory
performance can be achieved.

The SoA data layout is beneficial in many application
cases. Farber [26] suggested that from a GPU performance
perspective, it is preferable to use the SoA layout. This argu-
ment was demonstrated by the example of sorting SoA and
AoS structures with Thrust; it was reported that a 5-times
speedup can be achieved by using a SoA data structure over
a AoS data structure [27].

Similarly, in order to evaluate the effective performance
of the two representations, i.e., the SoA and AoS layouts, on
the GPU, Govender et al. [28] ran a simulation of 2 million
particles using their discrete element simulation framework
BLAZE-DEM, and found that AoS is three times slower
than SoA. An opposite argument was presented in [2]. In
the library framework for the solution of unstructured mesh
applications, OP2, Giles et al. [2] and Mudalige et al. [29]
preferred to use the AoS layout to store mesh data for better
memory accesses performance.

And in order to make the data structures represented by
different data layouts flexible in different applications, sev-
eral efforts have been carried out to transform different lay-
outs (e.g., AoS and SoA) to each other [30–33].

The above mentioned applications show that memory
access patterns (e.g., AoS and SoA) are critical for perfor-
mance, especially on parallel architectures such as GPUs.
However, it is not always obvious which data layout will
achieve better performance in a particular application. In this
work, both of the above two data layouts are tested. First,
the mesh data structures represented by both the AoS and
SoA data layouts are designed; and then the standard Lapla-
cian smoothing is implemented using the designed mesh data
structures. Details are described in Sect. 4.

3.2.2 Data Dependencies

A data dependency is a situation in which some calculation
in a program requires the result of a previous calculation.
Data dependencies are typically seen in two forms: (1) one
calculation is dependent on one or more calculations around
it; and (2) there are multiple passes over a dataset and there
exists a dependency from one pass to the next. For example,
a loop that has results from one iteration feeding back into a
future iteration of the same loop is considered to have a data
dependency.

In this work, the research interest is mainly focused on
the second form, i.e., the data dependencies existing in dif-
ferent passes of iterating. Laplacian smoothing is an iterative
procedure. The iterative calculations of the smoothed posi-
tions for all mesh vertices are repeated until converging. In
each pass of iterating, new positions are calculated according
to the smoothed positions calculated in previous pass. Thus,
there exists a data dependency from one pass to the next.

This data dependency issue causes a problem of synchro-
nizing. The next pass of all smoothed positions cannot be
calculated until the previous pass of calculations has been
finished. Therefore, a barrier of synchronization is needed to
guarantee the calculations of all smoothed positions in one
iteration step having been finished before calculating the next
pass of smoothed positions.

However, in CUDA, there is no global barrier of synchro-
nization for all threads. The computations carried out by all
threads within a single kernel can only be guaranteed to be
completely finished after invoking this kernel. A practical
solution to the problem of synchronizing is to map the iter-
ative calculations of all smoothed positions into only one
thread block. Each thread within the thread block is respon-
sible for calculating the smoothed positions of several rather
than one vertex. And the barrier __syncthreads() is
used to guarantee all threads within the only one block fin-
ishing calculating one pass of all smoothed positions. This
solution has been described in Sect. 3.1.3.

Both the Form A and the Form B of Laplacian smoothing
(see Sect. 2.1.1) have data dependencies between two passes
of iteratively calculating the smoothed nodal positions. This
type of data dependency arises between a previous pass and
a next pass, which therefore can be referred to as inter-pass
data dependency.

Different from the Form A, the Form B has another type
of data dependency. As described in Sect. 2.1.1, when calcu-
lating the smoothed position of the node i in the Form B [see
Eq. (4)], the coordinates of neighboring nodes are partially
derived from the old coordinates calculated in the previous
pass and the new coordinates calculated in the current pass.
This means some of the neighboring nodes to the node i
have been smoothed in the current pass of iterating, and then
their newly smoothed coordinates are adopted to calculate

123

Arab J Sci Eng (2014) 39:7907–7921 7913

the smoothed position of the node i . This also means the cal-
culating of the smoothed position of the node i also depends
on which neighbors having been smoothed in the current pass
of iterating. This type of data dependency can be referred to
as in-pass data dependency, which differs from the inter-pass
data dependency.

In the Form B, a problem may arise due to the in-pass
data dependency issue: assuming a thread t0 is calculating
the smoothed position of the node i and another thread t1
is simultaneously calculating the coordinates of one of the
neighbors to the node i , e.g., the node j , thus the memory
storing the coordinates of the node j is being accessed con-
currently by both the threads t0 and t1.

If and only if both the threads t0 and t1 are scheduled within
the same warp (or half-warp on some devices), a data race
condition appears due to concurrent multiple accesses to the
same memory. And in this data race condition, the multiple
accesses are no longer executed in parallel but in sequence.
In addition, the order of thread executions is undefined. In
other words, the thread t0 may first read the memory storing
the coordinates of the node j and then the thread t1 writes
the newly smoothed coordinates of the node j into the mem-
ory; or the thread t1 first writes the new coordinates into the
memory and then accessed by the thread t0. These two cases
cannot be specifically determined in practical executions.

However, no matter which of the above two cases being
performed in practice, the implementation of the Form B
will run correctly. In the first case, the old coordinates of
the node j is used to calculate the smoothed position of the
node i ; and in the second case, the new coordinates of the
node j is used. The differences between the two cases can
be simply thought as follows: in the first case, the number
of the neighbors selected from previous pass of iterating,
i.e., Nq , increases with 1 and correspondingly the number of
neighbors chosen from current pass of iterating, i.e., Nq+1,
decreases with 1; see the Eq. (4). In the second case, the
opposite situation occurs. Therefore, both of the above two
cases are the specific situations of the Form B; and the solu-
tion to the problem caused by in-pass data dependency is not
needed.

4 GPU Implementations of Standard Laplacian
Smoothing

This section will first introduce several groups of mesh data
structures represented by three types of data layouts, i.e.,
the mis-aligned array-of-structures (Mis), the aligned AoS,
and the SoA. And then, some details of four CUDA kernels
in the GPU implementations of Laplacian smoothing will
be described. These GPU implementations are developed on
both single and double precision.

4.1 Mesh Data Structures

Before introducing the data structures for representing planar
triangular meshes on the GPU, the data structures on the CPU
are first described; see the Listing 1. Those three structures
CVert, CTrgl, and CMesh are used to represent a vertex,
a triangle, and a triangular mesh, respectively. The mean-
ings of the components in each structure are also explained.
Noticeably, this group of data structures is quite similar to
the group represented by the layout Mis (Listing 2).

4.1.1 Meshes Represented by the Layout Mis

The data structures of planar triangular mesh are represented
using the Mis layout is illustrated in the Listing 2. Those three
structures cuVert_MIS, cuTrgl_MIS, and cuMesh_
MIS are used to represent a vertex, a triangle, and a trian-
gular mesh, respectively. The meanings of the components
in each structure are also explained. Obviously, the accesses
to global memory when using these data structures are non-
coalesced.

4.1.2 Meshes Represented by the Layout AoS

In CUDA, global memory is accessed via 32-, 64-, or 128-
byte memory transactions. These memory transactions must
be naturally aligned. When a warp executes an instruc-
tion that accesses global memory, it coalesces the memory
accesses of the threads within the warp into one or more of
these memory transactions depending on the size of the word
accessed by each thread and the distribution of the memory
addresses across the threads [7].

To maximize global memory throughput, it is therefore
important to maximize coalescing by using data types that
meet the size and alignment requirement. Any access to data
residing in global memory compiles to a single global mem-
ory instruction if and only if the size of the data type is 1, 2,
4, 8, or 16 bytes and the data is naturally aligned. If this size
and alignment requirement is not fulfilled, the access com-
piles to multiple instructions with interleaved access patterns
that prevent these instructions from fully coalescing [7].

The alignment requirement is automatically fulfilled for
the built-in types like float2 or float4. For structures,
the size and alignment requirements can be enforced by the
compiler using the alignment specifiers __align__(8)
or __align__(16). If structure size exceeds 16 bytes,
it can’t be efficiently read or written, since more than one
global memory non-coalescable load/store instructions will
be generated, even if __align__ option is supplied.

Therefore, the data structures represented by AoS layout
on single precision are first redesigned; then the spefiers are
added into the structures cuVert_AOS and cuTrgl_AOS;
see the Listing 3. Different from the structure cuVert_MIS

123

7914 Arab J Sci Eng (2014) 39:7907–7921

listed in the Listing 2, the component neig[64] is moved
into a separate structure to let the size of cuVert_AOS be
16 bytes.

Similarly, for the data structures represented by AoS lay-
out on double precision, several new data structures with
less components (e.g., cuCoor_AOS and cuInfo_AOS)
are created to meet the size and alignment requirements; see
the Listing 4.

4.1.3 Meshes Represented by the Layout SoA

The data structures of planar triangular mesh are represented
using the SoA layout is listed in the Listing 5. The structures
cuVert_SOA,cuTrgl_SOA, and cuMesh_SOA are used
to represent a vertex, a triangle, and a triangular mesh, respec-
tively. The meanings of the components in each structure are
also explained. When using these data structures, the global
memory accesses are naturally coalesced.

4.2 Implementation Details

4.2.1 The Kernel for Initiating

The first kernel is invoked to initiate the properties of each
mesh vertex, more specifically, to set (1) all vertices as inter-
nal rather than boundary vertices and (2) the number of neigh-
bors to each vertex as zero. The implementation of this kernel
is quite straightforward; and each thread takes responsibili-
ties for initiating the properties of one vertex.

4.2.2 The Kernel for Finding Neighbors

The second kernel is responsible for finding the neighbors
(i.e., adjacent nodes) to each vertex in the planar triangu-
lar mesh. Due to the data conflict issue explained in the
Sect. 3.1.1, this procedure of finding neighbors is as the same
as the sequential version implemented on CPU. Thus, only
one thread and one thread block are needed to be allocated.

4.2.3 The Kernel for Determining Constrained Vertices

The third kernel is called to determine which vertices are
boundary ones by checking the indices of neighbors. The
idea behind this procedure is quite simple; see more descrip-
tions in Sect. 3.1.2. The indices of the neighbors to a vertex is
stored in an array neig[64]. Boundary vertex can simply
be determined by checking whether all neighbors to a ver-
tex are stored twice in the array neig[64]. Each thread is
invoked to check whether a vertex is boundary vertex or not.

Noticeably, the maximum number of the neighbors to any
vertex is limited to 32 (i.e., 64/2). Theoretically, both the
number of neighbors and the size of the array neig[] can
be arbitrary. However, in practical applications, the num-

ber of neighbors and the number of the triangles shared a
specific vertex cannot be too large. This is because when
there are many triangles, e.g., 32, share the same vertex,
then the maximum minimum angle of all the 32 triangles
is 360◦/32 = 11.25◦. And in this case, the quality of mesh is
bad due to the sliver/sharp element. In practical applications
such as numerical analysis, meshes with sliver elements are
not recommended and need to be avoided.

In the presented implementations, the size of the array
neig[] is specifically set to 64; and thus the maximum
number of the neighbors to one vertex is 32. Failures will
arise when the above limit is exceeded.

4.2.4 The Kernel for Iterating

The final and key kernel is responsible for iteratively calcu-
lating the smoothed positions of all vertices. Due to the data
dependencies existing in different passes of iterative calcula-
tions, only one thread block is allocated. Each thread within
the thread block is invoked to calculate the smoothed posi-
tions of several vertices in one pass of iteration. The barrier
of synchronization __syncthreads() is used to guaran-
tee all threads within the only one block finishing calculating
one pass of all smoothed positions.

In addition, a while loop is used to make the iterative cal-
culations repeated until converging. The criteria for termi-
nating the iterating is that the maximum differences between
the new and old nodal coordinates generated in two passes
of iterating is less than a user-specified threshold (this toler-
ance is set to 10e−6). Firstly, the local maximum difference
is sequentially found within one thread; and then parallel
reduction is carried out to find the global maximum differ-
ence of all vertices. If the global maximum difference is less
than the threshold, then the iteration terminates.

Noticeably, the execution of this kernel exists only when
all threads meet the termination criteria. Thus, after obtaining
the maximum difference in a single thread, the maximum
differences is then broadcasted into all threads; and in the next
pass of iterating, each thread will make a decision whether
or not to terminate the iterating.

5 Results and Discussion

5.1 Results

The GPU implementations are evaluated using the NVIDIA
GeForce GT640 (GDDR5) graphics card with 1GB memory
and CUDA v5.5. Note that the GeForce GT640 card with
memory GDDR5 has the Compute Capability (CC) 3.5, while
it only has Compute Capability 2.1 with the memory DDR3.
The CPU experiments are performed on Windows 7 SP1
with an Intel i5-3470 CPU (3.2 GHz and 4 Cores) and 8GB

123

Arab J Sci Eng (2014) 39:7907–7921 7915

of RAM memory. For each set of the testing data, one CPU
implementation and three GPU implementations are carried
out on both single precision and double precision.

The original unsmoothed triangular meshes are generated
according to the standard Delaunay triangulation algorithm.
First, five sets of uniformly distributed points in 2D are ran-
domly created using the generator provided by Qi et al. [3];
and then Delaunay meshes are generated for these sets of
discrete points using the library Triangle [34].

Five triangular meshes are created, which are composed
of 1, 5, 10, 50, and 100 K vertices, respectively. The mesh
illustrated in Fig. 4a is one of the testing triangular meshes
that consists of 1,000 vertices and 1,977 triangles; and the
mesh presented in Fig. 4b is the corresponding smoothed
result using the standard Laplacian smoothing.

5.1.1 Single Precision

The experimental results on single precision are presented
in Figs. 5 and 6. According to those benchmark results, the
GPU version implemented using the mesh data structures
represented by aligned AoS achieves the best efficiency; and
the second best is the version developed using the data struc-
tures represented by the layout SoA. The worse GPU version
is the one implemented based on the mis-aligned array-of-
structures (Mis). For the best GPU version (i.e., the GPU–
AoS version), the Form A achieves the speedups of about
13×–21× over the corresponding CPU version, while the
speedups are about 7×–19× for the Form B; see Fig. 6.

5.1.2 Double Precision

The benchmark results on double precision are shown in
Figs. 7 and 8. Similar to the performance on single preci-
sion, among the three GPU versions, the one implemented
using the mesh data structures represented by AoS is still
the most efficient. However, the speedups achieved by this
version is about 11×–17× and 8×–16× for the Form A and
Form B, respectively; see Fig. 8. The performance of this
GPU version over the CPU version on double precision is
slightly worse than that on single precision.

5.2 Discussion

Mesh smoothing is a well established technique to improve
the quality of computational meshes in numerical analysis
and related fields. When smoothing large meshes that con-
sist of large numbers of nodes and elements, the compu-
tational cost is usually too high. In order to improve the
computational efficiency, several efforts have been carried
out to implement the mesh smoothing approaches on the
GPU [5,18–20]. However, these parallel implementations
are mostly problem-specific or integrated with other types

(a)

(b)

Fig. 4 An application example of Laplacian smoothing. a Original
mesh, b Smoothed mesh

of mesh optimizations. To the best of the authors’ knowl-
edge, there are no existing studies having been performed to
introduce a generic paradigm specifically for the Laplacian
mesh smoothing.

In this paper, a generic paradigm for accelerating the
Laplacian-based mesh smoothing is developed by exploiting
a single GPU. In order to demonstrate the working process of
the paradigm, two forms of the standard Laplacian smooth-

123

7916 Arab J Sci Eng (2014) 39:7907–7921

(a)

(b)

0.1

1

10

100

1000

10000

1K 5K 10K 50K 100K

Ti
m

e
(/

s)

Number of Nodes (1K = 1000)

CPU

GPU - Mis

GPU - AoS

GPU - SoA

0.1

1

10

100

1000

10000

1K 5K 10K 50K 100K

Ti
m

e
(/

s)

Number of Nodes (1K = 1000)

CPU

GPU - Mis

GPU - AoS

GPU - SoA

Fig. 5 Execution time on single precision. a Form A of LS, b form B
of LS

ing are implemented using different mesh data structures on
both single and double precision. The performance of these
GPU implementations are analysed as follows.

5.2.1 Efficiency of Each Sub-Procedure (Kernel)

The entire process of Laplacian mesh smoothing is divided
into four sub-procedures. Each sub-procedure is responsible
for performing a task in the process of Laplacian smoothing,
which is mapped to a CUDA kernel; see Fig. 1. This sec-
tion will investigate the efficiency of those sub-procedures.
For the implementations of the standard Laplacian smooth-
ing developed using the data structures represented by the
AoS layout, the percentage of the running time for each sub-
procedure (i.e., a CUDA kernel) is tested on single and double
precision; see the results listed in Tables 1, 2, 3, 4.

According to the efficiency performance of each sub-
procedure, it can be observed that: the sub-procedure of iter-
ating (i.e., the Kernel 4 in Tables 1, 2, 3, 4) is the most compu-
tational expensive step, while the other three sub-procedures
generally cost <1 % time in most cases. Among the first three
sub-procedures, the second sub-procedure typically needs
much more execution time than that of the rest two. This
is perhaps due to the cause that only one thread and one
thread block are allocated to determine the neighbors of all

(a)

(b)

0

5

10

15

20

25

1K 5K 10K 50K 100K

Sp
ee

du
p

Number of Nodes (1K = 1000)

GPU -Mis

GPU -AoS

GPU -SoA

0

5

10

15

20

25

1K 5K 10K 50K 100K

Sp
ee

du
p

Number of Nodes (1K = 1000)

GPU -Mis

GPU -AoS

GPU -SoA

Fig. 6 Speedups of GPU implementations over CPU implementation
on single precision. a Form A of LS, b form B of LS

vertices. In this sub-procedure, the power of massively par-
allel computing on the GPU is obviously not fully exploited.
However, the cost of the second sub-procedure is quite small
when compared to that of the fourth one. Thus, the solu-
tion of allocating only one thread and one block is practical.
In addition, more than 98 % time is spent on the fourth sub-
procedure in almost all cases. Therefore, future optimizations
need to focus on this time-consuming sub-procedure.

5.2.2 Performance Impact of Data Layouts

On both single and double precision, the GPU implementa-
tions developed using the data structures represented by AoS
layout achieve the best efficiency. And in the two groups of
GPU implementations developed using the data structures
represented by layouts SoA and Mis, the performance of the
first group is better than the second.

The best performance obtained by the GPU version based
upon the AoS data structures is due to the aligned global
memory accesses. The performance differences between
with and without aligning the accesses to global memory can
be clearly observed in Figs. 6 and 8. Noticeably, the GPU ver-
sion implemented using the SoA data structures is better than
that implemented using the Mis data structures; this behavior
is mainly due to the coalesced memory accesses.

123

Arab J Sci Eng (2014) 39:7907–7921 7917

(a)

(b)

0.1

1

10

100

1000

10000

1K 5K 10K 50K 100K

Ti
m

e
(/

s)

Number of Nodes (1K = 1000)

CPU

GPU -Mis

GPU -AoS

GPU -SoA

0.1

1

10

100

1000

10000

1K 5K 10K 50K 100K

Ti
m

e
(/

s)

Number of Nodes (1K = 1000)

CPU

GPU -Mis

GPU -AoS

GPU -SoA

Fig. 7 Execution time on double precision. a Form A of LS, b form B
of LS

According to above testing results, it is recommended that
the first choice of data layouts for representing mesh data
structures in Laplacian smoothing is the layout aligned AoS.
However, when the size and alignment requirement cannot
be met in some cases, e.g., when representing a vertex in 3D
on double precision (i.e., when using the structure struct
vertex {double x, y, z;};), the best option is the
layout SoA.

5.2.3 Performance of the Form A and the Form B

For the two forms of Laplacian mesh smoothing, the Form A
that needs to swap intermediate nodal coordinates is always
slower than the Form B that does not swap data. This behav-
ior can be obviously observed for all CPU and GPU imple-
mentations on both single and double precision. The Form
B achieves the speedups of about 1.5× –2.0× over the Form
A; see Fig. 9.

The above results are caused by more calculations due
to swapping intermediate nodal coordinates during iter-
ating. Furthermore, for each GPU implementation of the
Form A, an array residing in global memory is needed to
be allocated to store and swap intermediate nodal posi-
tions. Thus, the global memory accesses in the implemen-

(a)

(b)

0

5

10

15

20

25

1K 5K 10K 50K 100K

Sp
ee

du
p

Number of Nodes (1K = 1000)

GPU - Mis

GPU - AoS

GPU - SoA

0

5

10

15

20

25

1K 5K 10K 50K 100K

Sp
ee

du
p

Number of Nodes (1K = 1000)

GPU - Mis

GPU - AoS

GPU - SoA

Fig. 8 Speedups of GPU implementations over CPU implementation
on double precision. a Form A of LS, b form B of LS

Table 1 Percentage of running time for each kernel of the Form A on
single precision

Size Kernel 1 Kernel 2 Kernel 3 Kernel 4

1 K 0.842 2.339 0.655 95.510

5 K 0.084 0.751 0.096 99.032

10 K 0.027 0.287 0.029 99.645

50 K 0.005 0.093 0.008 99.891

100 K 0.005 0.083 0.007 99.904

Table 2 Percentage of running time for each kernel of the Form B on
single precision

Size Kernel 1 Kernel 2 Kernel 3 Kernel 4

1 K 0.866 2.406 0.674 95.669

5 K 0.125 1.115 0.143 98.572

10 K 0.047 0.499 0.051 99.393

50 K 0.010 0.173 0.015 99.801

100 K 0.009 0.154 0.013 99.823

tations of the Form A is much more that those of the Form
B.

Another cause is that the convergence speed of the Form
A is much lower than that of the Form B; and thus the

123

7918 Arab J Sci Eng (2014) 39:7907–7921

Table 3 Percentage of running time for each kernel of the Form A on
double precision

Size Kernel 1 Kernel 2 Kernel 3 Kernel 4

1 K 0.746 1.939 0.522 96.644

5 K 0.070 0.569 0.070 99.256

10 K 0.021 0.227 0.023 99.724

50 K 0.004 0.066 0.005 99.923

100 K 0.003 0.051 0.004 99.941

Table 4 Percentage of running time for each kernel of the Form B on
double precision

Size Kernel 1 Kernel 2 Kernel 3 Kernel 4

1 K 0.982 2.554 0.688 95.187

5 K 0.120 0.977 0.120 98.738

10 K 0.038 0.415 0.042 99.492

50 K 0.008 0.122 0.010 99.859

100 K 0.005 0.089 0.007 99.898

(a)

(b)

0.0

0.5

1.0

1.5

2.0

2.5

1K 5K 10K 50K 100K

Sp
ee

du
p

Number of Nodes (1K = 1000)

Form B over Form A

CPU

GPU -Mis

GPU -AoS

GPU -SoA

0.0

0.5

1.0

1.5

2.0

2.5

1K 5K 10K 50K 100K

Sp
ee

du
p

Number of Nodes (1K = 1000)

Form B over Form A

CPU

GPU -Mis

GPU -AoS

GPU -SoA

Fig. 9 Speedups of Form B over Form A on single and double preci-
sion. a Single precision, b double precision

Form A needs much more iterations for converging. the
numbers of iterations until converging are counted for the
two forms on both single precision and double precision
(see Fig. 10). It has been found that: for the Form A, the
numbers of iterations in the two GPU versions implemented
using the AoS and SoA data structures are exactly the same,
while for the Form B the numbers of iteration are almost

(a)

(b)

0

10000

20000

30000

40000

50000

60000

1K 5K 10K 50K 100K

Number of Nodes (1K = 1000)

Form A Both

Form B (AoS)

Form B (SoA)

0

20000

40000

60000

80000

100000

1K 5K 10K 50K 100K

Number of Nodes (1K = 1000)

Form A Both

Form B (AoS)

Form B (SoA)

Fig. 10 Numbers of iterations until converging in Laplacian smooth-
ing. a Single precision, b double precision

the same. However, the number of iterations in the Form
A is always larger than that in the Form B. This is one of
the reasons why the Form A is slower than the Form B.
Therefore, the Form B is recommended in practical appli-
cations.

5.2.4 Performance on Single Precision and Double
Precision

Considering the performances of GPU implementations on
single and double precision, the GPU implementations on
single precision are by nature faster than those performed
on double precision. More specifically, both the Form A
and Form B of the standard Laplacian smoothing imple-
mented on single precision can achieve about 1.25×–1.5×
speedups over their counterparts on double precision; see
Fig. 11.

In practical applications, the GPU implementations devel-
oped on double precision are recommended to be adopted in
the case when computational accuracy is the first key issue
that needs to be considered. It has been demonstrated that the
efficiency on double precision is worse than that on single
precision, but this disadvantage is not obvious. When effi-

123

Arab J Sci Eng (2014) 39:7907–7921 7919

(a)

(b)

0.0

0.5

1.0

1.5

2.0

1K 5K 10K 50K 100K

Sp
ee

du
p

Number of Nodes (1K = 1000)

Single Precison over Double Precision

CPU

GPU -Mis

GPU -AoS

GPU -SoA

0.0

0.5

1.0

1.5

2.0

1K 5K 10K 50K 100K

Sp
ee

du
p

Number of Nodes (1K = 1000)

Single Precision over Double Precision

CPU

GPU -Mis

GPU -AoS

GPU -SoA

Fig. 11 Speedups of implementations on single precision over those
on double precision. a Form A of LS, b form B of LS

#define REAL float/double
struct CVert {

REAL x, y; // Coordinates
int nNeig; // Number of neig.
int * neig; // Indices of neig.
bool bBoundary; // Indicator

};
struct CTrgl {

int vIDs [3]; // Indices of vert.
};
struct CMesh {

int nVert , nTrgl;
CVert * verts;
CTrgl * trgls;

};

Listing 1 Data structures for representing triangular meshes on the CPU

ciency is the most important issue that needs to be consid-
ered firstly, implementing the Laplacian smoothing on single
precision is the better choice.

5.2.5 Outlook

In this paper, only the standard Laplacian smoothing has
been implemented to illustrate the working process of the
generic paradigm proposed for accelerating Laplacian-based
mesh smoothing. In the future, more implementations of the
variations such as weighted Laplacian smoothing and smart
Laplacian smoothing are planned to be implemented. These
variations are easy to implement according the process of the

#define REAL float/double
struct cuVert_MIS {

REAL x, y; // Coordinates
int nNeig; // Number of neig.
int neig [64]; // Indices of neig.
bool bBoundary; // Indicator

};
struct cuTrgl_MIS {

int vIDs [3]; // Indices of vert.
};
struct cuMesh_MIS {

int nVert , nTrgl;
cuVert * verts;
cuTrgl * trgls;

};

Listing 2 Data structures represented by mis-aligned AoS

struct __align__ (16) cuVert_AOS {
float x, y; // Coordinates
int nNeig; // Number of neig.
bool bBoundary; // Indicator

};
struct cuNeig_AOS {

int neig [64]; // Indices of neig.
};
struct __align__ (16) cuTrgl_AOS {

int vIDs [3]; // Indices of vert.
};
struct cuMesh_AOS {

int nVert , nTrgl;
cuVert_AOS * verts;
cuNeig_AOS * neigs;
cuTrgl_AOS * trgls;

};

Listing 3 Data structures represented by aligned AoS on single
precision

struct __align__ (16) cuCoor_AOS {
double x, y; // Coordinates

};
struct __align__ (8) cuInfo_AOS {

int nNeig; // Number of neig.
bool bBoundary; // Indicator

};
struct cuMesh_AOS_double {

int nVert , nTrgl;
cuCoor_AOS * coors;
cuInfo_AOS * infos;
cuNeig_AOS * neigs;
cuTrgl_AOS * trgls;

};

Listing 4 Data structures represented by aligned AoS on double
precision

generic paradigm; and only several minor modifications are
needed on the basis of the implementations of the standard
Laplacian smoothing.

In addition, much more work needs to be carried out for
generalizing the proposed paradigm to smoothing surface
meshes and volume meshes. The first obstacle is how to pre-
serve the shape and volume features of mesh objects when

123

7920 Arab J Sci Eng (2014) 39:7907–7921

#define REAL float/double
struct cuVert_SOA {

REAL *x, *y; // Coordinates
int *nNeig; // Number of neig.
int *neig; // Indices of neig.
bool *bBoundary; // Indicator

};
struct cuTrgl_SOA {

int *vIDs; // Indices of vert.
};
struct cuMesh_SOA {

int nVert , nTrgl;
cuVert_SOA verts;
cuTrgl_SOA trgls;

};

Listing 5 Data structures represented by SoA

smoothing. Another key issue is that it is needed to design
efficient mesh data structures for specific type of meshes.

However, there are two rules that are possibly still useful
when generalizing the proposed paradigm: (1) the Form B
of Laplacian smoothing is faster than the Form A; (2) the
mesh data structures represented by AoS layout achieve the
best efficiency. When implementing Laplacian-based mesh
smoothing for optimizing surface meshes or volume meshes,
the above rules are needed to be demonstrated with real-world
applications.

6 Conclusion

A generic paradigm has been developed for accelerating the
Laplacian-based mesh smoothing on the GPU. Two forms of
the standard Laplacian smoothing have been implemented
using different mesh data structures on both single precision
and double precision to demonstrate the working process of
the proposed paradigm. Experimental results have indicated
that: on both single precision and double precision, the GPU
implementations developed using the data structures repre-
sented by aligned AoS layout achieve the best efficiency. It
also has been observed that: for the two forms of standard
Laplacian smoothing, the Form A that needs to swap inter-
mediate nodal coordinates is always slower than the Form
B that does not swap data. Thus, the first choice of data
layouts for representing mesh data structures in Laplacian
smoothing is the layout aligned AoS. And, the Form B of the
standard Laplacian smoothing is suggested to be accepted
in practical applications. The presented generic paradigm is
effective and can help to guide the GPU implementations of
Laplacian-based mesh smoothing in practice.

Acknowledgments The authors are grateful to the anonymous ref-
eree for helpful comments that improved this paper. This research was
supported by the Natural Science Foundation of China (Grant Nos.
40602037 and 40872183).

References

1. Crespo, A.C.; Dominguez, J.M.; Barreiro, A.; Gomez-Gesteira, M.;
Rogers, B.D.: GPUs, a new tool of acceleration in CFD: efficiency
and reliability on smoothed particle hydrodynamics methods. PLoS
One 6(6), e20685 (2011)

2. Giles, M.B.; Mudalige, G.R.; Spencer, B.; Bertolli, C.; Reguly,
I.: Designing OP2 for GPU architectures. J. Parallel Distrib. Com-
put. 73(11), 1451–1460 (2013)

3. Qi, M.; Cao, T.T.; Tan, T.S.: Computing 2D constrained
Delaunay triangulation using the GPU. IEEE T. Vis. Comput.
Graph. 19(5), 736–748 (2013)

4. Shuai, L.; Guo, X.H.; Jin, M.: GPU-based computation of discrete
periodic centroidal Voronoi tessellation in hyperbolic space. Com-
put. Aided Des. 45(2), 463–472 (2013)

5. D’Amato, J.P.; Venere, M.: A CPU–GPU framework for opti-
mizing the quality of large meshes. J. Parallel Distrib. Com-
put. 73(8), 1127–1134 (2013)

6. Zegard, T.; Paulino, G.H.: Toward GPU accelerated topol-
ogy optimization on unstructured meshes. Struct. Multidiscip.
Optim. 48(3), 473–485 (2013)

7. NVIDIA: CUDA C Programming Guide v5.5. http://docs.nvidia.
com/cuda/cuda-c-programming-guide/ (2013)

8. Munshi, A.: The OpenCL Specification, v2.0. https://www.
khronos.org/registry/cl/specs/opencl-2.0.pdf (2013)

9. Abal Abas, Z.; Salleh, S.; Manan, Z.: Extended advancing front
technique for the initial triangular mesh construction on a single
coil for radiative heat transfer. Arab. J. Sci. Eng. 38(9), 2245–
2262 (2013)

10. Freitag, L.; Ollivier-Gooch, C.: A cost/benefit analysis of sim-
plicial mesh improvement techniques as measured by solu-
tion efficiency. Int. J. Comput. Geom. Appl. 10(04), 361–382
(2000)

11. Shewchuk, J.R.: What is a good linear finite element? Interpolation,
conditioning, anisotropy, and quality measures (preprint). Univer-
sity of California at Berkeley (2002)

12. Owen, S.J.: A survey of unstructured mesh generation technol-
ogy. In: Proceedings of the 7th International Meshing Roundtable,
vol. 3, pp. 239–267 (1998)

13. Freitag, L.; Jones, M.; Plassmann, P.: A parallel algorithm for mesh
smoothing. SIAM J. Sci. Comput. 20(6), 2023–2040 (1999)

14. Jiao, X.; Alexander, P.: Parallel Feature-Preserving Mesh Smooth-
ing, Lecture Notes in Computer Science, vol. 3483, chap. 123,
pp. 1180–1189. Springer, Berlin (2005)

15. Gorman, G.J.; Southern, J.; Farrell, P.E.; Piggott, M.D.; Rokos,
G.; Kelly, P.H.J.: Hybrid openmp/mpi anisotropic mesh smooth-
ing. Procedia Comput. Sci. 9, 1513–1522 (2012)

16. Benłtez, D.; Rodrłguez, E.; Escobar, J.; Montenegro, R.: Perfor-
mance Evaluation of a Parallel Algorithm for Simultaneous Untan-
gling and Smoothing of Tetrahedral Meshes, chap. 32, pp. 579–598.
Springer International Publishing (2014)

17. Sastry, S.; Shontz, S.: A parallel log-barrier method for mesh qual-
ity improvement and untangling. Eng. Comput. 30(4), 503–515
(2014)

18. D’Amato, J.P.; Lotito, P.: Mesh optimization with volume preser-
vation using GPU. Lat. Am. Appl. Res. 41(3), 291–297 (2011)

19. Heuveline, V.; Lukarski, D.; Trost, N.; Weiss, J.P.: Parallel
Smoothers for Matrix-Based Geometric Multigrid Methods on
Locally Refined Meshes Using Multicore CPUs and GPUs, Lec-
ture Notes in Computer Science, vol. 7174, chap. 14, pp. 158–171.
Springer, Berlin (2012)

20. Monch, T.; Lawonn, K.; Kubisch, C.; Westermann, R.; Preim,
B.: Interactive mesh smoothing for medical applications. Comput.
Graph Forum 32(8), 110–121 (2013)

123

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf

Arab J Sci Eng (2014) 39:7907–7921 7921

21. Herrmann, L.R.: Laplacian-isoparametric grid generation
scheme. J. Eng. Mech. Div. ASCE 102(5), 749–907 (1976)

22. Blacker, T.D.; Stephenson, M.B.: Paving: a new approach to
automated quadrilateral mesh generation. Int. J. Numer. Methods
Eng. 32(4), 811–847 (1991)

23. Vollmer, J.; Mencl, R.; Mller, H.: Improved Laplacian smooth-
ing of noisy surface meshes. Comput. Graph Forum 18(3), 131–
138 (1999)

24. Freitag, L.A.: On combining Laplacian and optimization-based
mesh smoothing techniques. In: Trends in Unstructured Mesh Gen-
eration, pp. 37–43 (1997)

25. Canann, S.A.; Tristano, J.R.; Staten, M.L.: An approach to com-
bined Laplacian and optimization-based smoothing for triangular,
quadrilateral, and quad-dominant meshes. In: Proceedings of 7th
International Meshing Roundtable, pp. 479–494 (1998)

26. Farber, R.: CUDA Application Design and Development. Morgan
Kaufmann (2011)

27. Bell, N.; Hoberock, J.: Thrust: Productivity-Oriented Library for
CUDA, chap. 26, pp. 359–371. Morgan Kaufmann (2011)

28. Govender, N.; Wilke, D.N.; Kok, S.; Els, R.: Development of a con-
vex polyhedral discrete element simulation framework for NVIDIA
Kepler based GPUs. J. Comput. Appl. Math. 270, 386–400 (2013)

29. Mudalige, G.R.; Giles, M.B.; Thiyagalingam, J.; Reguly, I.Z.;
Bertolli, C.; Kelly, P.H.J.; Trefethen, A.E.: Design and initial per-
formance of a high-level unstructured mesh framework on hetero-
geneous parallel systems. Parallel Comput. 39(11), 669–692 (2013)

30. Mistry, P.; Schaa, D.; Jang, B.; Kaeli, D.; Dvornik, A.; Meglan, D.:
Data Structures and Transformations for Physically Based Simu-
lation on a GPU, Lecture Notes in Computer Science, vol. 6449,
chap. 17, pp. 162–171. Springer, Berlin (2011)

31. Strzodka, R.: Abstraction for AoS and SoA layout in C++,
pp. 429–441. Morgan Kaufmann (2011)

32. Strzodka, R.: Data layout optimization for multi-valued containers
in OpenCL. J. Parallel Distrib. Comput. 72(9), 1073–1082 (2012)

33. Sung, I.J.; Liu, G.D.; Hwu, W.M.W.: DL: A data layout transforma-
tion system for heterogeneous computing. In: Innovative Parallel
Computing (InPar), pp. 1–11. IEEE (2012)

34. Shewchuk, J.R.: Triangle: Engineering a 2D quality mesh generator
and Delaunay triangulator. In: Selected Papers from the Workshop
on Applied Computational Geormetry, Towards Geometric Engi-
neering, FCRC ’96/WACG ’96, pp. 203–222. Springer, London
(1996)

123

	A Generic Paradigm for Accelerating Laplacian-Based Mesh Smoothing on the GPU
	Abstract
	1 Introduction
	2 Laplacian Mesh Smoothing
	2.1 Commonly-Used Variations
	2.1.1 Standard Laplacian Smoothing
	2.1.2 Weighted Laplacian Smoothing
	2.1.3 Smart Laplacian Smoothing

	2.2 Iteration Forms

	3 The Paradigm
	3.1 The Working Process
	3.1.1 Finding Neighbors
	3.1.2 Determining Constrained Vertices
	3.1.3 Iterating

	3.2 Key Issues in Design
	3.2.1 Data Layout in Memory
	3.2.2 Data Dependencies

	4 GPU Implementations of Standard Laplacian Smoothing
	4.1 Mesh Data Structures
	4.1.1 Meshes Represented by the Layout Mis
	4.1.2 Meshes Represented by the Layout AoS
	4.1.3 Meshes Represented by the Layout SoA

	4.2 Implementation Details
	4.2.1 The Kernel for Initiating
	4.2.2 The Kernel for Finding Neighbors
	4.2.3 The Kernel for Determining Constrained Vertices
	4.2.4 The Kernel for Iterating

	5 Results and Discussion
	5.1 Results
	5.1.1 Single Precision
	5.1.2 Double Precision

	5.2 Discussion
	5.2.1 Efficiency of Each Sub-Procedure (Kernel)
	5.2.2 Performance Impact of Data Layouts
	5.2.3 Performance of the Form A and the Form B
	5.2.4 Performance on Single Precision and Double Precision
	5.2.5 Outlook

	6 Conclusion
	Acknowledgments
	References

