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Abstract In this paper, buckling analysis of a functionally
graded thick cylindrical shell with variable thickness sub-
jected to combined external pressure and axial compression
is carried out. Moreover, the effect of an axisymmetric imper-
fection on the buckling load of the shell is investigated. It is
assumed that material properties of the shell vary smoothly
through the thickness according to a power law distribution
of the volume fraction of constituent materials, while the
Poisson’s ratio is assumed to be constant. The shell is con-
sidered to be simply supported at both ends. The governing
differential equations are obtained based on the second Piola–
Kirchhoff stress tensor and are then reduced to a homoge-
nous linear system of equations using differential quadrature
method. Effects of several parameters of the shell includ-
ing the volume fraction of constituents, geometric ratios,
thickness variation amplitude factor, imperfection parame-
ter and loading conditions on the buckling behavior of the
functionally graded thick cylindrical shell are investigated.
The results obtained by the present method are compared
with results reported in the literature.
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List of symbols

R1, R2 Shell inner, outer radius, respectively
L Length of the shell
a(x) Mid-surface radius of the shell
h(x) Thickness of the shell
r, θ, x Radial, circumferential, longitudinal coordinate,

respectively
z Radial coordinate at the mid-surface
h0 Thickness of a perfect cylindrical shell
η Thickness variation amplitude
ε Non-dimensional parameter of the imperfection
α, β Constant coefficients
k Volume fraction index
Em, Ec Elastic modulus of metal, ceramic, respectively
Vm, Vc Volume fraction of the metal, ceramic,

respectively
�t Traction vector
F̄ Deformation gradient
�V Displacement vector
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I Unit tensor
F Axial compressive load
P Uniform lateral pressure
σi j , εi j Stress, strain tensor components, respectively
w, v, u Displacement fields in r, θ, x directions,

respectively
m Buckling mode number in the circumferential

direction
G, λ Lame coefficients
N Number of grid points in the r direction
Q Number of grid points in the x direction

w
(n)
i j Weighting coefficients of the nth order

derivative

a(n)
i j , b(n)

i j Weighting coefficients of the nth order
derivative in the r , x-direction, respectively

Pcr Critical buckling pressure
λ Ratio of the buckling pressure of the imperfect

to the perfect shell
λ′ Ratio of the buckling axial stress of the

imperfect to the perfect shell
K Structural stiffness matrix
φi Eigenvector
λi Eigenvalue
S Stress stiffness matrix

1 Introduction

Cylindrical shells are common structural components in var-
ious types of engineering structures. A new class of mate-
rials known as functionally graded materials (FGMs) with
properties varying continuously along one or more direc-
tions have also been introduced that attracted the atten-
tion of many researchers. Since these structures are usu-
ally under the action of non-uniform loadings such as non-
uniform pressure loading, these are required to be made with
non-uniform thickness in the axial direction. Comparison
of results reported in the literature reveals a large deviation
between the theoretical buckling loads of cylindrical shells
and experimental ones. One of the main reasons for such
discrepancy may be the inevitable differences in the shell
geometric characteristics caused by imperfections that are
usually produced in manufacturing process or developed in
corrosive environments. Buckling analysis of thin cylindri-
cal shells considering geometrical imperfections had been
investigated by few researchers.

Koiter [1] and Elishakoff et al. [2] have studied the effect
of axisymmetric imperfections with axisymmetric buckling
mode shapes on the stability of isotropic and composite cylin-
drical shells under the action of axial compression load-
ing. Buckling analysis of thin cylindrical shells under the
action of lateral pressure considering geometrical imper-

fection in the circumferential direction was carried out by
Gusic et al. [3]. Nguyen and Thach [4] carried out buckling
analysis of thin cylindrical panels with variable thickness
using the hybrid perturbation-Galerkin method. In another
work, they applied the energy method to study the stability
of thin imperfect cylindrical panels with thickness variation
and initial geometrical imperfections [5]. Buckling behav-
ior of cylindrical shells with axisymmetric imperfection in
the axial direction under the action of external pressure was
studied by Nguyen et al. [6]. The effect of thickness variation
on the buckling load of an isotropic thin cylindrical shell in
case of axial compression loading was studied by Elishakoff
et al. [7]. Axisymmetric thickness variation and geometric
imperfections were assumed. Koiter [8] presented an analyt-
ical solution for the buckling load of a perfect, non-uniform
cylindrical shell under the axial compression loading. Akbari
Alashti and Ahmadi [9] investigated the buckling behavior of
isotropic cylindrical shells and curved panels with different
boundary conditions under the action of pure external pres-
sure. Koiter et al. [10] has also carried out buckling analysis
of an axially compressed cylindrical shell with axisymmet-
rical variable thickness and initial geometric imperfection. It
was found that the buckling load reduction is a linear function
of the imperfection parameter when it is small. Sofiyev [11]
studied the buckling behavior of an orthotropic composite
truncated conical shell with continuously varying thickness
subject to a time-dependent external pressure. In his work,
stability equations were obtained on the basis of Donnell
theory and solved by Ritz method. Civalek [12] carried out
a parametric study on the free vibration of rotating lami-
nated cylindrical shells using the method of discrete singular
convolution. The approach was found to be simple, accurate
and efficient with good rate of convergence. For most engi-
neering problems, closed form solution is nearly impossible
to obtain, hence an approximate solution is sought by find-
ing the functional values at certain discrete points. The main
challenge at this stage is to find the relationship between the
derivatives in the partial differential equation and the func-
tion values at grid points. Several numerical discretization
techniques have been developed during recent years, namely
the finite difference, the finite element and the finite volume
methods. These methods generally need many grid points in
the domain to achieve results with reasonably good accuracy.
As compared with these methods, the differential quadra-
ture (DQ) method can obtain very accurate numerical results
employing a considerably smaller number of grid points. Mir-
fakhraei and Redekop [13] used the differential quadrature
method to study the buckling behavior of circular cylindrical
shells. Civaleka [14] compared the results obtained by differ-
ential quadrature (DQ) and harmonic differential quadrature
(HQ) methods. It was that the HQ method leads to more
accurate results and needs less less grid points than the DQ
method.
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In this paper, the effect of axisymmetric thickness varia-
tion on the buckling load of a thick cylindrical shell made
of isotropic and functionally graded material [15] is investi-
gated. Also, the effect of an assumed axisymmetric imperfec-
tion on the buckling load of the shell is studied. The shell is
assumed to be simply supported at both ends and subjected to
a combination of axial compression and lateral pressure load-
ings. The differential quadrature method is used to obtain the
buckling load of the thick cylindrical shell. Numerical results
obtained by three-dimensional stability equations were com-
pared with finite element solutions and results reported in the
literature. Effects of various parameters including the grad-
ing indices of material properties, mechanical loading com-
binations, shell thickness variation parameter, imperfection
amplitude factor and geometric ratios on the buckling load
of the shell are studied.

2 Problem Formulation

A thick cylindrical shell with inner radius R1,outer radius R2,
length L , mid-surface radius a(x), thickness h(x) and coor-
dinate axes (r, θ, x) is considered, as shown in Figs. 1 and
2 where w, v and u are components of displacement func-
tion in the radial, circumferential and longitudinal directions,
respectively. The coordinate z is defined in the radial direc-
tion at mid-surface of the shell that varies from −h(x)/2 at
the inner surface to h(x)/2 at the outer surface. It is assumed
that the shell has a meridional thickness in the longitudinal
direction, i.e., the x-direction. The imperfection in the shell
thickness is assumed to vary trigonometrically in the axial
direction. Variation of the thickness and the imperfection of
the shell is shown in Fig. 2a, b, respectively.

The thickness of the shell is assumed to vary according to
the following formula:

h(x) = h0

(
1 + α ·

( x

L

)η − β · ε · cos
π

L

(
x − L

2

))
(1)

where h0 is the thickness of a perfect cylindrical shell, η is the
thickness variation amplitude factor, ε is the non-dimensional
parameter of the imperfection and α and β are constants
that take values of 1 and zero as required. The first, second
and third terms of above formulation represent the thickness,
thickness variation and geometrical imperfection of the shell,
respectively. As shown in Fig. 2b, the mid-surface radius
a(x) varies in the axial direction while the inner radius R1 is
constant. When α = 0 and β = 1, thicknesses of the shell at
two ends are the same for all values of ε, i.e., h(x) = h0 at
x = 0, L and h(x) = h0(1 − ε) at x = L/2. The thickness
variation for ε = 0.2 is shown in Fig. 3a. However, when
α = 1 and β = 0 we have a shell with variable thickness
without imperfection, i.e., the thickness varies from h0 at the
top edge to 2h0 at the bottom, as shown in Fig. 3b.

In this study, material properties of the shell are assumed
to be isotropic, functionally graded and temperature inde-
pendent. The Young’s modulus of the shell is assumed to be
obeying the following formula:

E(z) = Ec + Emc (Vm)k , Emc = Em − Ec (2)

where Vm is the volume fraction of the metal constituent,
k denotes the volume fraction index that varies along the
thickness of the shell, Em and Ec denote the elastic modulus
of the metal and the ceramic, respectively.

Vm = (0.5 + z/k)k , Vc + Vm = 1 (3)

According to above formulation, the Young’s modulus
vary smoothly from the outer surface of the shell, i.e., at

Fig. 1 Cylindrical shell
geometry and loading conditions

123



8124 Arab J Sci Eng (2014) 39:8121–8133

Fig. 2 Thickness variation of
the shell. a Variable thickness,
linear (η = 1), parabolic
(η > 1). b Axisymmetrical
imperfection

Fig. 3 Thickness variation form. a Imperfection (ε = 0.2). b Meridional thickness

z = h(x)/2 as a pure metal to the inner surface, i.e., at
z = −h(x)/2 as a pure ceramic. Boundary conditions of the
shell can be written in terms of the second Piola–Kirchhoff
tensor σ , using equilibrium equations as:

(F̄ · σ) · �n = �t, F̄ = I + grad �V (4)

where �t is the traction vector, �n is the outward pointing unit
normal vector, F̄ is the deformation gradient defined by F̄ =
I + grad �V , where �V is the displacement vector and I is the
unit tensor.

Applying Eq. (4) for the outer and inner lateral surfaces
in the initial and perturbed equilibrium positions, we can
achieve to boundary conditions at lateral surfaces, as follows:

σ ′
rr

(
a + h

2
, θ

)
= σ ′

rr

(
a − h

2
, θ

)
= 0

τ ′
rθ

(
a + h

2
, θ

)
= τ ′

rθ

(
a − h

2
, θ

)
= 0 (5)

τ ′
r x

(
a + h

2
, θ

)
= τ ′

r x

(
a − h

2
, θ

)
= 0

In case of thick cylindrical shell, the initial stress compo-
nents σ 0

rr and σ 0
θθ at the lateral surfaces due to the action of

the lateral pressure P , are found to be [16]:

σ 0
θθ = −P

[
1 +

(
R1

r

)2
]

·
[

1 −
(

R1

R2

)2
]−1

= fθθ · P

σ 0
rr = −P

[
1 −

(
R1

r

)2
]

·
[

1 −
(

R1

R2

)2
]−1

= frr · P

(6)

Stress components at two ends of the cylindrical shell
under the action of axial compression F are expressed as:

σ 0
xx = − F

π(R2
2 − R2

1)
(7)
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Assuming a simply supported shell, the following bound-
ary conditions are defined:

at x = 0, L w = v = σ ′
xx = ∂2w

∂x2 = 0 (8)

The equilibrium equations are written in terms of the sec-
ond Piola–Kirchhoff stress tensor σ , in following form [17]:

div(σ · F̄T) = 0 (9)

For a three-dimensional problem, Eq. (9) is expanded in
the radial, circumferential and axial directions. These equa-
tions are presented in simplified forms as follows:

∂

∂r

(
σ 0

rrε
′
rr + σ ′

rr

)
+ 1

r

∂

∂θ
(τ ′

rθ + σ 0
θθ (ε

′
rθ + ω′

rθ ))

+ ∂

∂x

(
τ ′

r x + σ 0
xx (ε

′
r x + ω′

r x )
)

+1

r

(
σ ′

rr + σ 0
rrε

′
rr − σ ′

θθ − σ 0
θθ ε

′
θθ

)
= 0 (10a)

∂

∂r

(
τ ′

rθ + σ 0
rr (ε

′
rθ − ω′

rθ )
)

+ 1

r

∂

∂θ

(
σ 0

θθ ε
′
θθ + σ ′

θθ

)

+ ∂

∂x

(
τ ′
θx + σ 0

xx (ε
′
θx − ω′

θx )
)

+1

r

(
σ 0

rr (ε
′
rθ − ω′

rθ ) + 2τ ′
rθ + σ 0

θθ (ε
′
rθ + ω′

rθ )
)

= 0

(10b)
∂

∂r

(
τ ′

r x + σ 0
rr (ε

′
r x − ω′

r x )
)

+1

r

∂

∂θ

(
σ 0

θθ (ε
′
θx + ω′

θx ) + τ ′
θx

)

+ ∂

∂x

(
σ ′

xx + σ 0
xxε

′
xx

)

+1

r

(
τ ′

r x + σ 0
rr (ε

′
r x − ω′

r x )
)

= 0 (10c)

In order to calculate buckling loads of thick shells, buck-
ling equations which are developed by authors of the present
paper are used [9].

3 Buckling Load Calculation

Considering the boundary conditions stated in Eq. (8), the
perturbed displacement field, i.e., u, v and w are found to be
in the following forms [9]:

w(r, θ, x) = B(r, x) · cos (mθ)

v(r, θ, x) = A(r, x) · sin (mθ)

u(r, θ, x) = C(r, x) · cos (mθ) (11)

where m is the buckling mode in the circumferential direc-
tion. Substituting Eq. (11) into linear strain–displacement
equations and applying the stress–strain relations for isotropic
materials, components of the stress field are expressed in
terms of components of the displacement field. Substituting

the above expression in Eq. (10), the homogenous linear sys-
tem of equations in the buckled state is obtained:

(2G(z) + λ(z))
d2 B

dr2 + (2G(z) + λ(z))

r

dB

dr

+m (G(z) + λ(z))

r

dA

dr
+ (G(z) + λ(z))

d2C

drdx

−
(
2G(z) + λ(z) + G(z) · m2

)
r2 B + G(z)

d2 B

dx2

−m (3G(z) + λ(z))

r2 A + F

π
(
R2

2 − R2
1

) d2 B

dx2

+P

[
d

dr

(
frr

dB

dr

)
+ frr

r

dB

dr
− 2m fθθ

r2 A

−
(
m2 + 1

)
fθθ

r2 B

]
= 0 (12a)

G(z)
d2 A

dr2 + G(z)

r

dA

dr
− m (G(z) + λ(z))

r

dB

dr

−
(
G(z) + m2 (2G(z) + λ(z))

)
r2 A

+G(z)
d2 A

dx2 − m (3G(z) + λ(z))

r2 B

−m (G(z) + λ(z))

r

dC

dx
+ F

π
(
R2

2 − R2
1

) d2 A

dx2

+P

[
d

dr

(
frr

dA

dr

)
+ frr

r

dA

dr
− 2m fθθ

r2 B

−
(
m2 + 1

)
fθθ

r2 A

]
= 0 (12b)

G(z)
d2C

dr2 + G(z)

r

dC

dr
+ (G(z) + λ(z))

d2 B

drdx
− Gm2

r2 C

+ (2G(z) + λ(z))
d2C

dx2

+m (G(z) + λ(z))

r

dA

dx
+ (G(z) + λ(z))

r

dB

dx

+ F

π
(
R2

2 − R2
1

) d2C

dx2

+P

[
d

dr

(
frr

dC

dr

)
+ frr

d2C

dr
− m2 fθθ

r2 C

+ frr

r

dC

dr

]
= 0 (12c)

At the next stage, the differential quadrature method is
employed to discretize the governing differential equations
using the approximation of derivatives of the function f (x)

by linear sums of all functional values in the domain:

dn f

dx

∣∣x=xi =
N∑

j=1

w
(n)
i j · f (x j ) for i = 1, 2, . . . , N (13)
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where w
(n)
i j are the weighting coefficients of the nth order

derivative and N denotes the number of grid points in the
domain. It should be noted that different values of weight-
ing coefficients are obtained for different grid points, xi . The
most common methods to determine the weighting coeffi-
cients are polynomial and Fourier expansion methods. In this
study, the polynomial expansion based differential quadra-
ture is used to approximate the first and the second order
derivations both in the radial and the longitudinal directions.
The weighting coefficients of the first order derivatives are
defined as [18].

w
(1)
i j = M (1)(xi )

(xi − x j ) · M (1)(x j )
for i �= j;

w
(1)
i i = M (2)(xi )

2M (1)(x j )
(14)

where

M (1)(xi ) =
N∏

k=1,k �=i, j

(xi − xk),

M (2)(x) = N (2)(x, xk) · (x − xk) + 2 · · · N (1)(x, xk),

N (x, xk) = M (1)(xi ) · δi j (15)

and for higher order derivatives:

w
(n)
i j = n

(
w

(1)
i j w

(n−1)
i i − w

(n−1)
i j

xi − x j

)
,

for i, j = 1, 2, . . . , N ; n = 2, 3, . . . , N − 1;

w
(n)
i i = −

N∑
j=1, j �=i

w
(n)
i j (16)

Now, using unequal spacing scheme for sampling points
in the domain and applying above formulation to Eq. (12),
we have:

(2G(z) + λ(z))
N∑

k=1

a(2)
ik Bk j + (2G(z) + λ(z))

r

N∑
k=1

a(1)
ik Bk j

+G(z)
Q∑

k=1

b(2)
jk Bik + (G(z) + λ(z))

N∑
k=1

Q∑
l=1

a(1)
ik b(1)

jl Bkl

−
(
2G(z) + λ(z) + G(z) · m2

)
r2 Bi j

+m (G(z) + λ(z))

r

N∑
k=1

a(1)
ik Ak j − m (3G(z) + λ(z))

r2 Ai j

+ F

π
(
R2

2 − R2
1

)
Q∑

k=1

b(2)
jk Bik

+P

[
d frr

dr

N∑
k=1

a(1)
ik Bk j + frr

N∑
k=1

a(2)
ik Bk j

+ frr

r

N∑
k=1

a(1)
ik Bk j − 2m fθθ

r2 Ai j −
(
m2 + 1

)
fθθ

r2 Bi j

]
= 0

(17a)

G(z)
N∑

k=1

a(2)
ik Ak j + G(z)

r

N∑
k=1

a(1)
ik Ak j

−m (G(z) + λ(z))

r

N∑
k=1

a(1)
ik Bk j

−m (3G(z) + λ(z))

r2 Bi j + G(z)
Q∑

k=1

b(2)
jk Aik

−
(
G(z) + m2 (2G(z) + λ(z))

)
r2 Ai j

−m (G(z) + λ(z))

r

Q∑
k=1

b(1)
jk Cik

+ F

π
(
R2

2 − R2
1

)
Q∑

k=1

b(2)
jk Aik

+P

[
d frr

dr

N∑
k=1

a(1)
ik Ak j + frr

N∑
k=1

a(2)
ik Ak j

+ frr

r

N∑
k=1

a(1)
ik Ak j − 2m fθθ

r2 Bi j −
(
m2 + 1

)
fθθ

r2 Ai j

]
= 0

(17b)

G(z)
N∑

k=1

a(2)
ik Ck j + G(z)

r

N∑
k=1

a(1)
ik Ck j

+(G(z) + λ(z))
N∑

k=1

Q∑
l=1

a(1)
ik b(1)

jl Bkl

+ (2G(z) + λ(z))
Q∑

k=1

b(2)
jk Aik − Gm2

r2 Ci j

+m (G(z) + λ(z))

r

Q∑
k=1

b(1)
jk Aik

+ (G(z) + λ(z))

r

Q∑
k=1

b(1)
jk Bik + F

π
(
R2

2 − R2
1

)
Q∑

k=1

b(2)
jk Cik

+P

[
d frr

dr

N∑
k=1

a(1)
ik Ck j + frr

N∑
k=1

a(2)
ik Ck j

+ frr

N∑
k=1

a(2)
ik Ck j − m2 fθθ

r2 Ci j + frr

r

N∑
k=1

a(1)
ik Ck j

]
= 0

(17c)

where a(n)
i j and b(n)

i j denote weighting coefficients of the nth
order derivative in the r - and x-direction, respectively. N
and Q are number of grid points in the r - and x-direction,
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respectively. The critical value of the external pressure, i.e.,
the buckling load is obtained by solving the set of equations
presented in the matrix form as:

[
[B B] [B D]
[DB] [DD]

]
⎡
⎢⎢⎣

db⎡
⎣ u

v

w

⎤
⎦

⎤
⎥⎥⎦ = P

[
0 0
[DBG] [DDG]

]
(18)

where sub-matrices [B B], [B D] and [DBG], [DD], [DB],
[DDG] are calculated from the boundary conditions and
governing equations, respectively. Equation (18) is trans-
formed into the standard eigenvalue problem of the following
form:

(− [DBG] [B B]−1 [B D] + [DDG])−1(− [DB] [B B]−1

[B D] + [DD])[
u v w

]T − P [I]
[

u v w
]T = 0 (19)

From which, the eigenvalues of P can be found. The smallest
value of P is found to be the buckling pressure Pcr. For the
compressive loading case, the axial load is assumed to be a
fraction of the lateral pressure, i.e., σx = q · P, where q is
the axial load factor.

4 Numerical Results and Discussion

Accuracy of results obtained by the present method were
compared with those of an isotropic homogeneous thick
cylindrical shell without imperfection and thickness varia-
tion, i.e., α = 0 and β = 0, as reported in [19–21] which
were found to be in good agreement [9].

In order to validate the results for an imperfect thick shell,
the finite element bifurcation buckling analysis of the thick

cylindrical shell is carried out using ANSYS suite of pro-
gram. The basic form of the eigen-buckling analysis is:

[K ] {φi } = λi [S] {φi } (20)

where K , φi , λi and S are the structural stiffness matrix,
eigenvector, eigenvalues and stress stiffness matrix, respec-
tively. An eight-noded quadrilateral shell element, namely
Shell281, is used to model the thick cylindrical shell. The
element can handle membrane, bending and transverse shear
effects and is able to form the curvilinear surface satisfacto-
rily.

To study the buckling behavior of a constant thickness
shell with imperfection, i.e., α = 0 and β = 1, quantities
namely, λ and λ′ denoting ratios of the buckling loads of the
imperfect shell to the perfect shell are defined:

λ = P(imper)
cr

P(per)
cr

, λ′ = σ
x(imper)
cr

σ
x(per)
cr

(21)

The buckling load reduction parameter λ for pure exter-
nal pressure loading cases of an isotropic homogeneous thick
shell with imperfection and without thickness variation, i.e.,
α = 0 and β = 1 are shown in Fig. 4a, b which pro-
poses the same pattern as presented by Nguyen et al. [6].
The ratio of λ′ for imperfect thick cylindrical shells made
of aluminum under the action of axial loading obtained by
the present method, are compared with finite element results
as presented in Table 1 which indicates a very good agree-
ment between results obtained by these methods when the
imperfection parameter ε, is small.

Variation of buckling loads, i.e., uniform external pres-
sure, axial compression and combined loading with the
imperfection parameter ε, for various ratios of the external
to internal radius of the shell with L/a0 = 1, are shown in

Fig. 4 Variation of buckling load reduction λ with ε and geometric ratios for an isotropic homogeneous shell (α = 0, β = 1),
m = 2.7

√
a0/L 4

√
a0/h0
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Table 1 Critical stress for pure
axial loading of an isotropic
homogenous shell
E = 70 GPa, R1 = 1 m,

R2 = 1.25 m, ν = 0.3,

L/a0 = 1, m = 4

ε Present paper FEM Difference (%)

σ x
cr(Gpa) λ′ σ x

cr(Gpa) λ′

0 14.50 1 13.9 1 4.16

0.01 14.45 0.997 13.817 0.994 4.38

0.05 14.16 0.977 13.483 0.970 4.78

0.10 14.00 0.966 13.401 0.964 4.28

0.15 13.45 0.928 12.927 0.930 3.89

0.20 13.10 0.903 12.635 0.909 3.55

Fig. 5 Variation of critical load with ε, isotropic homogeneous shell (α = 0, β = 1), E = 70 Gpa, m = 2.7
√

a0/L 4
√

a0/h0. a External pressure.
b Axial compression. c Combined loading

Fig. 5a–c, respectively. As noted above, for the combined
loading case, the axial load is defined as a fraction of the
lateral pressure, i.e., σx = q.P. It can be observed from
Fig. 5a, b that for small values of ε and in the case of pure
lateral pressure loading, buckling loads are more sensitive
to the imperfection amplitude factor ε. In other words, in
the case of axial loading, reduction of buckling loads versus
ε is smaller than the case of lateral pressure loading. It is

also observed from Fig. 5c that the rate of reduction of the
buckling load decreases as the load factor increases.

Next, the effect of thickness variation on the buckling
load of an isotropic homogeneous thick cylindrical shell
under various loading conditions is investigated. The shell
is assumed to be a perfect shell, i.e., β = 0 and L/a0 = 1.
Buckling loads for different values of thickness variation
amplitude factor η are presented in Fig. 6a–c. It is evident
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Fig. 6 Critical load versus η for an isotropic homogeneous shell (α = 1, β = 0), m = 2.7
√

a0/L 4
√

a0/h0, E = 70 Gpa. a External pressure.
b Axial compression. c Combined loading

from Figs. 6a, b that thickness variation has higher effect on
the buckling behavior of shell under lateral pressure loading
in comparison with the axial loading case. For this type of
shell, the buckling load reduces as the parameter η increases
and the rate of decrease in case of the lateral pressure load-
ing is found to be higher than the axial compression load-
ing.

Variation of critical loads with mode number of an
isotropic homogeneous thick shell with imperfection and
thickness variation for the case of pure external pressure load-
ing are presented in Fig. 7a, b, respectively. It is observed
from these figures that the critical load for higher values of
m approaches an asymptotic value. Variation of critical loads
with m, for a thick shell with variable thickness and imper-
fection, i.e., α = 1 and β = 1 subjected to combined loading
is shown in Fig. 7c.

The buckling load results for an isotropic homogeneous
shell under the action of pure lateral pressure considering

the effect of both imperfection and thickness variation, i.e.,
α = 1 and β = 1 are shown in Fig. 8. It is shown in
the previous section that for a shell with constant thick-
ness, the buckling load ratio reduces linearly for small val-
ues of the imperfection factor, ε. As it could be expected,
the result presented in Fig. 8 shows that as the thickness
parameter η increases and the shell thicknesses approaches
a constant value of h0, the buckling loads ratio λ reduces
linearly.

In order to illustrate results of the present method for an
inhomogeneous shell, a functionally graded cylindrical shell
made of aluminum and alumina is considered. The Young’s
modulus is assumed to be temperature independent and vary
smoothly in the radial direction according to a power law dis-
tribution of the volume fraction of the constituent materials.
The Young’s modulus for the alumina at the inner surface
and for the aluminium at the outer surface are assumed to be
Ec = 380 GPa and Em = 70 GPa, respectively. It is also
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Fig. 7 Critical load versus m for an isotropic homogeneous shell, E = 70 Gpa. a Imperfection. b Variable thickness. c Variable thickness with
imperfection

assumed that the Poisson’s ratios of constituent materials are
constant and equal to 0.3. The reduction buckling load ratios,
λ and λ′ for an imperfect functionally graded thick cylindrical
shell with constant thickness, i.e., α = 0 and β = 1 subjected
to pure external pressure and axial compression are presented
in Table 2. It is shown that as the imperfection parameter ε

increases, buckling load for the pure external pressure load-
ing case reduces at higher rate than the pure axial loading
case and such reduction for the external pressure loading is
linear for small values of ε. The effect of radius ratios on
the critical buckling pressure of the uniform thickness shell
(α = 0, β = 0) with k = 1 and for mode numbers m = 6
and n = 2 are presented in Fig. 9.

Critical loads of thick FG cylindrical shells with variable
thickness, i.e., α = 1 and β = 0, for different values of k,
under the action of lateral pressure and axial compression
are illustrated in Fig. 10a, b, respectively. As shown in these

figures, critical loads increase as the value of k increases.
The main reason for such an increase is the fact that a higher
value of k corresponds to a ceramic-rich shell, which usually
has higher stiffness than a metal-rich one.

The critical buckling pressures for an isotropic inhomoge-
neous shell with different values of volume fraction indices
are listed in Table 3. It is assumed that the shell is under the
action of pure lateral pressure. Effects of both geometrical
parameters namely thickness variation and imperfection are
studied. According to Eq. (1), as the thickness variation para-
meter η increases, the thickness approaches a constant value
of h0 for a considerable length of the shell. It is shown in
Table 3 that as η increases, the buckling pressure reduces. It
is also found that for higher values of η, as the imperfection
parameter ε increases buckling load reduction becomes a lin-
ear function of the ε for different values of volume fraction
index.
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Fig. 8 Variation of buckling load ratio λ of an isotropic homogeneous
thick shell with imperfection and thickness variation (α = 1, β =
1), R2/R1 = 1.25, L/a0 = 1, m = 2.7

√
a0/L4

√
a0/h0

Table 2 Critical loads for an FG thick shell versus ε, (α = 0, β = 1)
R2/R1 = 1.25, L/a0 = 1, m = 2.7

√
a0/L 4

√
a0/h0

k ε Present paper
Pcr(Gpa)

λ Present paper
σ x

cr(Gpa)
λ′

0 0 2.307 1 14.50 1

0.01 2.270 0.984 14.45 0.997

0.05 2.091 0.906 14.16 0.977

0.10 1.872 0.811 14.00 0.966

0.15 1.661 0.719 13.45 0.928

0.20 1.410 0.611 13.10 0.903

1 0 6.217 1 38.21 1

0.01 6.10 0.981 38.01 0.995

0.05 5.62 0.904 37.40 0.979

0.10 5.05 0.812 37.15 0.973

0.15 4.42 0.711 36.01 0.942

0.20 3.80 0.611 34.50 0.903

10 0 11.77 1 73.70 1

0.01 11.55 0.981 73.31 0.995

0.05 10.66 0.906 72.50 0.984

0.10 9.580 0.814 71.44 0.971

0.15 8.425 0.715 69.40 0.942

0.20 7.23 0.614 66.4 0.901

The effects of the ratio of the length to the mid-plane
radius, i.e., L/a0 on the critical load of an FG cylindrical
shell, subjected to uniform lateral pressure for two separate
cases of a shell with variable thickness and with imperfec-
tions are shown in Fig. 11a, b, respectively. As it is realized
from Fig. 11, as the ratio of L/a0 increases, the buckling
loads approaches an asymptotic value.

Fig. 9 Variation of buckling pressure of the FG uniform thickness
shells (k = 1) with radius ratios, (m, n) = (6, 2)

Table 3 Critical pressure (GPa) for an FG thick shell versus η and ε,
(α = 1, β = 1), R2/R1 = 1.2, L/a0 = 1, m = 4

ε η k

0 1 5 10 50

0 1 3.30 8.9 14.95 16.77 18.00

0.05 3.10 8.354 14.05 15.767 16.76

0.10 2.91 7.825 13.158 14.772 15.71

0.15 2.72 7.301 12.28 13.79 14.67

0.20 2.53 6.78 11.41 13.01 13.64

0 5 1.58 4.27 7.16 8.19 8.73

0.05 1.51 3.97 6.66 7.49 7.97

0.10 1.35 3.54 5.94 6.67 7.11

0.15 1.196 3.12 5.24 5.89 6.27

0.20 1.05 2.72 4.55 5.13 5.46

0 10 1.51 4.05 6.78 7.6 8.12

0.05 1.43 3.66 6.12 6.87 7.33

0.10 1.25 3.26 5.43 6.102 6.5

0.15 1.10 2.88 4.78 5.37 5.72

0.20 0.95 2.51 4.16 4.67 4.98

0 50 1.48 3.97 6.69 7.53 8.03

0.05 1.33 3.55 5.99 6.74 7.18

0.10 1.18 3.14 5.31 5.97 6.37

0.15 1.03 2.75 4.65 5.24 5.58

0.20 0.89 2.38 4.02 4.53 4.83

5 Conclusion

In the present paper, buckling analysis of thick cylindri-
cal shells with simply supported boundary conditions under
the action of different types of mechanical loadings is car-
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Fig. 10 Variation of critical load with k for FG thick shell, (α = 1, β = 0). a External pressure. b Axial compression

Fig. 11 Variation of buckling pressure of an FG shell with L/a0. a Variable thickness. b With imperfection

ried out. Material properties are assumed to be temperature-
independent and graded through the thickness according to a
simple power law function in terms of the volume fractions of
constituents. Differential equations are developed and then
discretized and solved by differential quadrature method. The
effects of thickness variation and imperfection on the criti-
cal buckling load of the shell are investigated. Numerical
results for buckling loads of alumina–aluminum FG cylin-
drical shells are presented. Effects of the volume fraction of
constituents, shell geometric parameters, thickness variation
amplitude, imperfection parameter and loading conditions
on the buckling behavior of FG cylindrical shells are investi-
gated. From the present study, the following conclusions are
obtained:

– The critical buckling pressure of an FG cylindrical
shell under combined axial and lateral pressure loading
decreases as the load factor increases.

– For FG thick cylindrical shells under mechanical loads,
an increase in the volume fraction of ceramic constituent
leads to an increase in the critical load.

– For a shell with variable thickness, buckling load decreases
as the thickness variation amplitude factor η increases. It
is observed that such reduction is higher in the case of
uniform lateral pressure loading than the axial loading
case.

– In the case of uniform lateral pressure loading, buckling
load reduction is linear for small values of the thickness
imperfection parameter, ε. It is also noted that buckling
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load variation is more sensitive to the imperfection para-
meter ε in the case of pure lateral pressure than the axial
loading case.

References

1. Koiter, W.T.: Buckling of cylindrical shells under axial compres-
sion and external pressure: thin shell theory new trends and appli-
cations. In: Olzak, W. (ed.) CISM Courses and Lectures, vol. 40,
pp. 77– 87. Springer, New York (1980)

2. Elishakoff, I.; Li, Y.; Starners, J.H.: Non-Classical Problem in
Theory of Elastic Stability. pp. 43–98. Cambridge University
Press, Cambridge (2001)

3. Gusic, G.; Combescure, A.; Jullien, J.F.: The influence of circum-
ferential thickness variations on the buckling of cylindrical shells
under lateral pressure. Comput. Struct. 74, 461–477 (2000)

4. Nguyen, T.H.L.; Thach, S.S.H.: Stability of cylindrical panel with
variable thickness. Vietnam J. Mech. VAST. 28(1), 56–65 (2006)

5. Nguyen, T.H.L.; Thach, S.S.H.: Influence of the thickness varia-
tion and initial geometric imperfection on the buckling of cylin-
drical panel. In: Proceeding of the 8th Vietnamese Conference on
Mechanics of Solids, Thai Nguyen, pp. 491–499 (2006)

6. Nguyen, T.H.L.; Elishakoff, I.; Nguyen, T.V.: Buckling under exter-
nal pressure of cylindrical shell with variable thickness. Int. J.
Solids Struct. 46, 4163–4168 (2009)

7. Elishakoff, I.; Li, Y.W.; Starnes, J.H.: The combined effect of the
thickness variation and axisymmetric initial imperfection on the
buckling of the isotropic cylindrical shell under axial compression.
Preliminary Report, Florida Atlantic University (1992)

8. Koiter, W.T.: The effect of axisymmetric imperfection on the buck-
ling of cylindrical shells under axial compression. Akademie van
Wetenschappen-Amsterdam, Ser. B 66, 265–279 (1963)

9. Akbari Alashti, R.; Ahmadi, S.A.: Buckling of imperfect thick
cylindrical shells and curved panels with different boundary condi-
tions under external pressure. J. Theor. Appl. Mech. 52(1), 25–36
(2014)

10. Koiter, W.T.; Elishakoff, I.; Li, Y.W.; Starnes, J.H.: Buckling of
axially compression imperfect cylindrical shells of variable thick-
ness. In: Proceedings of the 35th (AIAA/ASME/ASCE/AHS/ASC)
Structural Dynamics and Materials Conferences, Hilton Head, pp.
277–289 (1994)

11. Sofiyev, A.H.: The buckling of an orthotropic composite truncated
conical shell with continuously varying thickness subject to a time
dependent external pressure. J. Compos. Part B 34, 27–233 (2003)

12. Civalek, O.: A parametric study of the free vibration analysis of
rotating laminated cylindrical shells using the method of discrete
singular convolution. J. Thin-Walled Struct. 45, 692–998 (2007)

13. Mirfakhraei, P.; Redekop, D.: Buckling of circular cylindrical shells
by the differential quadrature method. J. Press. Vessel. Pip. 75, 347–
353 (1998)

14. Civaleka, O.: Application of differential quadrature (DQ) and har-
monic differential quadrature (HDQ) for buckling analysis of thin
isotropic plates and elastic columns. J. Eng. Struct. 26, 171–
186 (2004)

15. Koizumi, M.: The concept of FGM. Ceramic Transactions. Funct.
Gradient Mater. 34, 3–10 (1993)

16. Lai, W.M.; Rubin, D.; Krempl, E.: Introduction to Con-
tinuum Mechanics, 3rd edn. Butterworth-Heinemann, Massa-
chusetts (1996)

17. Ciarlet, P.G.: Mathematical Elasticity. Three Dimensional Elastic-
ity, vol. I. North-Holland, Amsterdam (1988)

18. Shu, C.: Differential Quadrature and Its Application in Engineer-
ing. Springer, London (2000)

19. Kardomateas, G.A.: Benchmark three-dimensional elasticity solu-
tion for the buckling of thick orthotropic cylindrical shells. J. Appl.
Mech. (ASME) 5, 569 (1996)

20. Timoshenko, S.P.; Gere, J.M.: Theory of Elastic Stability. McGraw
Hill, New York (1961)

21. Flugge, W.: Stresses in Shells. Springer, Berlin (1960)

123


	Buckling Analysis of Functionally Graded Thick Cylindrical Shells with Variable Thickness Using DQM
	Abstract
	1 Introduction
	2 Problem Formulation
	3 Buckling Load Calculation
	4 Numerical Results and Discussion
	5 Conclusion
	References


