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Abstract This paper focuses on two different models,
namely regression mathematical and artificial neural net-
work (ANN) models for predicting surface roughness. In
the present work, surface roughness is taken as the response
(output) variable measured during milling, while helix angle,
spindle speed, feed and depth of cut are taken as input para-
meters. The design of experiments (DOE) technique is devel-
oped for four factors at five levels to conduct experiments.
Experiments have been conducted for measuring surface
roughness based on the DOE technique in a vertical machin-
ing centre on AISI 304 steel using an uncoated solid car-
bide end mill cutter. The experimental values are used in Six
Sigma software for finding the coefficients to develop the
regression model. The experimentally measured values are
also used to train the feed-forward back-propagation ANN
for the prediction of surface roughness. Predicted values of
response by both models, i.e. regression and ANN, are com-
pared with the experimental values. The predictive neural
network model was found to be capable of better predictions
of surface roughness within the trained range.
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1 Introduction

In manufacturing industries, milling is a fundamental metal-
cutting operation and end milling is the most frequent opera-
tion encountered, which was employed for making profiles,
slots, engraves, contours and pockets in various components.
Surface roughness is an important parameter in milling,
which decides how the work piece components interact with
its assembled parts. Obviously, rough surface will wear more
and have high coefficient of friction than smooth surface;
hence, surface roughness is a good predictor of quality of
product. The demands for high quality of product relay on
surface roughness urge the industrial automation to focus its
attention on the surface finish of the product. Though surface
roughness is a prominent parameter, it is expensive to con-
trol since the manufacturing cost will increase exponentially
with decrease in surface roughness.
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An effective model to predict the surface roughness
becomes essential to ensure the desired quality in end milling.
Various studies have been made on the surface roughness in
end milling using various tools, work materials and experi-
mental methods. The literature survey pertaining to the work
of other researchers is indicated here. Mathematical models
to predict surface roughness in terms of machining parame-
ters such as spindle speed, feed rate and depth of cut have
been developed by many researchers [1–4]. Thangavel and
Selladurai [5] employed response surface methodology to
predict surface roughness with the turning factors, such as
cutting speed, feed rate, depth of cut and tool nose radius,
and the model was checked for adequacy by analysis of vari-
ance. A multiple regression model was developed to predict
the surface roughness of the machine surface by relating to
spindle speed, cutting feed rate and depth of cut [6]. Influ-
ence of machining parameters, viz. spindle speed, depth of
cut and feed rate, on the quality experimental evaluation of
surface roughness for end milling of Al 6063 of surface
produced in CNC end milling was investigated based on
the response surface method [7]. Ginta et al. [8] employed
central composite design of response surface methodology
(RSM) to develop an analytical model for surface rough-
ness in terms of cutting parameters, such as cutting speed,
axial depth of cut and feed per tooth. Alauddin et al. [9]
have developed the mathematical model of surface rough-
ness for the end milling of 190 BHN steel, considering the
centre line average (CLA) roughness parameter (Ra) in terms
of cutting speed, feed rate and depth of cut using RSM.
Ertekin et al. [10] have considered three different materi-
als, viz. 6061 Al, 7075 Al and ANSI 4140 steel for rough-
ness (Ra) study in CNC milling. Bhattacharya et al. [11]
used Taguchi orthogonal array and analysis of variance to
investigate the effect of cutting speed, feed rate and depth of
cut on surface roughness and power consumption in high-
speed machining. The first-order and second-order math-
ematical models, in terms of machining parameters tool
geometry (radial rake angle and nose radius) and cutting
conditions (cutting speed and feed rate) on machining per-
formance, were developed based on Taguchi’s experimen-
tal design method [12]. Ansalam Raj and Narayanan Nam-
boothiri [13] proposed improved genetic algorithm (IGA) to
optimize the cutting parameters, namely nose radius, feed,
speed and depth of cut for predicting the surface rough-
ness. Yang et al. [14] developed a Fuzzy-Nets-based in-
process Adaptive Surface Roughness Control (FN-ASRC)
system to adapt cutting parameters in process to improve
the surface roughness of machined parts. The grey–Taguchi
method was adopted to optimize the milling parameters of
aluminium alloy with multiple performance characteristics
and found that surface roughness decreased from 0.44 to
0.24µm [15]. A predictive model of surface roughness was
created based on the experimentally measured values with

cutting speed, feed rate, depth of cut and material removal
rate and further optimized to obtain minimum surface rough-
ness by neural network and genetic algorithm [16]. Brezoc-
nik et al. [17] proposed genetic programming approach to
predict the surface roughness in end milling. Chang and Lu
[18] proposed different polynomial networks for predicting
surface roughness using the abductive modelling technique
and the input variables selected based on F-ratio. Lo [19]
used adaptive-network-based fuzzy inference system to pre-
dict surface roughness in terms of spindle speed, feed rate
and depth of cut. Pal and Chakraborty [20] developed a
neural network model to predict surface roughness in terms
of cutting force, feed force, cutting speed, feed and depth
of cut. Sivasakthivel et al. [21] have observed that the helix
angle plays a significant role in surface roughness in the case
of aluminium alloy (Al 6063) using high-speed steel end
mill cutter. Kadirgama et al. [22] developed potential sup-
port vector machine (PSVM), and it is used to find the sur-
face roughness when milling aluminium alloys (AA6061-T6)
with carbide coated inserts. Design of experiments method
and response surface methodology techniques are imple-
mented. It is observed that the developed model is within the
limits of the agreeable error (about 2–9 %) when compared
to the experimental results.

The literature survey reveals that the predictive model of
surface roughness is mostly based on empirical model with
arbitrary assumptions. The geometrical variations of the solid
carbide end mill cutters have not been included in most of
the models. The effect of tool geometry (helix angle) has
not been explored in detail. In this work, the main objec-
tive is to develop a mathematical model and neural network
model to predict the surface roughness of AISI 304 steel in
terms of machining parameters such as helix angle of cutting
tool, spindle speed, feed rate and depth of cut. After milling,
the average surface roughness values are measured by using
Mitutoyo Surftest SJ201. The predicted model helps us to
study the interaction effect of each parameter.

2 Surface Roughness

Irregularities produced on the surface of the specimen by the
cutting tool are termed as surface roughness. Surface rough-
ness is characterized by different amplitude parameters, such
as average surface roughness (Ra), root-mean-square (rms)
roughness (Rq or Rrms) and maximum peak-to-valley rough-
ness (Rz or Rmax). The average surface roughness (arith-
metic mean roughness value or arithmetic average or centre-
line average) is the most commonly used parameter to define
the surface roughness, and the same is used in this study.
The average surface roughness (Ra) is the area between the
roughness profile and its mean line, or the integral of the
absolute value of the roughness profile height over the evalu-
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Fig. 1 Measured surface
roughness profile for specimen 1

ation length as shown in evaluation length [23]. The average
roughness value was measured by using Mitutoyo Surftest
SJ201 and the observation are acquired by using Mitu-
toyo ver 3.0 software, and the profile is traced as shown in
Fig. 1.

2.1 Development of Regression Model

In this work, a regression model is developed to predict sur-
face roughness based on experimentally measured values.
The coefficients for the regression model are determined
using Six Sigma software. The experiment is conducted using
design of experiments (DOE).

2.2 Design of Experiments (DOE)

The experiment should provide the required information
with minimum time and effort. Therefore, the experimen-
tal method and program must be well prepared and designed
to conduct experiments. Experimental design is an important
tool to aid the experimenter in coping with the complexities
of technical investigation.

This is an organized approach to the collection of informa-
tion. The various steps involved in the design of experiments
are given below:

– Identifying the important process control variables
– Finding the upper and the lower limits of the selected

control variables
– Development of the design matrix
– Conducting the experiments as per the design matrix
– Evaluation of regression coefficients for the mathematical

model
– Development of regression mathematical model.

2.3 Identification of the Process Variables

Specifications of the CNC vertical milling cutter and work
piece material used for the experiment are given in Table 1.

Table 1 The technical details of experimental set-up, cutting tool and
work piece material

Parameter Value

Power of spindle motor 5.6 kw

Speed range of spindle motor 0–4,000 rpm

Feed rate (F) m/mm 5.1 m/mm

Torque of spindle and feed motor 45 Nm @ 1,200 rpm

Feed (X & Y dir) 0–450 mm/min

Machine tool Hass vertical machining centre
TM1

Machine weight 1,470 kg

Brand name of cutting tools Jaiysan cutting tools (ISO
Designation P20 grade)

Material of cutter Uncoated solid carbide end mill

Number of flutes 4

Diameter of cutter 12 mm

Axial rack angle of cutter 18◦

Nose radius 0.4 mm

Size of the work piece 32 × 32 × 50 mm

Radial depth of the cut 2.5 mm

Work piece material AISI 304 austenite stainless
steel

Surface roughness measuring
instrument and measuring
conditions

Mitutoya surf test SJ-201 surf
tester and 28 ± 1 ◦C

Machining conditions set by various process parameters
influence the surface roughness which in turn affects the over-
all quality. The identification of correct process parameters
is of paramount importance in obtaining better surface fin-
ish. Desired surface roughness may be achieved by properly
selecting the independently controllable process variables or
factors which influence the surface quality. Among the many
independently controllable process parameters affecting sur-
face roughness, helix angle (α), spindle speed (S), feed rate
(F) and depth of cut (D) are selected as factors to carry out
the experimental works and the development of mathemati-
cal models.
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Table 2 Parameters and levels in milling

Parameters
and notations

Units Levels

−2 −1 0 1 2

Helix angle (α) Degree (◦) 25 30 35 40 45

Spindle speed (S) Rpm 700 1,400 2,100 2,800 3,500

Feed rate (F) mm/rev 0.03 0.06 0.09 0.12 0.15

Depth of cut (D) Mm 0.2 0.4 0.6 0.8 1.0

2.4 Finding the Limits of the Process Variables

The working ranges of all process variables selected had to
be determined to fix their levels and to develop the design
matrix. This is achieved with the assistance of trial runs
carried out by varying one of the process variables while
keeping the rest of them at constant value. A large num-
ber of trial runs have been conducted for surface rough-
ness at different machining parameters. In conducting the
experiment, the upper limit of a factor was coded as +2
and the lower limit as −2, and the coded values for inter-
mediate values were calculated from the following relation-
ship

Xi = 2(2X − (Xmax + Xmin))

(Xmax − Xmin)
(1)

where Xi is the required coded value of a variable X ,
X is any value of the variable from Xmin to Xmax, Xmin

is the lower limit of the variable and Xmax is the upper
limit of the variable. The coded values for intermediate
values have been calculated using Eq. (1). The selected
process parameters of the experiment for surface rough-
ness, with their limits, units and notations, are given in
Table 2.

2.5 Development of Design Matrix

The design matrix chosen to conduct the experiments was
a five-level, four-factor central composite rotatable designs
consisting of 31 sets of coded conditions and comprising a
half replication 24 = 16 factorial design plus 8 star points
and 7 centre points. All milling variables at the intermediate
level (0) constitute the centre points, while the combination
of each milling variables at either its lower level (−2) or its
higher level (+2) with the other two variables at the inter-
mediate level constitutes the star points. Thus, the 31 exper-
imental runs allow the estimation of linear, quadratic and
two-way interactive effects of the process variables on the
surface roughness. The central composite rotatable design
matrix is shown in Table 3.

2.6 Conducting the Experiment as Per the Design Matrix
for the Measurement of Surface Roughness

Machining experiments have been carried out in a HAAS ver-
tical machining centre as per the design matrix on AISI 304
steel work piece material using an uncoated solid carbide end
mill (ISO designation P20 grade, axial rake angle = +18◦,
nose radius = 0.40 mm) with a diameter of 12 mm and hav-
ing 4 flutes. The effective rake angle is found to be +18◦ with
reference to Shaw [24]. The work piece is 32 mm wide and
50 mm long and is placed with its longitudinal axis aligned
with the direction of feed. The tests have been conducted
along a 50 mm edge. The cutting width used in the milling
experiment is 2.5 mm. The combination of process parame-
ters in each experimental run and the number of experiments
to be conducted corresponds to the design matrix table. The
machined surface was measured at three different positions,
and the average of three measurements was used as a response
value. The surface roughness values (Ra) were taken using a
Mitutoya SJ-201 surf tester with a 2.5 mm cut-off value. The
HASS vertical CNC machine with AISI 304 steel machining
set-up is shown in Fig. 2. The experimental set-up of surface
roughness measurement with Mitutoya SJ-201 surf tester is
shown in Fig. 3. AISI 304 Steel specimen and solid carbide
end mill cutter is shown in Fig. 4.

2.7 Evaluation of Coefficients for Regression Mathematical
Model

A procedure based on regression was used for the devel-
opment of a mathematical model and to predict the surface
roughness [25]. The response surface function representing
surface roughness can be expressed as Ra = f (α, S, F, D),
and the relationship selected is a second-order response sur-
face for k factors is given by Eq. (2).

Y = bo +
k∑

i=1

bi Xi +
k∑

i, j=1
i �= j

bi j Xi X j +
K∑

i=1

bii X2
i (2)

bo is the free term of the regression equation. The coeffi-
cients b1, b2, b3, b4 and b5 are linear terms. The coefficients
b11, b22, b33,b44 and b55 are quadratic terms, and the coef-
ficients b12, b13, b14, b15, b23, b24, b25, b34, b35 and b45 are
interaction terms [26]. The values of the coefficients of the
polynomial are calculated by regression with the help of
Eq. (3) to Eq. (6).

bo = 0.142857
(∑

Y
)

− 0.035714
∑ ∑

Xii Y (3)

bi = 0.04167
∑

(Xi Y ) (4)

bii = 0.03125
∑

(Xii Y ) + 0.00372
∑ ∑

(Xii Y )

−0.035714
∑

Y (5)
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Table 3 Central composite rotatable design matrix

Machining parameters with coded form Surface roughness (µm) % Error

Exp no Helix angle
α (◦)

Spindle
speed S
(rpm)

Feed rate F
(mm/rev)

Depth of
cut D
(mm)

Measured
values

Predicted
values using
regression

Predicted
values
using ANN

Using
regression
model

Using
ANN
model

1 −1 −1 −1 −1 1.909 1.906 1.9062 0.157 0.146

2 1 −1 −1 −1 1.686 1.68 1.5998 0.356 0.112

3 −1 1 −1 −1 1.567 1.538 1.5669 1.851 0.006

4 1 1 −1 −1 1.344 1.312 1.341 2.381 0.223

5 −1 −1 1 −1 2.058 2.026 2.0591 1.555 −0.053

6 1 −1 1 −1 1.821 1.8 1.816 1.153 0.274

7 −1 1 1 −1 1.657 1.658 1.659 −0.060 −0.120

8 1 1 1 −1 1.455 1.432 1.4612 1.581 −0.426

9 −1 −1 −1 1 1.729 1.734 1.7285 −0.289 0.028

10 1 −1 −1 1 1.506 1.508 1.5122 −0.133 −0.411

11 −1 1 −1 1 1.714 1.754 1.7328 −2.334 −1.096

12 1 1 −1 1 1.512 1.528 1.5214 −1.058 −0.621

13 −1 −1 1 1 1.865 1.854 1.8521 0.589 0.491

14 1 −1 1 1 1.596 1.628 1.598 −2.005 −0.125

15 −1 1 1 1 1.922 1.874 1.916 2.497 0.312

16 1 1 1 1 1.654 1.648 1.6561 0.363 −0.126

17 −2 0 0 0 2.228 2.249 2.2265 −0.943 0.067

18 2 0 0 0 1.798 1.797 1.7969 0.056 0.061

19 0 −2 0 0 1.577 1.577 1.5764 0.021 0.038

20 0 2 0 0 1.21 1.229 1.192 −1.570 1.487

21 0 0 −2 0 1.664 1.651 1.6612 0.781 0.168

22 0 0 2 0 1.854 1.891 1.8636 −1.996 −0.517

23 0 0 0 −2 1.446 1.501 1.4453 −3.804 0.048

24 0 0 0 2 1.58 1.545 1.5821 2.215 −0.132

25 0 0 0 0 1.536 1.555 1.5283 −1.238 0.501

26 0 0 0 0 1.541 1.555 1.5386 −0.909 0.155

27 0 0 0 0 1.508 1.555 1.5102 −3.117 −0.145

28 0 0 0 0 1.564 1.555 1.5614 0.575 0.166

29 0 0 0 0 1.578 1.555 1.5698 1.458 0.519

30 0 0 0 0 1.58 1.555 1.5791 1.582 0.056

31 0 0 0 0 1.58 1.555 1.5816 1.582 −0.101

bi j = 0.0625
∑ (

Xi j Y
)

(6)

Statistical software package DOE PC-IV was used to cal-
culate the values of these coefficients. An initial mathemati-
cal model was developed using the coefficients obtained from
the above equations. The mathematical model is as follows
as shown in Eq. (7).

Surface roughness (Ra)

= 1.555−0.113α−0.087S+0.06F +0.11D

+ 0.117α2−0.038S2+0.054F2−0.08D2+0.004αS

− 0.007αF −0.005αD+0.003SF+0.097SD+0.006FD

(7)

2.8 Testing the Coefficients for Significance

The value of the regression coefficients gives an idea as to
what extent the control parameters affect the response quanti-
tatively. The less significant coefficients are eliminated along
with the responses with which they are associated without
sacrificing much of the accuracy. This is done by using Stu-
dent’s t test [27] and by finding p value. According to this test,
when the calculated value of coefficient exceeds the standard
tabulated value for the probability criterion kept at 0.75, the
coefficient becomes significant and also if the p value of the
coefficient is less than 0.05, the coefficient becomes signifi-
cant; otherwise, it becomes insignificant. The p value of all
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Fig. 2 HASS vertical machining centre with AISI 304 steel specimen

Fig. 3 Surface roughness measurement set-up 2 with Mitutoya SJ-201
surf tester

Fig. 4 AISI 304 steel specimen and solid carbide end mill cutter

the coefficients is given in Table 4. The final mathematical
model was developed using only the significant coefficients.

From the above table, the coefficients that have p value
greater than 0.05 are eliminated. The final mathematical
model as determined by the above analysis is given by Eq.
(8).

Table 4 P value of coefficients in the mathematical model

S. no Coefficients in the
mathematical model

P-value

1 Constant term 0

2 A 0

3 S 0

4 F 0

5 D 0

6 α2 0

7 S2 0

8 F2 0

9 D2 0

10 αS 0.681

11 αF 0.452

12 αD 0.580

13 SF 0.767

14 SD 0

15 FD 0.514

Surface roughness (Ra)

= 1.555−0.113α−0.087S+0.06F +0.11D+0.117α2

− 0.038S2+0.054F2+0.08D2+0.097SD (8)

3 The Adequacy of the Developed Model

The adequacy of the model was tested using the analysis
of variance techniques (ANOVA). As per the ANOVA tech-
nique, it is desired that the calculated value of the F-ratio
of the model developed should not exceed the standard tab-
ulated value of the F-ratio for a desired level of confidence
(95 %). Also, if the calculated value of the R-ratio of the
model developed exceeds the standard tabulated value of the
R-ratio for the desired level of confidence (95 %), then the
model can be considered to be adequate within the confidence
limit. Adequacy of the model was shown in Table 5.

4 Results and Discussion

Based on the mathematical model given in Eq. (7), the effects
of various machining parameters on surface roughness (Ra)
were studied to analyse the suitable parametric combinations
in order to achieve controlled surface roughness. The contour
plots were plotted for those parameters which have a signif-
icant interaction effect.

4.1 Interaction Effect of Variables

An interaction effect was observed between various process
parameters for surface roughness. The most significant inter-
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Table 5 Adequacy of the model

Response Factors d f Lackof Fit d f Pure error F-ratio R-ratio Whether model is adequate

Model Standard Model Standard

Surface roughness 9 15 6 1.367 7.56 182.457 7.98 Adequate

Fig. 5 Interaction effect of
helix angle and feed rate on
surface roughness

action effect was found between helix angle and feed rate;
helix angle and spindle speed; spindle speed and feed rate.

4.2 Interaction Effect of Helix Angle and Feed Rate

The interaction effect of helix angle (α) and feed rate (F) on
surface roughness (Ra) is shown in Fig. 5. It reveals that as
the helix angle increases, it results in a decrease in surface
roughness. The increase in flute angle will reduce the shock
load, thus resulting in reduced vibration. It is obvious that
when vibration decreases, surface roughness also decreases.
For increase in the feed rate value from 0.03 to 0.15 mm/rev
surface roughness value decreases for helix angle 25◦ and
30◦, it is moderate at 25◦ and it increases for helix angle 45◦
and 45◦. These effects are further explained with the help of
response surface plots, as shown in Fig. 6. It is evident from
the contour surface that Ra is maximum (about 0.192µm)
when α and F are at their higher limits (+2) and is minimum
(about 0.78µm) when α and F are at their lower limits (−2).

4.3 Interaction Effect of Spindle Speed and Feed Rate

The interaction effect of spindle speed (S) and feed rate
(F) on surface roughness (Ra) is shown in Fig. 7. From the
Fig. 7, it can be observed that as the spindle speed increases,
it results in a decrease in surface roughness. By increas-
ing the cutting speed, the surface roughness also decreases.
This is because in a certain range of cutting speed, the for-
mation of built-up-edge (BUE) is favoured to decrease the
surface roughness [28]. The increase in the feed rate val-
ues from 0.03 to0.09 mm/rev decreases surface roughness
value; it can be reasoned that increasing the feed rate helps

Fig. 6 Contour plot and response surface plot for interaction effect of
feed rate and helix angle on surface roughness

to improve surface finish by preventing built edge formation
up to 0.09 mm/rev, but increasing further resulted in poor sur-
face finish owing to the increase in chatter vibration. From
Fig. 7, it is observed that the surface roughness (Ra) is min-
imum when the spindle speed is 3,500 rpm and the feed rate
ranges from 0.06 to 0.09 mm/rev. These effects are further
explained with the help of response surface plots, as shown
in Fig. 8. It is evident from the contour surface that Ra is
maximum (about 1.93µm) when S and F are at their higher
limits (+2) and is minimum (about 1.23µm) when α and F
are at their lower limits (−2).

4.4 Interaction Effect of Feed Rate and Depth of Cut

The interaction effect of feed rate (F) and depth of cut (D)
on surface roughness (Ra) is shown in Fig. 9. From Fig. 9, it
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Fig. 7 Interaction effect of
spindle speed and feed rate on
surface roughness

Fig. 8 Contour plot and response surface plot for the interaction effect
of feed rate and spindle speed on surface roughness

can be observed that as the feed rate increases from 0.03
to 0.09 mm/rev, it results in a decrease in surface rough-
ness. Further increase in feed rate from 0.09 to 0.15 mm/rev
increases the surface roughness value. Also, the increase in
depth of cut from 0.2 to 1.0 mm slightly increases the surface
roughness. It can be reasoned that an increase in depth of cut
renders the end mill cutter and work piece stable, which in
turn minimizes chatter vibration. From Fig. 9, it is observed
that the surface roughness (Ra) is minimum when the feed
rate ranges from 0.06 to 0.09 mm/rev and the depth of cut is
0.2 mm.

5 Development of Neural Network Model

Artificial neural networks, one of the most powerful
computer-modelling techniques based on statistical approach,
is currently being used in many fields of engineering for mod-
elling complex relationships that are difficult to describe with
physical models. The attraction of neural networks comes
from their remarkable information, processing characteris-
tics pertinent mainly to nonlinearity, high parallelism, fault
and noise tolerance, and learning and generalized capabil-
ity. There has been continual increase in research interest
in the application of artificial neural networks in modelling
and monitoring of machining processes. The objective of this
study was to model the surface roughness of 304 grade stain-
less steel specimen.

5.1 Feed-Forward Neural Network Model

The network used here for predicting surface roughness is
a feed-forward back-propagation network. The network is a
multilayer network. It consists of an input layer used for feed-
ing the input data of the experiment, an output layer used for
generating the response and at least one hidden layer used as
training function to process the input data and yield output.
This network uses network training function that updates
weights and bias values, according to the gradient descent
to reduce error. Data obtained from the experiments were
provided to a network at the learning stage, i.e. machining
parameters and surface roughness values. During network

Fig. 9 Interaction effect of feed
rate and depth of cut on surface
roughness
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Fig. 10 Network architecture

learning, the network output was compared with the desired
output and the connector weights inside the network were
adjusted to minimize the difference. The error was then prop-
agated backwards through the network, and weights were
changed, based on the feed-forward back-propagation learn-
ing algorithm. This learning process is an iterative one and
was stopped once an acceptable error was reached. When the
trained network was presented with new input (beyond train-
ing), the network responded according to the knowledge it
acquired [28,29].

5.2 Training the Neural Network

In this study, the input parameters used were the four main
parameters, i.e. helix angle (α), spindle speed (S), feed rate
(F) and depth of cut (D). The output parameter was the
response, i.e. surface roughness. In total, 31 experimental
data were collected for building the neural network model. In
order to relieve the training difficulty and balance the impor-
tance during the training process, the data should be normal-
ized. The data are normalized between slightly offset values
such as 0.1 and 0.9 rather than between 0 and 1 to avoid satu-
ration of the sigmoid function leading to slow or no learning.

The normalized values for each row of input and output data
set were calculated using Eq. (4) [30]

Xi = 0.1 + 0.8

(
Zi − Zmin

Zmax − Zmin

)
(9)

where Xi normalized input/output value, Zi actual input/out-
put value, Zmax maximum input/output value and Zmin min-
imum input/output value.

A feed-forward back-propagation artificial neural network
model was created keeping four neurons in the input layer,
one neuron in the hidden layer and one neuron in the output
layer by using MATLAB 7.6 [31]. The number of neurons
in the hidden layer varied between 1 and 25, and they had
to be decided based on trial and error. This was determined
by gradually increasing the number of neurons and observing
their effect on the predicted value. Finally, the structure of the
network selected was 4–12–1 (4 neurons in the input layer,
12 neurons in the hidden layer and 1 neuron in the output
layer). The network architecture is shown in Fig. 10. There
is no specific rule available on how many data could be used
for training and how much for testing and validation. The
general guide line is that the training data should be more than
testing and validation. Hence, out of 31 experimental data,
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Fig. 11 Performance goal of the network

70 % was used for training, 15 % for testing and another 15 %
for validation. Thus, in total, 21 data were used for training,
5 data for testing and 5 data for validation.

6 Testing the Neural Network

The network was trained to determine the performance of
the established model of surface roughness. During train-
ing, each time a set of inputs Xi of a training sample was
presented and the corresponding output Yo (predicted val-
ues) was obtained. The predicted value of the network model
was compared with the actual value (Yd). The comparison
was done by calculating the mean sum of the squared error
(MSE) between Yd and Yo using Eq. (5)

MSE = (Yd − Yo)
2 (10)

The objective of the algorithm is to minimize the mean
sum of squared error for the entire experimental data. In this
study, the network was trained for 45 iterations. Further train-
ing did not seen to improve the modelling performance of the

network. The average MSE obtained was 0.00019622, which
shows that the model is very accurate. The performance goal
of the network is displayed in Fig. 11.

6.1 Validity of the Neural Model

The validity of the neural model was tested by conducting
additional tests, as shown in Table 6. From the above table, it
can be inferred that the error percentage for additional tests
falls within the range of 0.0457 to −1.631 %. Hence, the
above model can be effectively used for predicting surface
roughness.

From the conformity test, it was found that the developed
ANN model is able to predict surface roughness with a rea-
sonable accuracy.

6.2 Comparison of Regression and ANN Models

The regression and ANN models are compared with error per-
centage. The average error percentage of regression model
is above 2 %. But in most cases, the error percentage of
ANN model is found to be less than 2 %. The predictions of
neural network model are accurate and reliable than regres-
sion model.

7 Conclusions and Future Scope

This investigation presented a regression and artificial neural
network model to predict surface roughness in terms of helix
angle, spindle speed, feed rate and depth of cut. The helix
angle is the one of the significant parameter to reduce the
surface roughness. Increasing the helix angle decreases the
surface roughness. Increase in feed rate, depth of cut and
spindle speed increases the surface roughness. The interac-
tions between the process parameter were analysed. Artificial
neural network was developed to predict surface roughness.
The error in the surface roughness values predicted by using
regression model and neural network model compared with
experimentally measured value was found to be less than

Table 6 Confirmatory tests for
validity of neural model Trial no. Machining parameters in coded values Surface roughness (µm) Percentage

error
α (◦) S (rpm) F (mm/rev) D (mm) Observed

values
Predicted
values

01 2 2 2 2 2.186 2.185 0.0457

02 1 1 1.5 1 1.741 1.7455 −0.2585

03 0 1.5 −1 1.5 1.529 1.54975 −1.357

04 −1 −2 0 0.5 1.686 1.7135 −1.631

05 2 −1 −0.5 −0.5 1.853 1.8705 −0.944

06 0 0.5 1 1.5 1.602 1.637 −1.321
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5 %. The predictions of neural network model are accurate
and reliable than regression model as in most cases the error
percentage is found to be less than 2 %. Hence, it can be con-
cluded that the developed models possess promising poten-
tial in the application of predicting surface roughness in end
milling operations. Further study could consider more fac-
tors (different tool geometry, coating type, materials, cutting
conditions, lubricant, cooling strategy etc.) in the study to
see how these factors could affect the surface roughness.
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