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Abstract A new set of Gegenbauer moment invariants is
proposed for pattern recognition applications. These moment
invariants are expressed as a linear combination of geomet-
ric moment invariants where the later are invariants under
translation, scaling and rotation of the image they describe.
The invariance of Gegenbauer moments is tested by using
different binary- and gray-level images. The obtained results
show the accuracy of the new set of Gegenbauer moment
invariants.

Keywords Orthogonal moments · Gegenbauer moment
invariants · Geometric moment invariants · Classification

1 Introduction

The concept of moment invariants of images was introduced
by Hu [1] where he derived a set of nine moment invariants
by using geometric moments of the input image. Hu’s mo-
ment invariants are used in different image processing and
pattern recognition applications. Due to the limitations in
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the image reconstruction capabilities of geometric moments,
Teague [2] used orthogonal polynomials to compute image
moments instead of monomials as in the case of Hu. Legen-
dre and Zernike moments are examples of these orthogo-
nal polynomials. Teh and Chain [3] reported that orthogonal
moments are used to represent images with the minimum of
information redundancy.

Since Gegenbauer polynomials are orthogonal [4], these
polynomials are used to represent digital images with the
minimum of information redundancy. In addition to these at-
tractive properties, orthogonal Gegenbauer polynomials are
characterized by a scaling parameter α > −0.5, where spe-
cific values of this parameter produce different sets of other
orthogonal polynomials. Pawlak [5] shows that this scaling
parameter provides a trade-off between global and local im-
age features.

Recently, Hosny [6] proposed the theme of image repre-
sentation by using highly accurate orthogonal Gegenbauer
moments. In his work, Hosny confirmed the robustness of
orthogonal Gegenbauer moments against different kinds of
noise. To the author’s best knowledge, there is no work deal-
ing with the derivation and computation of Gegenbauer mo-
ment invariants with respect to translation, scaling and rota-
tion.

Recognition of images and shapes based on their invariant
features and the discrimination between similar images are
very important themes. The accuracy of the discrimination
process mainly depends on the accurate computation of the
invariant features of the images.

Kan and Srinath [7] used orthogonal Zernike moment in-
variants for invariant classification of alphanumeric charac-
ters of different sizes. Jazzar and Muhammed [8] proposed a
multimodal biometric system with high security level based
on finger and palm print. The verification/identification is
performed by fusing features form different finger and palm
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prints. The features are extracted using Zernike moment in-
variants.

Chong et al. [9] introduced a new set of translation and
scale invariants of Legendre moments based on Legendre
polynomials. The descriptors remain unchanged for trans-
lated, elongated, contracted and reflected non-symmetrical,
as well as symmetrical images. Rao et al. [10] used exact
Legendre moments and support vector machine in content-
based image retrieval.

Pang et al. [11] used enhanced pseudo-Zernike moment
invariants in face recognition. Kanan et al. [12] used adap-
tively weighted patch pseudo-Zernike moments of a single
image per person for face recognition. Moreover, Kanan and
Faez [13] studied the optimal selection of pseudo-Zernike
moment invariants features for face recognition.

In this paper, a new set of accurate orthogonal Gegenbauer
moment invariants (GMIs) is presented. These GMIs are ex-
pressed as a linear combination of regular moment invariants
(RMIs) where the later are invariant under translation, scaling
and rotation of the image they describe. RMIs are computed
as a linear combination of the central moments. A fast algo-
rithm is applied to accelerate the computation process, where
the computational elapsed times are greatly reduced.

The rest of the paper is organized as follows: In Sect. 2,
a brief overview of orthogonal Gegenbauer polynomials and
their moments is presented. The proposed method for deriva-
tion of Gegenbauer moment invariants is described in Sect. 3.
Numerical experiments are discussed in Sect. 4. The conclu-
sion is presented in Sect. 5. Finally, a list of references is
presented.

2 Orthogonal Gegenbauer Polynomials

Gegenbauer polynomial of the nth order is defined as follows
[4]:

G(α)
n (x) =

� n
2 �∑

k=0

(−1)k � (n − k + α)

k !(n − 2k)!�(α)
(2x)n−2k (1)
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The explicit expansion of G(α)
n (x) is rewritten as follows:
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The first five Gegenbauer functions are defined in a matrix
form as follows:
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with:

(α)n = α (α + 1) (α + 2) . . . (α + n − 1) (6)

The low-order Gegenbauer polynomials are plotted and dis-
played in Figs. 1 and 2. Direct computation of the coefficient
matrix B(α)

n,m by using Eqs. (4) is time-consuming where the
computational process includes evaluation of factorial terms
and Gamma function, �(·), for each value of n and m. Based
on the Gamma function properties, a set of recurrence rela-
tions is derived to easily compute B(α)

n,m recursively. Gamma
functions and factorial terms are not included in these recur-
rence relations as follows:

Fig. 1 Gegenbauer polynomials of low orders plotted and graphically
displayed
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Fig. 2 Graphical representation of the fifth orders Gegenbauer poly-
nomials with different values of the scaling parameter α > −0.5

B (α)
0,0 = 1, (7)

B (α)
n,n = 2 (α + n − 1)

n
B (α)

n−1,n−1, (8)

B (α)
n,n−t = − (n − t + 1) (n − t + 2)

2t
(
α + n − t

2

) B (α)
n,n−t+2. (9)

with t = 2, 4, 6, . . . , n. The following pseudo-code is help-
ful for the reader to easily understand this computational
process.

B(α)
0,0 = 1

for n = 1 : Max

B(α)
n,n = 2(α + n − 1)

n
B(α)

n−1,n−1

endfor

for n = 2 : Max

for m = n − 2 : −2 : mod(p, 2)

B(α)
n,n−m = − n (n − 1)

4 (α + n − 1)
B(α)

n,m+2

endfor

endfor

Gegenbauer polynomials are orthogonal over the square
[−1 ≤ x ≤ 1] × [−1 ≤ y ≤ 1] and satisfy the follow-
ing orthogonality property:

1∫

−1

G(α)
n (x)G(α)

m (x)w(α)(x)dx = Cn(α)δnm (10)

With the weight function:

w(α)(x) =
(

1 − x2
)α−0.5

(11)

The Kronecker symbol, δnm , and the normalization constant,
Cn(α), are defined as follows:

Cn(α) = 2π� (n + 2α)

22αn! (n + α) [�(α)]2 (12)

The time-consuming computational process for normaliza-
tion constant evaluation is avoided by using the recurrence
relations [6]. Orthogonal 2D Gegenbauer moments of order
(n, m) are defined as follows:

An,m = 1
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The indices n, m are nonnegative integers.

3 Gegenbauer Moment Invariants (GMIs)

Equation (13) is rewritten where GMIs are expressed in terms
of RMIs. Substituting Eq. (3) into (13) yields:
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Assume the function h(x, y) is defined as:
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f (x, y) (15)

Equation (14) is rewritten as follows:
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The integration in Eq. (16) represents the geometric moments
of the image intensity function h(x, y). Therefore, Eq. (16)
could be rewritten as follows:
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n∑
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m∑
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×B(α)
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Fig. 3 Displaying of all shapes of the MPEG-7 CE-Shape-1 dataset

Fig. 4 Testing the invariance to scale by using the binary shape of “Elephant”

where RMIp,q are the regular moment invariants of order
(p + q).

3.1 Regular Moment Invariants (RMIs)

Regular moment invariants of image/shape are the features
that remain unchanged if that image/shape undergoes any
combination of translation, scaling, and rotation.

Translation invariance is achieved through the central mo-
ments. These moments are defined by shifting the coordinate
system with the image centroid (x0, y0). This centroid is de-
fined for the new intensity function as follows:

x0 =
∑N

i = 1
∑N

j = 1 xi h
(
xi , y j

)

∑N
i = 1

∑N
j = 1 h

(
xi , y j

) ,

y0 =
∑N

i = 1
∑N

j = 1 y j h
(
xi , y j

)

∑N
i = 1

∑N
j = 1 h

(
xi , y j

) (18)

The central moments are:

μpq =
∞∫

−∞

∞∫

−∞
(x − x0)

p (y − y0)
q h (x, y) dxdy (19)

Central moments are directly computed without any prior
knowledge of the geometric moments. Invariance to uniform
scaling of factor α could be achieved through the cancelation
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Table 1 Scale invariance of the binary shape “Elephant”

Original image Contracted images Expanded images

200 × 200 50 × 50 120 × 120 150 × 150 250 × 2500 400 × 400

I(3) 0.3647 0.3646 0.3647 0.3647 0.3647 0.3647

I(4) −0.0446 −0.0446 −0.0446 −0.0446 −0.0446 −0.0446

I(5) 0.2927 0.2924 0.2927 0.2927 0.2927 0.2927

I(6) −0.0305 −0.0301 −0.0304 −0.0304 −0.0304 −0.0304

I(7) 0.0308 0.0307 0.0308 0.0308 0.0308 0.0308

I(8) −0.0407 −0.0407 −0.0407 −0.0407 −0.0407 −0.0407

I(9) 0.0003 0.0001 0.0003 0.0003 0.0003 0.0003

I(10) −0.0521 −0.0517 −0.0521 −0.0521 −0.0521 −0.0521

I(11) 0.0432 0.0429 0.0432 0.0432 0.0432 0.0432

I(12) −0.2446 −0.2436 −0.2445 −0.2445 −0.2446 −0.2446

I(13) 0.0610 0.0608 0.0609 0.0610 0.0610 0.0610

I(14) 0.0751 0.0752 0.0751 0.0751 0.0751 0.0751

Fig. 5 Testing the invariance to rotation by using the binary shape of “deer”

Fig. 6 Testing the invariance to rotation by using the gray-level image of “Lena”

of the scaling factors by setting μ′
00 equal to the unity. The

scale-translation invariant moments are

μ′
pq = μpq

μλ
00

, λ = p + q + 2

2
(20)

The third kind of transformation is the rotation through an
angle θ . This angle is usually measured counterclockwise
about the coordinate origin. The rotation transformation is
represented by the following form:

Mrot
pq =

∞∫

−∞

∞∫

−∞
(x cos θ + y sin θ)p

× (y cos θ − x sin θ)q h(x, y)dx dy, (21)

By using the binomial theorem with Eq. (21) and using the
scale-translation invariant moments instead of the geometric
moments, the set of regular moment invariants are defined as
follows:

RMIpq = 1

μλ
00

p∑

k=0

q∑

m=0

(
p
k

) (
q
m

)
(−1)m(sin θ)k+m

× (cos θ)p+q−k−m μp−k+m,q−m+k (22)
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Table 2 Rotation invariance of the binary shape “deer”

Original
image

Rotation angle

9◦ 32◦ 45◦ 95◦ 150◦

I(3) −0.2912 −0.2902 −0.2908 −0.2902 −0.2906 −0.2901

I(4) 0.0009 −0.0008 −0.0002 0.0007 0.0005 0.0003

I(5) −0.2209 −0.2204 −0.2217 −0.2203 −0.2216 −0.2219

I(6) 0.0004 0.0003 0.0001 0.0005 0.0006 0.0008

I(7) 0.0090 0.0081 0.0089 0.0084 0.0081 0.0086

I(8) −0.0027 −0.0025 −0.0025 −0.0028 −0.0023 −0.0023

I(9) 0.0024 0.0019 0.0018 0.0021 0.0020 0.0023

I(10) 0.1091 0.1083 0.1094 0.1080 0.1084 0.1088

I(11) 0.0183 0.0179 0.0186 0.0180 0.0181 0.0185

I(12) 0.0776 0.0769 0.0771 0.0765 0.0770 0.0770

I(13) −0.0263 −0.0241 −0.0240 −0.0243 −0.0239 −0.0239

I(14) −0.0572 −0.0570 −0.0566 −0.0568 −0.0570 −0.0570

Table 3 Rotation invariance of the gray-level image “Lena”

Original
image

Rotated
image #1

Rotated
image #2

Rotated
image #3

I(3) −0.2032 −0.2026 −0.2034 −0.2028

I(4) −0.0001 0.0001 0.0003 0.0001

I(5) −0.1669 −0.1658 −0.1657 −0.1655

I(6) 0.0402 0.0412 0.0406 0.0396

I(7) −0.0056 −0.0063 −0.0055 −0.0054

I(8) 0.0140 0.0144 0.0138 0.0134

I(9) −0.0002 −0.0012 −0.0009 −0.0008

I(10) 0.0795 0.0802 0.0799 0.0796

I(11) 0.0049 0.0061 0.0052 0.0055

I(12) −0.0562 −0.0542 −0.0557 −0.0549

I(13) −0.0111 −0.0113 −0.0106 −0.0110

I(14) 0.0299 0.0304 0.0301 0.0302

With a rotation angle defined as:

θ = 1

2
tan−1

(
2μ11

μ20 − μ02

)
(23)

3.2 Accurate Computation of RMIs

Computation of RMIs required the computation of central
moments as the main counterpart of the whole process. Cen-
tral moments defined by Eq. (19) could be computed by using
the following form:

μpq =
M∑

i=1

N∑

j=1

Tpq
(
xi , y j

)
h

(
xi , y j

)
, (24)

where

Tpq(xi , y j ) =
xi + 	xi

2∫

xi − 	xi
2

y j + 	y j
2∫

y j − 	y j
2

(x − x0)
p (y − y0)

qdxdy

(25)

Writing Eq. (25) in a separable form and replace it in Eq. (24)
yields:

μpq =
M∑

i=1

N∑

j=1

Ip (i) Iq ( j) h
(
xi , y j

)
(26)

where

Ip (i) =
xi + 	xi

2∫

xi − 	xi
2

(x − x0)
p dx (27)

= 1

p + 1

[
(Ui+1 − x0)

p+1 − (Ui − x0)
p+1

]

Iq ( j) =
y j + 	y j

2∫

y j − 	y j
2

(y − y0)
q dy (28)

= 1

q + 1

[(
Vj+1 − y0

)q+1 − (
Vj − y0

)q+1
]

The upper and lower limits of the integration in the Eqs.
(27, 28) are defined as in [14,15]. A fast algorithm could be
applied to accelerate this computational process where the
central moments of order (p + q) could be computed in two
steps by successive computation of the 1D qth order moments
for each row. This methodology proved to be very efficient
and successfully used in the case of 2D and 3D images [16–
19].

4 Experimental Results

The validity and efficiency of the proposed method are ana-
lyzed in the three subsections of this section. The first sub-
section is concerned with the accuracy where the validity
of the proposed method is proved. A set of numerical ex-
periments is conducted with different images from selected
image databases. These images are scaled with different fac-
tors and rotated with different angles. The results of these
experiments clearly show that GMIs are accurate invariants
under different aforementioned transformations.

Discrimination power of the GMIs is discussed in the sec-
ond subsection. The proposed set of orthogonal GMIs is used
in classifying similar images from different standard data-
bases with high classification ratio.
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Fig. 7 Displaying the selected
binary shapes from
MPEG7_CE-Shape-1_Part_B
dataset

Table 4 Euclidean distance and correlation coefficients for Binary shapes of selected animals

Query shape Selected shapes of animals

VA VB VC VD VE VF VG VH VI

d1 0.1126 0.3181 0.2998 0.2964 0.1916 0.4187 0.3287 0.2994

d2 0.9808 0.8362 0.8589 0.8466 0.9350 0.7562 0.7955 0.8717

According to the extreme importance of the CPU elapsed
time especially when dealing with large image and shape
databases, the third subsection is devoted to evaluate the com-
putational performance on different databases. A comparison
of the computational elapsed CPU times of different methods
is presented.

4.1 Accuracy

The accuracy of GMIs is evaluated through a series of nu-
merical experiments. To easily analyze the accuracy of the
GMIs, 1D vector of these invariants is constructed from the
computed set of independent 2D orthogonal Gegenbauer mo-
ments. For a maximum moment order Max, the total number
of independent regular and Gegenbauer moments is equal to
(Max + 1)(Max + 1)/2. The conversion process could be done
by using the conversion code [14].

GMIs of the second, third and fourth orders are used in all
the conducted numerical experiments. In the first experiment,
a binary image of “Elephant” is selected from the MPEG-7
CE-Shape-1 database [20]. This database consists of 1,400
shapes, which are grouped into 70 categories with 20 shapes
each as shown in Fig. 3. This database is commonly used to
test different kinds of shape descriptors [21].

The 200×200 binary image of “Elephant” as displayed in
Fig. 4a is uniformly scaled with the ratios 25, 60, 75, 125 and
200 %. The scaled images of the “Elephant” are displayed in
Fig. 4b–f, respectively.

Low orders of GMIs are computed for the original binary
image and the scaled images. The obtained results are shown
in Table 1. It is clear that the numerical values of low- order
GMIs are almost identical for the original, expanded and
contracted images. The results of this numerical experiment
ensure the accuracy of the GMIs.
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Fig. 8 Displaying the selected gray-level images of trademarks

Rotational invariance is an essential property for pattern
classification and recognition. A numerical experiment is
conducted to evaluate the invariance of GMIs with respect
to rotation. The binary image of “deer” as displayed in Fig.
5a is selected from the MPEG-7 CE-Shape-1 database. This
image is rotated with different angles ranging from acute
to very large angles. The rotated images with their rotation
angles are displayed in Fig. 5b–f.

An additional numerical experiment for rotational invari-
ance is conducted. The standard gray-level image of “Lena”
as displayed in Fig. 6 a is used in this experiment. The orig-
inal gray-level image of Lena is padded with zeros and then
rotated with three different angles. The rotated images are
displayed in Fig. 6b–d, respectively.

Low-order GMIs are computed for these transformed im-
ages where the obtained numerical values are listed in Tables
2 and 3, respectively. The numerical values are very similar,
which ensure the invariance of Gegenbauer moments with
respect to rotation. Based on the results of these numerical
experiments, the accuracy of the GMIs is absolutely obvious.

4.2 Discrimination Power

The discrimination between similar images and shapes is an
essential process in many applications such as retrieving im-

ages based on their content. To achieve this goal, classifiers
are used where their discrimination power is highly depen-
dent on the accuracy of the features being used. Gegenbauer
moment invariants of lower orders are computed and stored in
feature vectors. In this section, numerical experiments were
conducted where the Euclidean distance and the correlation
coefficients are used to measure the similarity between the
different images. These measures are defined by using the
following form [22]:
Euclidean distance:

d1(S, T ) =
√√√√

ns∑

i=1

(Si − Ti )2 (29)

Correlation coefficients:

d2(S, T ) =
∑ns

i=1 Si Ti∣∣∑ns
i=1 Si Si

∣∣0.5 ∣∣∑ns
i=1 Ti Ti

∣∣0.5
(30)

The vectors of the selected features, S and T , have the length
ns. The value of the measure, d1, tends to be 0 for the case
of the two equal vectors, while d2 tends to be 1.

In the first numerical experiment, a group of binary shapes
of animals were selected from different groups of the
MPEG7_CE-Shape-1_Part_B [20]. The correlation coeffi-
cient between the low-order GMIs of the two binary shapes
is used as a quantitative measure for the similarity between
the different shapes where the maximum correlation between
shapes will be achieved by the shapes from the same group.

The selected binary shapes, “bird_18,” “bird_2,”
“camel_3,” “cattle_10,” “chicken_4,” “dog_4,” “frog_19,”
“horse_6,” and “turtle_1” are displayed in Fig. 7 a–i, respec-
tively. In this experiment, the GMIs of lower orders for the
selected shapes are computed and stored in the feature vec-
tors, VA, VB , VC , VD, VE , VF , VG , VH and VI , respectively.
The similarity between the binary shape A and all of the other
selected shapes was determined, and the obtained results are
shown in Table 4. Based on these results, the maximum value
of the correlation coefficients was found between feature vec-
tors, VA and VB , which represent two shapes from the same
group.

An additional numerical experiment was conducted where
a group of gray-level images of trademarks were used [23].
The images of the selected trademarks are displayed in

Table 5 Euclidean distance and correlation coefficients for gray-level images of selected trademarks

Query logo Selected gray-level images of logos

VA VB VC VD VE VF VG VH VI

d1 0.3188 0.3184 0.3992 0.4703 0.3668 0.3184 0.4146 0.0717

d2 0.8262 0.8195 0.6740 0.5004 0.7371 0.8421 0.6419 0.9912
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Fig. 9 Collection of the 40
faces (ORL-faces)

Fig. 10 Collection of the
COIL-20 objects

Fig. 8a–i, respectively. The GMIs of lower orders for the
selected images are computed and stored in the feature vec-
tors, VA, VB, VC , VD, VE , VF , VG , VH and VI , respectively.
The similarity between the selected trademark image, A, and
other selected images was determined. The obtained results
are shown in Table 5. Based on these results, the maximum
value of the correlation coefficients was found between fea-
ture vectors, VA and VI . This result is completely consistent
with the naked eye’s observation. The results of the con-

ducted experiments ensure the discrimination power of the
GMIs.

4.3 Computational Time

Reduction of the computational time is desirable in any recog-
nition and discrimination process. Low computational costs
are very helpful in recognition of images with big size and
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Fig. 11 Collection of 12
Selected gray-level images of
Mugs

Fig. 12 Collection of 10
Selected gray-level images of
Bottles

the discrimination between similar images and shapes from
huge image databases. In order to prove the computational
efficiency of the proposed method, numerical experiments
are conducted using popular image databases.

The first image database is ORL-faces database [24]. This
database contains ten different images for the face of each
person. The total number of images is equal to 400. All im-
ages of this database have the size 92×112. Figure 9 displays
a collection of the 40 faces.

The second image database is the Columbia Object image
Library (COIL-20) database [25]. The total number of images
is 1440 distributed as 72 images for each object. All images
of this database have the size 416 × 448. Figure 10 displays
a collection of the 20 objects.

The third and the fourth numerical experiments are con-
ducted using gray-level images of mugs as displayed in
Fig. 11 and bottles as displayed in Fig. 12. These images
are selected from the ETHZ shape database [26]. All of the
selected images are resized to be defined with a unified size
equal to 480 × 480.

The execution-time improvement ratio (ETIR) [27] is used
as a criterion to compare the different computational meth-
ods. This ratio is defined as ETIR = (1 − T ime1/T ime2)×
100, where Time1 and Time2 are the execution time of the
first and the second methods. ETIR = 0 if both execution
times are identical.

All numerical experiments are performed using Sony Vaio
E-series Laptop Machine equipped with Intel® Core i5 CPU
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Table 6 Average CPU time and ETIR for selected image databases

Database Liao’s method [28] Proposed method ETIR (%)

ORL-faces [24] 0.0501 0.0401 80.04

COIL-20 [25] 0.3267 0.0695 78.70

Bottles [26] 0.3212 0.0709 77.92

Mugs [26] 0.2196 0.0498 77.32

2.7 GHz and 4 GB RAM and operated by 64 bit Windows
8 professional where the executed codes are designed using
Matlab7.7.

Low-order GMIs for the selected images are computed by
using the method of Liao [28] and the proposed method.
The computational processes are performed and repeated
10 times for each of the selected images where the aver-
age CPU elapsed times and the execution-time improvement
ratio (ETIR) are included in Table 6. It is clear that the pro-
posed method reduced the execution time by 80 % which will
be useful in the processing of large size images and shapes.

5 Conclusion

A new set of Gegenbauer moment invariants was constructed
for pattern recognition applications. Invariance of the Gegen-
bauer moments with respect to geometric transformations
was verified where the binary- and gray-level images are
elongated, contracted and rotated with different transforma-
tion factors. The numerical values of the Gegenbauer mo-
ment invariants of low orders for original and transformed
images are almost the same, which ensure the accuracy of
these invariants.

The ability of discriminating between similar images and
shapes was tested where these invariants successfully dis-
criminate between similar binary shapes and gray-level im-
ages of trademarks.

With respect to the steady growing of digital contents
of databases, discriminating the similar images/shapes from
these very large scale databases is a big challenge. Extremely
fast and highly accurate orthogonal Gegenbauer moment in-
variants are very useful for online applications.

Content-based images retrieval is a famous approach. This
approach is based on computing the features of the digital
images and then retrieving the specific image from the data-
base. Implementation of orthogonal Gegenbauer moment in-
variants will be good choice for future work with very large
databases and online applications of digital image retrieval.
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