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Abstract Permanent magnet synchronous generators are
becoming increasingly popular as utility-scale wind genera-
tors. While their performances are satisfactorily under nor-
mal conditions, they may be degraded under wind gusts as
well as in extremely low grid voltage conditions. An adaptive
control of superconducting magnetic energy storage (SMES)
system for efficient wind energy transfer as well as dynamic
performance improvement is proposed in this article. A radial
basis function neural network has been employed to deter-
mine the controller parameter values. The nominal weights of
the neural network are obtained from training of a large input-
output data set generated through an improved swarm opti-
mization procedure. These weights are then updated through
a novel method of tracking of system outputs in time domain.
Tests carried out with the adaptive controller show that the
improved particle swarm-based radial basis network SMES
controller delivers wind energy to grid efficiently and at the
same time exhibit very good damping profile.
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1 Introduction

Permanent magnet synchronous generator wind turbines
are being widely used in industry because of their sim-
plicity in structure, efficiency of energy production, high
torque-weight ratio, brushless excitation, etc [1,2]. In the
PMSG configuration, the generated variable frequency volt-
age is converted to the grid frequency through two full-scale
converters connected back-to-back with a DC capacitor in
between. This also provides isolation between the two syn-
chronous systems [3]. However, under random wind speed
variations, the fluctuation in power may get past the con-
verters and cause problems in grid frequency, especially in a
weak grid [1,4].

Various methods of frequency and voltage stabilization
of PMSG generators under varying wind speed conditions
have been reported in the literature. Control of the converter
on the generator side was used in [5] to reduce voltage sag,
while [6] employed control of grid side converter for max-
imizing transfer of wind power. Reference [7] used control
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of both the converters, the generator side one for improv-
ing the power transfer and the grid side converter for reac-
tive control. Energy storage devices interfaced through elec-
tronic flexible ac transmission system (FACTS) are known to
improve the system performance by compensating the reac-
tive power need of the system. Use of STATCOM with PID
control was observed to improve the damping properties of
a PMSG [8], while STATCOM and battery energy storage
was used by Sharma for voltage and frequency control [9].
Battery energy storage along with fuel cell and dump resistor
was used for reducing torque pulsation in a grid connected
PMSG system [10]. SMES can supply both reactive and real
power and hence can affect both voltage and frequency pro-
files [11,12]. Most of the control designs are carried out in
the linear domain employing PI or PID controllers. Linear
designs, while can give very good results in the vicinity of the
operating points, are generally not satisfactory for wind gen-
erators which experience random wind speed changes. For
satisfactory performance, the controller parameters should
also be adaptively tuned in time domain so as to respond to
random and arbitrary changes. Considering the erratic nature
of wind, use of intelligent control strategies has been recom-
mended in the literature [13]. Betzel [14] used neural network
control for rotor angle estimation in PMSG systems. A com-
bination of sliding mode and radial basis function networks
was employed for pitch control in [15]. The control designs
are generally carried out from a fixed weighting function
obtained from data training. However, adaptive controller
design of SMES for wind generator performance improve-
ment has not been addressed in the literature.

This article presents an adaptive neural network SMES
controller design for a PMSG wind generator. The adap-
tive technique updates the neural network weights in time

domain. The radial basis network function network employed
has better capability of approximation and faster learning
speed [16]. A modified particle swarm method generates the
optimized nominal weights of the neural network. Section 2
of the article gives the wind system model including SMES
controller, and Sect. 3 presents the adaptive RBFNN SMES
controller design. Section 4 presents the test results, and con-
cluding remarks are given in Sect. 5.

2 Dynamic Model

The permanent magnet wind generator system considered in
this article is shown in Fig. 1. The variable frequency volt-
age generated by the PMSG is rectified and inverted to grid
frequency through fully controlled converters. The voltage
is stepped up before being fed to the grid over the transmis-
sion line. The local load and the proposed SMES system are
connected at the inverter terminal. Models of the PMSG, the
drive train, the converters, and the SMES system are sum-
marized below.

2.1 PMSG and the Converters

The dynamic relationships of the PMSG stator circuit volt-
age, current, and flux along the direct and quadrature (d–q)
axes are expressed through,

−Raigd−ωgψq+ 1

ωo
p (ψd) = Vgd

−Raigq+ωgψd+ 1

ωo
p

(
ψq

) = Vgq

(1)

ψd = −xdigd + ψo

ψq = −xqigq
(2)

Fig. 1 Schematic of PMSG
system connected to the grid
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In the above equations, Vgd and Vgq are the components
of generator terminal voltage Vg; Ra, xd, xq are the stator
resistance, synchronous reactances, respectively, and ψo is
the residual flux from the permanent magnets. The dynamic
equations of the turbine-generator rotor mass drive train
model are expressed as [17],

ω̇t = 1

2Ht
[Pm − Ksθs − Dt(ωt − 1)]

ω̇g = 1

2Hg
[Ksθs − Pe − Dg(ωg − 1)] (3)

θ̇s = Ks(ωt − ωg)

The power input to the generator, which is the turbine out-
put, relates to wind velocity (Vw) and power coefficient (Cp)

through,

Pm = KpV 3
wCp (4)

Constant Kp depends on area covered by the blade and
density of air. Cp is expressed in terms of tip speed ts and
pitch angle αp through the nonlinear relation,

Cp(ts, αp) = 0.5176

(
116

ψ
− 0.4αp − 5

)
e

−21
ψ + 0.0068ts

1

ψ
= 1

ts + 0.08αp
− 0.035

t3
s + 1

(5)

If the converters are considered to be lossless, the voltage
equation for the DC link capacitor (Vc) can be derived in
terms of capacitance and the input and output power of the
capacitor as,

CV̇c = (Pic − Poc)

Vc
(6)

The differential equations relating the d–q components of
inverter current are written as,

i̇id = ωO

xi
(Vid − Vtd − Riiid + ωxi iiq)

i̇iq = ωO

xi
(Viq − Vtq − ωxiiid − Riiiq)

(7)

Vi and Vt are the internal and terminal voltages of the inverter,
respectively.

2.2 Superconducting Magnetic Energy Storage (SMES)
System

The SMES system comprises of a superconducting coil (SC),
a buck-boost converter, a VSC, and their control circuitry.
The buck-boost converter can make the SC supply or absorb
power by control of the IGBT switching. The duty ratio of the
converter also affects the reactive power supply. The circuit
arrangement of the SMES system is shown in Fig. 2.

The change in the SMES current is expressed in terms of
the terminal ac voltage and delay angle is [11],
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IGBT2
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Transformer
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Fig. 2 The superconducting energy storage system

Lsc� İsm = −�Ism Rsc+V tcosαsm−(π/12)�Ism Xcm (8)

Lsc, Rsc, and Xcm are the inductance and resistance of the
SC, and commutation reactance, respectively. Denoting the
VSC voltage and SMES current as Vt � θt, Ism � αsm, the d–q
components of SMES current ismd, ismq), the real and reac-
tive power (PSM, QSM) are,

ismd = msm Idccos(θt−αsm)

ismq = msm Idcsin(θt−αsm)
(9)

PSM = vtdismd+vtqismq

QSM = vtdismq−vtqismd
(10)

In Eqs. (9), (10) msm and αsm are the modulation index
and delay angle, which are related to SMES voltage, current
and power through,

msm =
√

P2
SM + Q2

SM

Vt Idc
αSM = tan−1

[
QSM

PSM

]
(11)

The SMES controller shown in Fig. 3 is designed on the
principle that SMES power will change depending on the
change in real power of the wind system, while QSM change
will be affected by the change in system voltage.

Combining Eqs. (1, 3, 6–8) with the controller model in
Fig. 3, the system dynamic equations are written as,

ẋ = f [x, u]
y = g[x, u] (12)

In the above, x = [igd, igq,ω, θs, ωt, Vc, iid, iiq,�Ism,

�Psm,�Qsm]. The parameter vector [KPG, KIG, KPV, KPI]
constitute the input vector u which are obtained by the adap-
tive neural network technique presented in the next section;
y is a vector of selected output of the system.

3 Adaptive SMES Control Strategy

For getting satisfactory response for the wind system, the PI
gain of the controller in Fig. 3 should be tuned appropriately
for randomly varying wind speed conditions and also for
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Fig. 3 SMES controller block
diagram
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Fig. 4 The adaptive SMES
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other arbitrary disturbances. This article addresses the deter-
mination of these gains and their adaptation process through
the following procedures:

(a) Determine the controller gains for specific operating
conditions using an improved particle swarm optimiza-
tion (IPSO) evolutionary process.

(b) Determine the nominal weights (w0) of the radial basis
neural network by training the input-output dataset pre-
sented by IPSO. The nominal weights are used to pro-
duce nominal control u0, which are the nominal values
of parameters [Kpg, Kvg, Tpg, Tvg].

(c) Tune the parameters of the controller adaptively in time
domain through changes in neural network weights�w,
which produces the changes �u. The updated control
parameters are then obtained as,

u(t) = uo +�u (13)

The structure of the adaptive process showing the wind
system, PMSG, SMES, and the RBFNN controllers is given
in Fig. 4. As can be seen, the control u is generated through
two channels. The lower channel generates the nominal con-
trol from the nominal weights of the RBFNN network using
routine data training. These nominal values stabilize an oth-

erwise unstable system, or systems which are vulnerable
to large and unpredictable changes [18]. The inputs to the
neural network in the upper track are the PMSG outputs
viz. terminal voltage and speed. The adaptive neural net-
work is trained to respond to variations in these signals and
generate an appropriate weight �w, which is added to the
nominal values to produce the updated controller parame-
ters [Kpg, Kvg, Tpg, Tvg]. The process of adaptive update is
presented in Sect. 3.1. The SMES control circuit, shown in
Fig. 3, uses the PMSG system power (Pg), voltage (Vg), and
the updated controller parameters to yield the msm and αsm

signals. The parameter tuning process and hence variations
in SMES real and reactive power (PSM, QSM) is continued
until the selected PMSG output variables are returned to their
desired steady state values.

The proposed adaptive RBFNN control design procedure
and also IPSO technique used in this article are presented
below.

3.1 Adaptive Radial Basis Function Network

The adaptive control design using neural network is carried
out in two phases. In phase one, a reference RBFNN network,
as shown in the lower RBFNN block in Fig. 5, is trained to
generate a nominal weighting matrix. The training is con-

123



Arab J Sci Eng (2014) 39:7957–7965 7961

2 2(|| ||, )−I cφ β

1 1(|| ||, )−I cφ β

(|| ||, )− h hI cφ β

(|| ||, )− j jI cφ β

1d

2d

jd

hd

1iw

2iw

jiw

hiw

1od =
oi b

w
=

1I

2I

jI

hI

 ∑ 1O

 ∑ iO

 ∑ mO

Fig. 5 RBFNN structure

ducted with a large set of input-output data, the input being
states at different operating conditions and the output of the
network are the controller parameters.

The structure of the RBFNN network is shown in Fig. 5.
The output of the network relate to input through,

Oi=
h∑

j=1

w j iϕ(||I j−c j ||,β j )+ w0i (14)

The nonlinear radial basis function ϕ(.) is normally
assumed to be a Gaussian. The constant β is the spread
of the basis function and c j is the center of the j th node.
Weight w j i at the (k + 1)th iteration is computed through
the recursive formula derived through the well-established
least-mean-squares (LMS) algorithm as [19],

w j i (k + 1) = w j i (k)− η
∂E(k)

∂w j i (k)
(15)

Here, η is the learning rate parameter. For target output d, the
mean squared error at any iteration k, and the gradient are,

E = 1

2

N∑

j=1

e2
j ; e j = d j − O j

∂E(k)

∂w(k)
= −

N∑

j=1

e j (k)ϕ
(∥∥I j − c j

∥∥ , β j
)

(16)

The RBF network was presented with 800 input-output
data sets which were created by the IPSO optimization algo-
rithm. The algorithm converged to an error of about 0.01 in
about 1,625 epochs.

The adaptive procedure proposed in this work updates the
nominal weights in time domain through,

w(tk) = wnom +�w(tk) (17)

The variation �w(tk) is obtained by gradient descent
method,

�w(tk) = −η2
∂ξ

∂w j
=−η2ec

∂ec

∂w j

= η2(r −y)ϕ(||I −c j ||,λ) (18)

Here, the error function minimized is,

E(t) = 1

2

∑
e2

c (t); ec(t) = r(t)− y(t) (19)

In the above, the error ec(t) is the difference between the
system reference output r(t) and the actual plant output y(t)
can be obtained from (12). At every time step tk , the updated
weights (17) generate the adaptive control through relation
(13).

3.2 Modified Swarm Optimization Algorithm

The input–output training data to generate the nominal
weights (w0) are created by a modified particle swarm opti-
mization procedure. In the improved method, each particle
in the swarm updates its velocity and position by updating
the inertia weight. For the evaluation of each particle, the
following eigenvalue-based fitness function is considered,

J =
N∑

i=1

(ζ(k)− ζo)
2; ζ = −σ

√
σ 2 + β2

(20)

Here, ζo is a preselected value of damping ratio: σ and γ
are components of the dominant eigenvalue of the linearized
system of (12), and N is the total number of iterations.

For getting a faster convergence, exploration and exploita-
tion of the swarm algorithm has to be considered. Exploration
is the ability of the algorithm to explore the entire search
space. Exploitation is the ability that focuses on an optimum
area and refines the solution. The particle velocity and posi-
tion is accelerated through an inertia weight (win) expressed
as [20],

win = wmax −
(
wmax − wmin

itmax

)
it (21)

In the above, it is the current count, andwmax, wmin, itmax

represent the maximum and minimum values of the weight
and maximum iterations, respectively. The expressions for
velocity (v) and position (θ ) for each particle with improved
inertia weight are written as,

vi(k + 1) = winvi(k)+ c1rand1(pi(k)− θi(k))

+ c2rand2(pg(k)− θi (k)) (22)

θi(k + 1) = θi(k)+ vi(k)

Here, k is iteration number, c1 and c2 are the accelera-
tion constants; pi and pg are the local best and global best,
respectively. The steps involved in the search procedure are
as follows: define search area and boundaries, generate array
of particles with random position and velocities, find the local
best from evaluation of fitness function, compare local best
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with global best, update the weighs, and repeat the procedure
until convergence or termination criteria are met.

4 Testing the Adaptive Controller

The proposed adaptive SMES controller was tested on the
grid connected PMSG system of Fig. 1. The generator is
considered to be delivering 0.95 pu power for wind speed of
10 m/s. The parameter values for the wind generator system
are provided in the appendix. For testing the performance of
the adaptive SMES controller, all other controls of the con-
verters are deactivated. Also, the generator turbine damping
was considered to be zero to simulate a worse-case scenario.
Only those disturbances which lead to growing oscillations
without any control have been reported in this paper. The
contingencies considered are as follows:

• Torque pulses of various magnitude and duration
• Low voltage condition on the grid
• Wind gust

Figure 6 shows the speed variations of the synchronous
generator when subjected to a 0.2 pu input torque pulse for
0.3 s duration. The torque unbalance in the generator causes
the speed to creep up without any control and in the absence
of system damping. The SMES controller supports the sys-
tem with necessary real and reactive power following the
disturbance and helps restore stable operation very quickly
as can be observed in Fig. 6. Maintenance of the DC capacitor
voltage to a constant level is the essential part in satisfactory
operation of the wind generation system. Figure 7 shows that
while without any control the capacitor voltage is oscillatory,
the proposed adaptive SMES control provides smooth volt-
age profile and steady conditions are reached in less than 4 s.
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Fig. 6 Variation of generator speed following a 20 % torque pulse
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Fig. 8 Permanent magnet synchronous generator terminal voltage
variation following a 10 % torque pulse for 2 s, with and without SMES
control

For a 10 % torque pulse for 2 s, the generator terminal
voltage is depicted in Fig. 8. Without any control, the gen-
erator terminal voltage is oscillatory and is slightly growing
in the zero damping situation. The proposed adaptive SMES
control restores normal terminal voltage fairly quickly for
this relatively longer duration disturbance. The variations of
SMES reactive and real power output are depicted in Fig. 9.
The reactive power of the SMES system helps to stabilize
the voltage while real power provides the damping.

Performance of the proposed adaptive SMES controller
under grid low voltages was tested by applying a severe
3-φ phase fault on the grid bus. Figure 10 shows the vari-
ation of the terminal voltage of the synchronous generator
for a 300 ms grid fault. The short circuit at the grid depresses
the inverter terminal voltage affecting the generator terminal
voltage and output power. After the fault is cleared inverter
terminal voltage restores quickly but the generator oscilla-

123



Arab J Sci Eng (2014) 39:7957–7965 7963

0 2 4 6 8
-0.4

-0.3

-0.2

-0.1

0

0.1
S

M
E

S
 P

o
w

er
 (

p
u

)

Time(sec)

Psm
Qsm

Fig. 9 Change of SMES real and reactive power for the disturbance
condition of Fig. 8

0 2 4 6 8
0.8

0.9

1

1.1

1.2

1.3

G
en

er
at

o
r 

B
u

s 
V

o
lt

ag
e 

(p
u

)

Time(sec)

With Adaptive Tuned SMES Controller
Without SMES

Fig. 10 Synchronous generator bus voltage for a 300 ms grid fault
without and with the proposed control

tions continue (Fig. 10). The adaptive controller restores the
terminal voltage by the reactive injection of the SMES.

The robustness of the proposed controller was tested with
a part of wind data collected from local measurements. The
wind speed fluctuations was normalized, scaled, and super-
imposed on the average value of 10 m/s. Figure 11 shows the
generator power with and without the adaptive SMES con-
troller and compares it with the turbine output. Random wind
speed variation for 2 s is considered in the simulation and
post-disturbance response has been observed. Quick restora-
tion of the DC capacitor voltage (Fig. 12) with the adap-
tive variation of controller parameters (Fig. 13) provides the
excellent power transfer profile shown in Fig. 11.

Examination of Fig. 11 shows that the output of the PMSG
follows the input extremely closely in the presence of the
proposed SMES control. However, exact evaluation of the
efficiency under the transient condition is not easy because
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Fig. 11 Wind and generator power output following a 2 s random wind
speed variation
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Fig. 12 Converter circuit DC capacitor voltage variation correspond-
ing to a wind speed condition of Fig. 11

of the time lags involved. Also, transiently the output power
can be more than the input for short durations. It is more
so in the uncontrolled condition when the system falls into
sustained oscillation. Since the SMES is lossless, and also
since the generator and the converters are considered to be
lossless in this study, under steady state the turbine output to
converter output efficiency is almost 100 %. The performance
of the controller has been evaluated through the computation
of the power coefficient Cp (Eq. 4), optimum value of which
is known to be slightly less than 0.5. For wind speed variation
of between 10 and 11 m/s and then back to 10 m/s, the changes
affected in staircase steps, the variation of power coefficient
Cp is plotted in Fig. 14. It can be seen that following the
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Fig. 14 The variation of power coefficient (Cp) for wind speed varia-
tions between 10 and 11 m/s

speed change a ripple appears in Cp, which returns back to
optimum value of about 0.48 fairly quickly. This shows that
the controller is capable of near optimum transfer of wind
power.

5 Conclusions

A novel adaptive SMES controller for a grid connected
PMSG is proposed in this study. The controller parame-
ters are tuned online through a radial basis function neural
network. The data for the nominal starting weights for the
RBFNN have been generated through a modified parti-
cle swarm evolutionary procedure. The trained weights are
adapted for variations of the plant output from the desired val-
ues. Tests carried out show that the proposed adaptive SMES
controller maintains the DC capacitor voltage constant thus
improving the efficiency of wind energy transfer. The reac-
tive and real power outputs of the SMES improve the voltage

profile and the system damping, respectively, following large
voltage dips at the grid.

The RBFNN used is simple, easy to generalize, and also
provides better approximation of the system nonlinearities
in determining the control structure. Training is fast because
only a few hidden units need to be updated for a given input.
The adaptation process is carried out in time domain, con-
trary to classical neural network controls. The improvement
in the inertia weight swarm optimization technique helps to
improve the global exploration and local exploitation abili-
ties. This reduces the effort in creating training data for the
neural network significantly.
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Appendix

PMSG parameters: 1.5 MVA, 690 V, 40-pole, fb = 11.5 Hz,
Ra = 0.01, Xd = 1, Xq = 0.7, Hg = 0.5 s, Ht = 3 s,
Ks = 0.3, Residual flux = 0.9.

Converter circuit parameters: Ri = 0.05, Xi = 0.1, C =
1; Energy storage VSC: Rst = 0.01, Lst = 0.15, Cdc = 1.

Load and line data: gL = 0.2, bL = −0.4, Rline = 0.1,
X line = 0.2.
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