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Abstract An analysis is presented for the nonlinear steady
boundary layer flow and heat transfer of an incompressible
Tangent Hyperbolic non-Newtonian fluid from an isothermal
sphere in the presence of thermal and hydrodynamic slip con-
dition. The transformed conservation equations are solved
numerically subject to physically appropriate boundary con-
ditions using a second-order accurate implicit finite differ-
ence Keller-box technique. The numerical code is validated
with previous studies. The influence of a number of emerging
non-dimensional parameters, namely the Weissenberg num-
ber (We), the power law index (n), Velocity slip (Sf), thermal
jump (ST), Prandtl number (Pr) and dimensionless tangen-
tial coordinate (ξ) on velocity and temperature evolution in
the boundary layer regime are examined in detail. Further-
more, the effects of these parameters on surface heat transfer
rate and local skin friction are also investigated. Validation
with earlier Newtonian studies is presented and excellent
correlation achieved. It is observed that velocity, skin fric-
tion and the Nusselt number (heat transfer rate) are reduced
with increasing (We), whereas the temperature is enhanced.
Increasing power (n) enhances velocity and Nusselt number
(heat transfer rate) but reduces temperature and skin friction.
An increase in Sf , is observed to enhance velocity and Nus-
selt number but reduces temperature and local skin friction.
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Whereas increasing ST is found to decrease velocity, temper-
ature, skin friction and Nusselt number. The study is relevant
to chemical materials processing applications.
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List of symbols

a Radius of the sphere
Cf Skin friction coefficient
f Non-dimensional steam function
Gr Grashof number
g Acceleration due to gravity
k Thermal conductivity of fluid
K0 Thermal jump factor
n Power law index
Nu Local Nusselt number
N0 Velocity slip factor
Pr Prandtl number
r(x) Radial distance from symmetrical

axis to surface of the sphere surface of the sphere
Sf Non-dimensional Velocity slip parameter
ST Non-dimensional Thermal jump parameter
T Temperature of the fluid
u, v Non-dimensional velocity components along the

x- and y-directions, respectively
V Velocity vector
We Weissenberg number
x Streamwise coordinate
y Transverse coordinate

Greek
α Thermal diffusivity
β The coefficient of thermal expansion
η The dimensionless radial coordinate
μ Dynamic viscosity
ν Kinematic viscosity
θ Non-dimensional temperature
ρ Density of non-Newtonian fluid
ξ The dimensionless tangential coordinate
ψ Dimensionless stream function
Γ Time-dependent material constant
Π Second invariant strain tensor

Subscripts

w Conditions at the wall (sphere surface)
∞ Free stream conditions

1 Introduction

The dynamics of non-Newtonian fluids have been a popu-
lar area of research owing to ever-increasing applications
in chemical and process engineering. Examples of such flu-
ids include coal-oil slurries, shampoo, paints, clay coating
and suspensions, grease, cosmetic products, custard, phys-
iological liquids (blood, bile and synovial fluid), etc. The
classical equations employed in simulating Newtonian vis-
cous flows, i.e., the Navier–Stokes equations fail to simulate

a number of critical characteristics of non-Newtonian flu-
ids. Hence, several constitutive equations of non-Newtonian
fluids have been presented over the past decades. The rela-
tionship between the shear stress and rate of strain in such
fluids are very complicated in comparison to viscous flu-
ids. The viscoelastic features in non-Newtonian fluids add
more complexities in the resulting equations when compared
with Navier–Stokes equations. Significant attention has been
directed at mathematical and numerical simulation of non-
Newtonian fluids. Recent investigations have implemented,
respectively, the Casson model [1], second-order Reiner–
Rivlin differential fluid models [2], power-law nanoscale
models [3], Eringen micro-morphic models [4] and Jefferys
viscoelastic model [5].

Slip effects have shown to be significant in certain indus-
trial thermal problems and manufacturing fluid dynamic sys-
tems. Sparrow et al. [6] presented the first significant inves-
tigation of laminar slip-flow heat transfer for tubes with uni-
form heat flux. Inman [7] further described the thermal con-
vective slip flow in a parallel plate channel or a circular tube
with uniform wall temperature. These studies generally indi-
cated that velocity slip acts to enhance heat transfer, whereas
temperature jump depresses heat transfer. Many studies have
appeared in recent years considering both hydrodynamic
and thermal jump effects. Interesting articles of relevance to
process mechanical engineering include Larrode et al. [8]
who studied thermal/velocity slip effects in conduit ther-
mal convection. Spillane [9] who examined sheet process-
ing boundary layer flows with slip boundary conditions and
Crane and McVeigh [10] who studied slip hydrodynamics on
a micro-scale cylindrical body. Further studies in the context
of materials processing include Ameel et al. [11], Yu and
Ameel [12], Crane and McVeigh [13]. Studies of slip flows
from curved bodies include Bég et al. [14] who examined
using network numerical simulation the magneto-convective
slip flow from a rotating disk, Wang and Ng [15] who stud-
ied using asymptotic analysis the slip hydrodynamics from
a stretching cylinder. Results assuming that the slip solution
was a perturbation of the no-slip solution predicted that the
slip conditions would not affect shear stress, boundary layer
thickness, or heat transfer [16,17]. In addition, semi-analytic
results suggested that heat transfer would change in the pres-
ence of slip flow [18–20]. Additional computations proved
that shear stress would as well change [21,22]. Several expla-
nations were offered for the contradictory results. The solu-
tions to other viscous flows considered similar to boundary
layer flows, such as Couette, Poiseuille and Rayleigh flows,
showed a change in heat transfer and shear stress [23]. This
led to the suggestion that the mathematical and experimental
techniques available at the time lacked the accuracy neces-
sary to capture the result. The suggestion was also made that
the boundary layer equations were not valid for slip flows.
Two separate arguments were made. The first was that the
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second-order slip boundary condition was of the same order
as the terms that were discarded from the Navier–Stokes
equations to create the boundary layer equations [24,25].
A second problem was the Reynolds number scaling of the
boundary layer equations. Using the definitions of viscosity
and the speed of sound, the Knudsen number can be found as
a function of the Mach number and Reynolds number [26]:

K nx α
M

Rex
(I)

This scaling indicates that an incompressible boundary layer,
with a Reynolds number of 500 or greater and a Mach number
of <0.3, is unlikely to have a Knudsen number large enough
for slip to appear. Several decades after these initial results,
the development of microelectromechanical systems led to a
renewed interest in slip flows [27,28]. The correct scaling of
z slip was shown to be based on the boundary layer thickness
and was computed as

K nδ α
M

Rex
(II)

This scaling does allow an incompressible boundary layer
with a Reynolds number of 500 or greater and a Mach number
of <0.3 to have a large enough Knudsen number for slip to
appear.

An interesting non-Newtonian model developed for chem-
ical engineering systems is the tangent hyperbolic fluid
model. This rheological model has certain advantages over
the other non-Newtonian formulations, including simplicity,
ease of computation and physical robustness. Furthermore,
it is deduced from kinetic theory of liquids rather than the
empirical relation. Several communications utilizing the tan-
gent hyperbolic fluid model have been presented in the scien-
tific literature. There is no single non-Newtonian model that
exhibits all the properties of non-Newtonian fluids. Among
several non-Newtonian fluids, hyperbolic tangent model is
one of the non-Newtonian models presented by Pop and
Ingham [29]. Nadeem et al. [30] made a detailed study on
the peristaltic transport of a hyperbolic tangent fluid in an
asymmetric channel. Nadeem and Akram [31] investigated
the peristaltic flow of a MHD hyperbolic tangent fluid in a
vertical asymmetric channel with heat transfer. Akram and
Nadeem [32] analyzed the influence of heat and mass trans-
fer on the peristaltic flow of a hyperbolic tangent fluid in an
asymmetric channel. Very recently, Akbar et al. [33] analyzed
the numerical solutions of MHD boundary layer flow of tan-
gent hyperbolic fluid on a stretching sheet. The flow due to
stationary sphere has been deliberate because of its numer-
ous applications in industries such as storage of chemicals
and in particular, spherical geometries.

In many chemical engineering and nuclear process sys-
tems, curvature of the vessels employed is a critical aspect of

optimizing thermal performance. Examples of curved bodies
featuring in process systems include torus geometries, wavy
surfaces, cylinders, cones, ellipses, oblate spheroids and in
particular, spherical geometries, the latter being very popular
for storage of chemicals and also batch reactor processing.
Heat transfer from spheres has therefore mobilized much
attention among chemical engineering researchers who have
conducted both experimental and computational investiga-
tions for both Newtonian and non-Newtonian fluids. Amato
and Chi [34] studied experimentally natural convection from
heated spheres in water for an extensive range of Rayleigh
numbers and for laminar, transitional and early turbulent flow
using hot-film anemometry techniques. Liew and Adelman
[35] conducted experiments on free convection heat transfer
from an isothermal sphere to water and various aqueous poly-
mer solutions (power-law fluids), elucidating the influence of
flow behavior index and consistency index. Further empirical
investigations were reported by Amato and Chi [36] for aque-
ous polymer solutions using and hot-film anemometry and
Churchill [37], the latter deriving expressions for local and
mean Nusselt number for natural convection from an isother-
mal sphere as a function of the Rayleigh and Prandtl numbers
valid for laminar boundary layers. Sang and Kuang [38] used
a finite difference code to simulate laminar mixed (forced and
free) convection flow of an Eringen micropolar fluid from
a permeable sphere with surface suction/injection effects.
Jia [39] analyzed computationally the steady free convection
from a sphere for an extensive range of Grashof (buoyancy)
numbers, identifying a mushroom-shaped plume which was
observed to detract in length and thickness with increasing
Grashof number. He further computed flow separation at high
Grashof number and an associated recirculation vortex aris-
ing in the wake of the sphere. Furthermore, this study showed
that local Nusselt number along the sphere surface initially
falls, attaining a minimum, and thereafter rises markedly
in the vicinity of sphere rear. Sharma and Bhatnagar [40]
used the Van Dyke method of matched asymptotic expan-
sions to obtain solutions for creeping heat transfer (viscous-
dominated flow) from a spherical body to power-law fluids.
Bég et al. [41] examined the free convection magnetohydro-
dynamic flow from a sphere in porous media using network
simulation, showing that temperatures are boosted with mag-
netic field and heat transfer is enhanced from the lower stag-
nation point toward the upper stagnation point. Potter and
Riley [42] used a perturbation expansion approach to eval-
uate analytically the eruption of boundary layer into plume
arising from free convection boundary layers on a sphere
with strong buoyancy effects. Prhashanna and Chhabra [43]
obtained numerical solutions for streamline and temperature
contours in heat transfer from a heated sphere immersed
in quiescent power-law fluids, showing that shear-thinning
behavior may elevate heat transfer rates by three hundred per-
cent, whereas shear-thickening depletes heat transfer rates by
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30 to 40% compared with Newtonian fluids. Further interest-
ing investigations of heat transfer from spheres have been pre-
sented by Chen and Chen [44] for power-law fluids in porous
media, Dhole et al. [45] for forced convection in power-law
fluids using the finite volume method and by Bég et al. [46]
for combined heat and species diffusion in micropolar flu-
ids with cross-diffusion effects. Prasad et al. [47] have also
studied radiative heat flux effects on magneto-convective heat
and species diffusion from a sphere in an isotropic permeable
medium.

The objective of the present study is to investigate the lami-
nar boundary layer flow and heat transfer of a tangent hyper-
bolic non-Newtonian fluid from an isothermal sphere. The
non-dimensional equations with associated dimensionless
boundary conditions constitute a highly nonlinear, coupled
two-point boundary value problem. Keller’s implicit finite
difference “box” scheme is implemented to solve the problem
[47]. The effects of the emerging thermophysical parameters,
namelythe Weissenberg number (We), power law index (n),
Thermal jump (ST), Velocity slip (Sf) and Prandtl number
(Pr), on the velocity, temperature, skin friction number, and
heat transfer rate (local Nusselt number) characteristics are
studied. The present problem has to the authors’ knowledge
not appeared thus far in the scientific literature and is relevant
to polymeric manufacturing processes in chemical engineer-
ing.

2 Non-Newtonian Constitutive Tangent Hyperbolic
Fluid Model

In the present study, a subclass of non-Newtonian fluids
known as the tangent hyperbolic fluid is employed owing
to its simplicity. The Cauchy stress tensor, in the tangent
hyperbolic non-Newtonian fluid [29] takes the form:

τ =
[
μ∞ + (μ0 + μ∞) tanh

(
Γ

.
γ
)n

]
.
γ (1)

where τ̄ is extra stress tensor, μ∞ is the infinite shear rate
viscosity, μ0 is the zero shear rate viscosity, Γ is the time-
dependent material constant, n is the power law index, i.e.,

flow behavior index and
.
γ is defined as

.
γ =

√√√√1

2

∑
i

∑
j

.
γ i j

.
γ j i =

√
1

2
Π, (2)

whereΠ = 1
2 trac

(
gradV + (gradV )T

)2
. We consider Eq.

(1), for the case when μ∞ = 0 because it is not possible to
discuss the problem for the infinite shear rate viscosity and
since we considering tangent hyperbolic fluid that describing

shear thinning effects so Γ
.
γ < 1. Then Eq. (1) takes the

form

τ = μ0

[(
Γ

.
γ
)n

]
.
γ = μ0

[(
1 + Γ

.
γ − 1

)n
]
.
γ

= μ0

[
1 + n

(
Γ

.
γ − 1

)] .
γ (3)

The introduction of the appropriate terms into the flow model
is considered next. The resulting boundary value problem is
found to be well posed and permits an excellent mechanism
for the assessment of rheological characteristics on the flow
behavior.

3 Mathematical Flow Model

Steady, double-diffusive, laminar, incompressible flow of a
tangent hyperbolic fluid from an isothermal sphere is con-
sidered, as illustrated in Fig. 1. The x-coordinate (tangen-
tial) is measured along the surface of the isothermal sphere
from the lowest point and the y-coordinate (radial) is directed

Fig. 1 Physical model and
coordinate system

g 

a

y 
x

Tw, surface condition 

T∞, end condition  

r(x)

Tangent Hyperbolic fluid

Free convection
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Table 1 Values of f
′′
(ξ, 0) and −θ ′

(ξ, 0) for different values of Sf , ST and ξ (Pr = 7.0,We = 0.3, n = 0.3)

Sf ST ξ = 0.0 ξ = π/6 ξ = π/4 ξ = π/3

f ′′(ξ, 0) −θ ′(ξ, 0) f ′′(ξ, 0) −θ ′(ξ, 0) f ′′(ξ, 0) −θ ′(ξ, 0) f ′′(ξ, 0) −θ ′(ξ, 0)

0.0 1.0 0 0.7163 0.1672 0.7007 0.2285 0.6871 0.3099 0.6583

0.1 0 0.7374 0.1620 0.7215 0.2213 0.7076 0.3000 0.6782

0.2 0 0.7584 0.1568 0.7422 0.2141 0.7280 0.2900 0.6981

0.3 0 0.7793 0.1516 0.7629 0.2069 0.7485 0.2800 0.7180

0.5 0 0.8212 0.1409 0.8042 0.1921 007893 0.2596 0.7577

0.8 0 0.8835 0.1246 0.8656 0.1696 0.8499 0.2284 0.8166

1.0 0 0.9246 0.1135 0.9061 0.1543 0.8899 0.2071 0.8555

0.5 0.0 0 1.1559 0.1772 1.1318 0.2418 1.1107 0.3272 1.0660

0.5 0 0.9860 0.1595 0.9656 0.2175 0.9476 0.2941 0.9095

1.5 0 0.6619 0.1214 0.6683 0.1654 0.6363 0.2234 0.6109

2.0 0 0.5090 0.1007 0.4986 0.1372 0.4894 0.1850 0.4699

2.5 0 0.3636 0.0785 0.3562 0.1068 0.3497 0.1439 0.3359

3.0 0 0.2273 0.0543 0.2228 0.0738 0.2187 0.0991 0.2102

Table 2 Values of f
′′
(ξ, 0) and −θ ′

(ξ, 0) for different values of Sf , ST and ξ (Pr = 7.0,We = 0.3, n = 0.3)

Sf ST ξ = π/2 ξ = 2π/3 ξ = π

f ′′(ξ, 0) −θ ′(ξ, 0) f ′′(ξ, 0) −θ ′(ξ, 0) f ′′(ξ, 0) −θ ′(ξ, 0)

0.0 1.0 0.4071 0.5865 0.4402 0.4795 0.4412 0.3932

0.1 0.3935 0.6048 0.4247 0.4946 0.4250 0.4052

0.2 0.3798 0.6230 0.4090 0.5697 0.4090 0.4171

0.3 0.3660 0.6412 0.3930 0.5248 0.3931 0.4291

0.5 0.3379 0.6775 0.3606 0.5548 0.3612 0.4531

0.8 0.2946 0.7314 0.3105 0.5994 0.3119 0.4888

1.0 0.2651 0.7669 0.2761 0.6288 0.2781 0.5933

0.5 0.0 0.4270 0.9530 0.4576 0.7803 0.4579 0.6376

0.5 0.3834 0.8132 0.4101 0.6659 0.4105 0.5439

1.5 0.2901 0.5464 0.3088 0.4475 0.3095 0.3653

2.0 0.2397 0.4205 0.2542 0.3444 0.2550 0.2810

2.5 0.1858 0.3006 0.1961 0.2463 0.1969 0.2009

3.0 0.1272 0.1883 0.1331 0.1543 0.1339 0.1456

perpendicular to the surface, with a denoting the radius of
the isothermal sphere. r(x) = a sin (x/a) is the radial dis-
tance from the symmetrical axis to the surface of the sphere.
The gravitational acceleration g, acts downwards. We also
assume that the Boussineq approximation holds, i.e., that
density variation is only experienced in the buoyancy term
in the momentum equation.

Both isothermal sphere and the tangent hyperbolic fluid
are maintained initially at the same temperature. Instanta-
neously, they are raised to a temperature Tw > T∞, the ambi-
ent temperature of the fluid which remains unchanged. In line
with the approach of Yih [48] and introducing the boundary
layer approximations, the equations for mass, momentum and
energy, can be written as follows:

∂u

∂x
+ ∂v

∂y
= 0 (4)

u
∂u

∂x
+ v

∂u

∂y
= ν (1 − n)

∂2u

∂y2 + √
2νnΓ

(
∂u

∂y

)
∂2u

∂y2

+g β sin
( x

a

)
(T − T∞) (5)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2 (6)

where u and v are the velocity components in the x- and y-
directions, respectively, is the ν = μ/ρ kinematic viscosity
of the tangent hyperbolic fluid, β is the coefficient of thermal
expansion, α is the thermal diffusivity, T is the temperature,
ρ is the density of the fluid. The tangent hyperbolic fluid
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Table 3 Values of f
′′
(ξ, 0) and −θ ′

(ξ, 0) for different values of We, n and Pr (Sf = 0.5, ST = 1.0, ξ = 1.0)

We N Pr = 7 Pr = 10 Pr = 20 Pr = 25

f ′′(ξ, 0) −θ ′(ξ, 0) f ′′(ξ, 0) −θ ′(ξ, 0) f ′′(ξ, 0) −θ ′(ξ, 0) f ′′(ξ, 0) −θ ′(ξ, 0)

0.0 0.3 0.2714 0.7592 0.2465 0.8650 0.2006 1.1202 0.1866 1.2202

0.5 0.2523 0.7567 0.2306 0.8624 0.1898 1.1178 0.1772 1.2178

1.0 0.2355 0.7543 0.2164 0.8600 0.1800 1.1155 0.1686 1.2156

2.0 0.2067 0.7501 0.1920 0.8557 0.1628 1.1113 0.1534 1.2115

3.0 0.1829 0.7463 0.1715 0.8518 0.1481 1.1075 0.1403 1.2079

4.0 0.1625 0.7430 0.1538 0.8484 0.1352 1.1041 0.1288 1.2045

5.0 0.1447 0.7400 0.1383 0.8452 0.1238 1.1009 0.1186 1.2014

0.3 0.0 0.2945 0.7235 0.2657 0.8256 0.2131 1.0748 0.1971 1.1734

0.1 0.2849 0.7335 0.2578 0.8366 0.2080 1.0874 0.1928 1.1863

0.2 0.2735 0.7448 0.2483 0.8490 0.2018 1.1018 0.1875 1.2012

0.4 0.2422 0.7726 0.2220 0.8802 0.1839 1.1388 0.1720 1.2397

0.5 0.2198 0.7901 0.2028 0.9001 0.1703 1.1631 0.1600 1.2652

0.6 0.1894 0.8112 0.1764 0.9243 0.1511 1.1932 0.1430 1.2970

Table 4 Values of f
′′
(ξ, 0) and −θ ′

(ξ, 0) for different values of We, n and Pr (Sf = 0.5, ST = 1.0, ξ = 1.0)

We N Pr = 50 Pr = 75 Pr = 100

f ′′(ξ, 0) −θ ′(ξ, 0) f ′′(ξ, 0) −θ ′(ξ, 0) f ′′(ξ, 0) −θ ′(ξ, 0)

0.0 0.3 0.1459 1.6062 0.1242 1.9008 0.1099 2.1500

0.5 0.1400 1.6043 0.1199 1.8992 0.1065 2.1486

1.0 0.1345 1.6024 0.1158 1.8977 0.1033 2.1473

2.0 0.1246 1.5990 0.1084 1.8948 0.0973 2.1448

3.0 0.1160 1.5959 0.1018 1.8921 0.0920 2.1425

4.0 0.1082 1.5930 0.0958 1.8896 0.0871 2.1403

5.0 0.1012 1.5903 0.0904 1.8873 0.0826 2.1383

0.3 0.0 0.1513 1.5574 0.1272 1.8529 0.1116 2.1035

0.1 0.1490 1.5707 0.1259 1.8659 0.1108 2.1160

0.2 0.1461 1.5864 0.1241 1.8813 0.1096 2.1310

0.4 0.1370 1.6277 0.1179 1.9227 0.1052 2.1717

0.5 0.294 1.6560 0.1125 1.9517 0.1010 2.2006

0.6 0.1181 1.6923 0.1040 1.9895 0.0943 2.2388

model therefore introduces a mixed derivative (second order,
first degree) into the momentum boundary layer Eq. (5). The
non-Newtonian effects feature in the shear terms only of Eq.
(5) and not the convective (acceleration) terms. The third
term on the right hand side of Eq. (5) represents the ther-
mal buoyancy force and couples the velocity field with the
temperature field Eq. (6).

At y = 0, u = N0
∂u

∂y
, v = 0, T = Tw + K0

∂T

∂y
As y → ∞, u → 0, T → T∞ (7)

Here N0 is the velocity slip factor, K0 is the thermal jump fac-
tor and T∞ is the free stream temperature. For N0 = 0 = K0,
one can recover the no-slip case.

The stream function ψ is defined by u = ∂ ψ
∂y and v =

− ∂ ψ
∂x , and therefore, the continuity equation is automatically

satisfied. In order to render the governing equations and the
boundary conditions in dimensionless form, the following
non-dimensional quantities are introduced.

ξ = x

a
, η = y

a
Gr1/4, f = ψ

νξ
Gr−1/4,

θ (ξ, η) = T − T∞
Tw − T∞

Pr = ν

α
, Gr = gβ1 (Tw − T∞) a3

ν2 ,

We =
√

2νΓ xGr3/4

a3 , M = σ B2
0 a2

ρν
√

Gr
(8)
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Fig. 2 a Influence of We on
velocity profiles. b Influence of
We on temperature profiles

All terms are defined in the nomenclature. In view of the
transformation defined in Eq. (8), the boundary layer Eqs.
(5)–(7) are reduced to the following coupled, nonlinear,
dimensionless partial differential equations for momentum
and energy for the regime:

(1 − n) f ′′′ + (1 + ξ cot ξ) f f ′′ − (
f ′)2 + nWe f ′′ f ′′′

+θ sin ξ

ξ
= ξ

(
f ′ ∂ f ′

∂ξ
− f ′′ ∂ f

∂ξ

)
(9)

θ ′′

Pr
+ (1 + ξ cot ξ) f θ ′ = ξ

(
f ′ ∂θ
∂ξ

− θ ′ ∂ f

∂ξ

)
(10)

The transformed dimensionless boundary conditions are:

At η = 0, f = 0, f ′ = Sf f ′′ (0) , θ = 1 + STθ
′ (0)

As η → ∞, f ′ → 0, θ → 0 (11)

Here, primes denote the differentiation with respect to η,

Sf = N0Gr1/4

a and ST = K0Gr1/4

a are the non-dimensional
velocity slip and thermal jump parameters, respectively.
The skin friction coefficient (shear stress at the sphere sur-
face) and Nusselt number (heat transfer rate) can be defined
using the transformations described above with the following
expressions.
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Fig. 3 a Influence of n on
velocity profiles. b Influence of
n on temperature profiles

Gr−3/4Cf = (1 − n) ξ f ′′(ξ, 0)+ n

2
Weξ

(
f ′′(ξ, 0)

)2 (12)

Gr−1/4 Nu = −θ ′(ξ, 0) (13)

The location, ξ ∼ 0, corresponds to the vicinity of the lower
stagnation point on the sphere.

Since sin ξ
ξ

→ 0/0, i.e., 1. For this scenario, the model
defined by Eqs. (9) and (10) contracts to an ordinary differ-
ential boundary value problem:

(1 − n) f ′′′ + f f ′′ − (
f ′)2 + nWe f ′′ f ′′′ + θ = 0 (14)

1

Pr
θ ′′ + f θ ′ = 0 (15)

The general model is solved using a powerful and uncon-
ditionally stable finite difference technique introduced by
Keller [49]. The Keller-box method has a second order accu-
racy with arbitrary spacing and attractive extrapolation fea-
tures.

4 Numerical Solution with Keller Box Implict Method

The Keller-box implicit difference method is implemented
to solve the nonlinear boundary value problem defined by
Eqs. (9)–(10) with boundary conditions (11). This technique,
despite recent developments in other numerical methods,
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Fig. 4 a Influence of Sf on
velocity profiles. b Influence of
Sf on temperature profiles

remains a powerful and very accurate approach for par-
abolic boundary layer flows. It is unconditionally stable and
achieves exceptional accuracy [49]. Recently, this method
has been deployed in resolving many challenging, multi-
physical fluid dynamics problems. These include hydromag-
netic Sakiadis flow of non-Newtonian fluids [50], radiative
rheological magnetic heat transfer [51], waterhammer mod-
eling [52] and magnetized viscoelastic stagnation flows [53].
The Keller-box discretization is fully coupled at each step
which reflects the physics of parabolic systems—which are
also fully coupled. Discrete calculus associated with the
Keller-box scheme has also been shown to be fundamentally

different from all other mimetic (physics capturing) numer-
ical methods, as elaborated by Keller [49]. The Keller-box
Scheme comprises four stages.

1. Decomposition of the N th order partial differential equa-
tion system to N first order equations.

2. Finite Difference Discretization.
3. Quasilinearization of Non-Linear Keller Algebraic

Equations and finally.
4. Block-tridiagonal Elimination solution of the Linearized

Keller Algebraic Equations.
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Fig. 5 a Influence of ST on
velocity profiles. b Influence of
ST on temperature profiles

Stability and Convergence of Keller-box Method
In laminar boundary layer calculations, the wall shear

stress parameter v (x, 0), is commonly used as the conver-
gence criterion [54]. This is probably because in boundary
layer calculations, it is found that the greatest error usually
appears in the wall shear stress parameter. Different criterion
is used for turbulent flows problem. Throughout the study of
this paper, the convergence criterion is used as it is efficient,
suitable and the best. Calculations are stopped when

∣∣∣δv(i)0

∣∣∣ < ε1

Where ε1 is a small prescribed value.

5 Numerical Results and Interpretation

Comprehensive solutions have been obtained and are pre-
sented in Tables 1, 2, 3 and 4 and Figs. 2, 3, 4, 5, 6, 7,
8, 9 and 10. The numerical problem comprises two inde-
pendent variables (ξ, η), two dependent fluid dynamic vari-
ables ( f, θ) and five thermo-physical and body force con-
trol parameters, namely We, n, Sf , ST, Pr , ξ . The following
default parameter values, i.e., We = 0.3, n = 0.3, Sf ,= 0.5,
ST = 1.0, Pr = 7.0, ξ = 1.0 are prescribed (unless other-
wise stated). Furthermore, the influence of streamwise (trans-
verse) coordinate on heat transfer characteristics is also inves-
tigated.
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Fig. 6 a Influence of ξ on
velocity profiles. b Influence of
ξ on temperature profiles

In Tables 1 and 2 document results for the influence of
the velocity slip (Sf) and the thermal jump (ST) on skin fric-
tion and heat transfer rate (Nusselt number), along with a
variation in the traverse coordinate (ξ). It has been observed
that increasing Sf reduces skin friction but increases heat
transfer rate (Nusselt numbers). Also increasing ST is found
to reduce both skin friction and heat transfer rate (Nusselt
number). These tables also show that with an increase in
ξ , skin friction is accelerated, whereas heat transfer rate is
decelerated.

Tables 3 and 4, presents the influence of the Weis-
senberg number (We) and the power law index (n), on
the skin friction and heat transfer rate (Nusselt number),
along with a variation in the Prandtl number (Pr ). With
increasing We, both skin friction and heat transfer rate

(Nusselt numbers) are reduced. Furthermore, an increase in
the power law index (n) decreases skin friction coefficient
but increases heat transfer rate. Increasing Prandtl number
(Pr ) reduces skin friction but enhances heat transfer rate
(Nusselt number).

Figure 2a, b depict the velocity
(

f ′) and temperature
(θ) distributions with increasing Weissenberg number, We.
Very little tangible effect is observed in Fig. 2a, although
there is a very slight decrease in velocity with increase
in We. Conversely, there is only a very slight increase in
temperature magnitudes in Fig. 2b with a rise in We. The
mathematical model reduces to the Newtonian viscous flow
model as We → 0 and n → 0. The momentum bound-
ary layer equation in this case contracts to the familiar
equation for Newtonian mixed convection from a plate, viz.
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Fig. 7 a Influence of We on
skin friction coefficient result. b
Influence of We on Nusselt
number result

f ′′′+(1 + ξ cot ξ) f f ′′− f /2+θ sin ξ
ξ

= ξ
(

f ′ ∂ f ′
∂ξ

− f ′′ ∂ f
∂ξ

)
.

The thermal boundary layer Eq. (10) remains unchanged.
Figure 3a, b illustrates the effect of the power law index,

n, on the velocity
(

f ′) and temperature (θ) distributions
through the boundary layer regime. Velocity is significantly
increased with increasing n. Conversely, temperature is con-
sistently reduced with increasing values of n.

Figure 4a, b depict the evolution of velocity
(

f ′) and
temperature (θ) functions with a variation in velocity slip
parameter, Sf . Dimensionless velocity component (Fig. 4a)
is considerably enhanced with increasing Sf . In Fig. 4b, an
increase in Sf is seen to considerably reduce temperatures
throughout the boundary layer regime. The influence of Sf

is evidently more pronounced closer to the sphere surface
(η = 0). Further from the surface, there is a transition
in velocity slip effect, and the flow is found to be acceler-
ated markedly. Smooth increase in the velocity profiles are
observed into the free stream demonstrating excellent con-
vergence of the numerical solution. Furthermore, the accel-
eration near the wall with increasing velocity slip effect has
been computed by Crane and McVeigh [13] using asymp-
totic methods, as has the retardation in flow further from the
wall. The switch in velocity slip effect on velocity evolution
has also been observed for the case of a power-law rheo-
logical fluid by O.Ajadi et al. [57]. Figure 4b shows that an
increase in Sf , significantly reduces temperature. Tempera-
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Fig. 8 a Influence of n on skin
friction coefficient result. b
Influence of n on Nusselt
number result

ture profiles consistently decay monotonically from a max-
imum at the sphere surface to the free stream. All profiles
converge at large value of radial coordinate, again show-
ing that convergence has been achieved in the numerical
computations.

Figure 5a, b depict the evolution of velocity
(

f ′) and tem-
perature (θ) functions with a variation in thermal jump para-
meter, ST. The response of velocity is much more consistent
than for the case of changing velocity slip parameter (Fig. 4a).
It is strongly decreased for all locations in the radial direc-
tion. The peak velocity accompanies the case of no thermal
jump (ST = 0). The maximum deceleration corresponds to
the case of strongest thermal jump (ST = 3). Temperatures

(Fig. 5b) are also strongly depressed with increasing ther-
mal jump. The maximum effect is observed at the wall. Fur-
ther into the free stream, all temperature profiles converge
smoothly to the vanishing value. The numerical computa-
tions correlate well with the results of Larrode et al. [8] who
also found that temperature is strongly lowered with increas-
ing thermal jump and that this is attributable to the decrease
in heat transfer from the wall to the fluid regime, although
they considered only a Newtonian fluid.

Figure 6a, b depict the velocity
(

f ′) and temperature (θ)
distributions with dimensionless radial coordinate, for var-
ious transverse (streamwise) coordinate values, ξ . Gener-
ally, velocity is noticeably lowered with increasing migra-
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Fig. 9 a Influence of Sf on skin
friction coefficient result. b
Influence of Sf on Nusselt
number result

tion from the leading edge, i.e., larger ξ values (Fig. 6a).
The maximum velocity is computed at the lower stagnation
point (ξ ∼ 0) for low values of radial coordinate (η). The
transverse coordinate clearly exerts a significant influence
on momentum development. A very strong increase in tem-
perature (θ), as observed in Fig. 6b, is generated throughout
the boundary layer with increasing ξ values. The tempera-
ture field decays monotonically. Temperature is maximized
at the surface of the spherical body (η = 0, for all ξ ) and
minimized in the free stream (ξ = 25). Although the behav-
ior at the upper stagnation point (ξ ∼ π) is not computed,
the pattern in Fig. 6b suggests that temperature will continue
to progressively grow here compared with previous locations
on the sphere surface (lower values of ξ ).

Figure 7a, b show the influence of Weissenberg num-
ber, We, on the dimensionless skin friction coefficient(
(1 − n) ξ f

′′
(ξ, 0)+ nWe

2 ξ
(

f ′′ (ξ, 0)
)2

)
and heat transfer

rate
(
θ ′ (ξ, 0)

)
at the sphere surface. It is observed that the

dimensionless skin friction is decreased with the increase in
We, i.e., the boundary layer flow is accelerated with decreas-
ing viscosity effects in the non-Newtonian regime. The sur-
face heat transfer rate is also substantially decreased with
increasing We values.

Figure 8a, b illustrates the influence of the power law
index, n, on the dimensionless skin friction coefficient(
(1 − n) ξ f

′′
(ξ, 0)+ nWe

2 ξ
(

f ′′ (ξ, 0)
)2

)
and heat transfer

rate
(
θ ′ (ξ, 0)

)
at the sphere surface. The skin friction (Fig. 8a)
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Fig. 10 a Influence of ST on
skin friction coefficient result. b
Influence of ST on Nusselt
number result

at the sphere surface is reduced with increasing n,, how-
ever, only for very large values of the transverse coordi-
nate, ξ . However, heat transfer rate (local Nusselt number)
is enhanced with increasing n, again at large values of ξ , as
computed in Fig. 8b.

Figure 9a, b presents the influence of the velocity slip, Sf ,

on the dimensionless skin friction coefficient
(
(1 − n) ξ f

′′

(ξ, 0)+ nWe
2 ξ

(
f ′′ (ξ, 0)

)2
)

and heat transfer rate
(
θ ′ (ξ, 0)

)
at the sphere surface. With an increase in Sf , wall shear stress
is consistently reduced. This trend was observed by Yazdi
et al. [58] and Wang [59] using asymptotic methods. There
is a progressive migration in the peak shear stress locations

further from the lower stagnation point, as wall slip parameter
is increased. With an increasing Sf , the local Nusselt number
considerably increased.

Figure 10a, b presents the effect of thermal jump, ST, on

the dimensionless skin friction coefficient
(
(1 − n) ξ f

′′
(ξ, 0)

+ nWe
2 ξ

(
f ′′ (ξ, 0)

)2
)

and heat transfer rate
(
θ ′ (ξ, 0)

)
at the

sphere surface. Increasing ST is found to decrease both skin
friction coefficient and local Nusselt number. For lower val-
ues of thermal jump, the plots are similar to those in Fig. 9b,
and have a parabolic nature; however with ST values greater
than 1, the profiles lose their curvature and become increas-
ingly linear in nature.
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Table 5 Values of the local heat transfer coefficient −θ ′ (ξ, 0) for various values of ξ with We = 0.0, n = 0.0, Sf = 0.0, ST = 0.0

ξ Pr = 0.7 Pr = 7.0

Present Nazar et al.
[55]

% Difference Molla et al.
[56]

% Difference Present Nazar et al.
[55]

% Difference Molla et al.
[56]

% Difference

0◦ 0.4572 0.4576 0.0437 0.4576 0.0437 0.9585 0.9595 0.0521 0.9582 0.0157

10◦ 0.4562 0.4565 0.0329 0.4564 0.0219 0.9560 0.9572 0.0627 0.9558 0.0105

20◦ 0.4534 0.4533 0.0110 0.4532 0.0220 0.9501 0.9506 0.0263 0.9492 0.0474

30◦ 0.4475 0.4480 0.0558 0.4479 0.0447 0.9390 0.9397 0.0373 0.9383 0.0373

40◦ 0.4402 0.4405 0.0341 0.4404 0.0227 0.9235 0.9239 0.0217 0.9231 0.0217

50◦ 0.4305 0.4308 0.0348 0.4307 0.0232 0.9042 0.9045 0.0166 0.9034 0.0443

60◦ 0.4186 0.4189 0.0358 0.4188 0.0239 0.8795 0.8801 0.0341 0.8791 0.0227

70◦ 0.4042 0.4046 0.0495 0.4045 0.0371 0.8505 0.8510 0.0294 0.8501 0.0235

80◦ 0.3872 0.3879 0.0903 0.3877 0.0645 0.8165 0.8168 0.0184 0.8161 0.0245

90◦ 0.3681 0.3684 0.0407 0.3683 0.0272 0.7772 0.7774 0.0129 0.7768 0.0257

6 Conclusions

Numerical solutions have been presented for the buoyancy-
driven flow and heat transfer of tangent hyperbolic flow exter-
nal to an isothermal sphere. The Keller-box implicit second
order accurate finite difference numerical scheme has been
utilized to efficiently solve the transformed, dimensionless
velocity, and thermal boundary layer equations, subject to
realistic boundary conditions. Excellent correlation with pre-
vious studies has been demonstrated testifying to the validity
of the present code. The computations have shown that:

1. Increasing Weissenberg number, We, and the magnetic
parameter, M , reduces the velocity, skin friction (surface
shear stress), and heat transfer rate, whereas it elevates
temperatures in the boundary layer.

2. Increasing power law index, n, increases the velocity
and Nusselt number for all values of radial coordinate,
i.e., throughout the boundary layer regime, whereas it
depresses temperature and skin friction.

3. Increasing velocity slip, Sf , increases velocity and heat
transfer rate but decreases temperature and skin friction
(surface shear stress).

4. Increasing thermal jump, ST, decreases velocity, tem-
perature, skin friction and hear transfer rate.

5. Increasing transverse coordinate (ξ) generally decel-
erates the flow near the sphere surface and reduces
momentum boundary layer thickness whereas it enhan-
ces temperature and therefore increases thermal bound-
ary layer thickness in tangent hyperbolic non-Newtonian
fluids.

Generally, very stable and accurate solutions are obtained
with the present finite difference code. The numerical code

is able to solve nonlinear boundary layer equations very
efficiently and therefore shows excellent promise in simu-
lating transport phenomena in other non-Newtonian fluids
(Table 5).
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