
Arab J Sci Eng (2014) 39:6149–6174
DOI 10.1007/s13369-014-1248-7

RESEARCH ARTICLE - COMPUTER ENGINEERING AND COMPUTER SCIENCE

A Novel Self-adaptive Differential Evolution Algorithm
with Population Size Adjustment Scheme

Shuguang Zhao · Xu Wang · Liang Chen · Wu Zhu

Received: 2 December 2012 / Accepted: 31 August 2013 / Published online: 8 July 2014
© King Fahd University of Petroleum and Minerals 2014

Abstract It is well known that mutation scale factor, the
crossover constant, and the population size are three main
control parameters of the differential evolution (DE) algo-
rithm. These parameters are of great importance to the effi-
ciency of a DE algorithm. However, finding appropriate set-
tings is a difficult task. In this work, a self-adaptive DE with
population adjustment scheme (SAPA) is proposed to tune
the size of offspring population. The novel algorithm involves
two DE strategies and two population adjustment schemes.
The performance of the SAPA algorithm is evaluated on a
set of benchmark problems. Simulation results show that
the proposed algorithm is better than, or at least comparable
with, other classic or adaptive DE algorithms. Performance

This paper was partially supported by National Natural Science
Foundation of China (No. 61271114 and No. 61203325) and
Innovation Program of Shanghai Municipal Education Commission
(No. 14ZZ068).

S. Zhao · X. Wang (B) · L. Chen
College of Information Science and Technology, Donghua
University, Shanghai 201620, People’s Republic of China
e-mail: daisy_wang1@aliyun.com

S. Zhao
e-mail: sg.zhao@126.com

X. Wang
College of Automotive Engineering,
Shanghai University of Engineering and Science,
Shanghai 201620, People’s Republic of China

W. Zhu
School of International Relations and Public Affairs,
Fudan University, Shanghai 200433, People’s Republic of China
e-mail: dtzhuwu@gmail.com

L. Chen
Guangxi Branch, Agricultural Bank of China, Nanning 530028,
People’s Republic of China
e-mail: lawrence.cl@hotmail.com

comparisons with some other well-known evolutionary algo-
rithms from literatures are also presented.

Keywords Differential evolution (DE) · Self-adaptation ·
Global optimization · Population adjustment schemes

1 Introduction

Differential evolution (DE) is perceived as a reliable and
versatile population-based heuristic optimization technique,
which exhibits remarkable performance in a wide variety
of problems from diverse fields [1–3]. It has been success-
fully applied in diverse fields such as pattern recognition
[4], data mining [5], combinatorial optimization [6], and
multi-objective optimization [9]. Like other EAs [7,8], the
performance of DE is quite dependent on the setting of con-
trol parameters such as the mutation factor F, the crossover
probability Cr , and the population size NP according to both
experimental studies Gamperle et al. [10] and theoretical
analyses [11]. A good deal of research work has been under-
taken so far to improve the ultimate performance of DE by

123

6150 Arab J Sci Eng (2014) 39:6149–6174

tuning its control parameters. There is, however, no universal
parameter setting solution suitable for various problems.

Owing to replace sensitive parameters in DE by less sensi-
tive parameters, the adaptive and self-adaptive DE algorithms
have shown more reliable convergence performance than the
classic DE algorithms without parameter control [12–14].
Some adaptive algorithms [15,16] are developed based on the
classic DE/rand/1/bin that is known to be robust, but less effi-
cient in terms of convergence rate. Because no single muta-
tion method can turn out to be the best for all problems, others
[13,17] simultaneously implement DE/rand/1/bin and one or
more greedy DE variants such as DE/current-to-best/1/ bin
and dynamically update the probability of using each variant
to generate offspring. Usually self-adaptation is used to tune
F and Cr . In [17], for the first time, Qin et al. presented a self-
adaptive variant of DE (SaDE), where trial vector generation
strategies are gradually self-adapted by learning from their
prior experiences in generating promising solutions. Lately,
the previous work was extended [18]. In their proposed SaDE
approach, the parameter F is approximated by a normal dis-
tribution with mean value 0.5 and standard deviation 0.3. And
the range of Cr values is adjusted according to previous Cr

values, which have generated trial vectors successfully enter-
ing the new population. Furthermore, in SaDE, four diverse
characteristics of mutation strategies have been adopted so
that they can exhibit distinct performance characteristics dur-
ing different stages of the evolution. According to the idea of
SaDE, an ensemble of mutation strategies and control para-
meters (EPSDE) was employed in [19]. A pool of mutation
strategies competes to produce successful offspring popu-
lation in this algorithm. Unlike the SaDE, the target vector
of the EPSDE should be randomly re-initialized with a new
mutation strategy from the respective pools or from the suc-
cessful combinations stored with equal probability when the
trial vector performs poorer. In order to avoid the need for
problem-specific parameter tuning and also to improve the
convergence characteristics of DE, an adaptive DE-variant,
called JADE, was recently proposed [20]. The algorithm
applies a new mutation strategy, referred by the authors as
DE/current-to-pbest, and utilizes an optional external archive
to provide information of progress direction. Meanwhile, in
JADE, the parameters F and Cr are also self-adaptively tuned
according to a normal distribution and a Cauchy distribu-
tion, respectively. Simulation results show that JADE is bet-
ter than, or at least comparable with, other classic or adaptive
DE algorithms, the canonical PSO, and other EAs. Addition-
ally, Brest et al. [21] proposed a self-adaptation scheme for
the DE control parameters (jDE). Control parameters F and
Cr are encoded into the individual and adjusted by two new
parameters τ1 and τ2. In jDE algorithm, a set of F and Cr

values was assigned to each individual in the population, aug-
menting the dimensions of each vector. The better values of
these encoded control parameters lead to better individuals

that in turn are more likely to survive and produce offspring
and thus propagate these better parameter values.

Recently, various strategies for population size of DE have
received particular research attention [22–25]. Teo [15] pre-
sented a DE algorithm with dynamic population sizing strat-
egy based on self-adaption, while F and Cr are also self-
adapted. In [15], there is a population size parameter π ,
which is initialized to a random value according to a uni-
form distribution between [−0.5, 0.5], which may be neg-
ative or positive to allow for variations in population size
that can decrease as well as increase. Consequently, a more
suitable population size along with its parameter settings can
be determined adaptively to match different search stages. In
[26], an improved jDE algorithm with population size reduc-
tion (called a dynNP-DE algorithm) was used for large-scale
global optimization on CEC 2008. The number of allowed
fitness evaluations (FEs) is predefined, and dimension of
problem is large. Therefore, small population size is highly
recommended for DE algorithms. In dynNP-DE algorithm,
there are the largest population size at the beginning of the
evolutionary process and the smallest at the end. In the mean-
time, the population size is gradually descending. The con-
cept behind this strategy is that of focusing the search in
progressively smaller search spaces in order to inhibit the
DE stagnation in an environment with high dimensional-
ity. The population size reduction mechanism improves the
algorithm’s efficiency and robustness.

The three control parameters all depend on each other,
and different optimized problems need different good para-
meter setting. Meanwhile, there are still no general guide-
lines for the parameters setting. In another word, question
how to self-adaptively tune the parameters in DE remains
open. Inspired by above considerations, we introduce a self-
adaptive DE with population adjustment scheme (SAPA) in
which the population size can be adjusted dynamically based
upon the online solution-searching status. In our algorithm,
two population adjustment schemes are designed to obtain
the appropriate parameter of NP according to the desired
population distribution. More specifically, on the one hand,
in order to improve the diversity of the population and to
enhance local search ability, population-increasing strategy
is presented to generate better individuals. On the other hand,
a population-decreasing scheme is applied to remove the
redundant individuals and to save computational space in
evolutionary process. Furthermore, a trigger strategy monitor
is introduced to control the sensitivity of population strategy.
The monitor will trigger population-decreasing or increas-
ing strategy in accordance with the solution-searching sta-
tus. Moreover, in this paper, two DE strategies (DE/current-
to-best/1 strategy and DE/current-to-pbest/1 strategy) are
adopted to improve the search performance efficiently. In
each iteration of the evolutionary process, only one strat-
egy is active. To be specific, at an earlier stage of evolution-

123

Arab J Sci Eng (2014) 39:6149–6174 6151

ary process, DE/current-to-best/1 strategy is used to achieve
fast convergence speed; with the increase of generation, to
prevent strategy trapping into a local minimum, DE/current-
to-pbest/1 strategy is applied to search a relatively large
region, which is biased toward promising progress direc-
tions. In addition, we compare SAPA with several recently
proposed evolutionary algorithms and observe competitive
experimental results on benchmark functions.

The rest of the paper is organized as follows. Section 2
describes the basic procedure of differential evolution and
introduces various adaptive and self-adaptive DE. The new
algorithm, SAPA, is elaborated in Sect. 3. Simulation results
are presented in Sect. 4 for the comparison of SAPA with
other evolutionary algorithms. Finally, concluding remarks
are summarized in Sect. 5.

2 Differential Evolution Algorithms

This section provides an overview of differential evolution
and introduces necessary notations and terminologies, which
facilitate a better understanding of our new algorithm, as
proposed in the next section.

2.1 Differential Evolution

Differential evolution (DE) starts with a randomly initi-
ated population of NP D-dimensional real-valued parame-
ter vectors, which represent the candidate solutions to the
actual optimization problem. After initialization, the evo-
lutionary operations of mutation, crossover, and selection
are repeatedly employed to produce the optimal solution. If
G = 0, 1, 2, . . . , Gmax denotes the subsequent generations
in DE, the ith individual at the current generation is

Xi,G = (x1
i,G , x2

i,G , . . . , x j
i,G), j = 1, 2, . . . , D (1)

where D defines the dimensionality of the search space. At the
first generation (G = 0), the population should be initialized
to cover the total search space as much as possible.

2.1.1 Mutation Operation

At each generation, for each individual Xi,G , called as the
target vector, DE employs mutation operator to produce
a mutant vector Vi,G . Specifically, three individuals Xr1,G ,
Xr2,G , and Xr3,G are randomly extracted from the population.
According to the DE logic, the mutant vector is generated by
mutation:

Vi,G = Xr1,G + F · (Xr2,G − Xr3,G) (2)

where F is a scale factor which controls the length of the
exploration vector (Xr2,G − Xr3,G) and thus determines how
far from point Xi,G the offspring should be generated. The

scalar number F typically lies in the interval [0.4, 1]. The
mutation scheme given in Eq. (2) is also known as DE/rand/1.
Other variants of the mutation rule have been subsequently
proposed in [27] and [17]:

1. “DE/best/1”

Vi,G = Xbest,G + F · (Xr1,G − Xr2,G); (3)

2. “DE/rand/2”

Vi,G = Xr1,G + F · (Xr2,G − Xr3,G)

+F · (Xr4,G − Xr5,G); (4)

3. “DE/best/2”

Vi,G = Xbest,G + F · (Xr1,G − Xr2,G)

+F · (Xr3,G − Xr4,G); (5)

4. “DE/current-to-best/1”

Vi,G = Xi,G + F · (Xbest,G − Xi,G)

+F · (Xr1,G − Xr2,G); (6)

5. “DE/current-to-rand/1”

Ui,G = Xi,G + K · (Xr1,G

−Xi,G) + F ′ · (Xr2,G − Xr3,G), (7)

6. “DE/rand-to-best/2”

Ui,G = Xi,G + K · (Xbest,G − Xi,G)

+F ′ · (Xr1,G − Xr2,G)

+F ′ · (Xr3,G − Xr4,G), (8)

where Xbest,G specifies the vector with the best fitness
among the individuals. A difference vector is calculated
between a pair of vectors Xr2,G and Xr3,G to determine
a search direction. In the difference vector, the indices
r1, r2, r3, r4 and r5 are mutually different integers ran-
domly generated from the running index, which are also
different from the target vector index i.

2.1.2 Crossover Operation

After mutation stage, a “binary” crossover operation forms
the trial vector Ui,G according to the target vector Xi,G and
its corresponding mutant vector Vi,G . The trial vector is
given by

u j
i,G =

{
v

j
i,G , if randi, j [0, 1] ≤ Cr or j = jrand

x j
i,G , otherwise

(9)

123

6152 Arab J Sci Eng (2014) 39:6149–6174

where Cr is crossover control parameter or factor within the
range [0, 1] and denotes the probability of creating parame-
ters for a trial vector from the mutant vector. jrand ∈ [1, D]
indicates a randomly selected integer, which ensures at least
one dimension of the trial vector Ui,G will differ from its asso-
ciated target vector Xi,G . Here we have described the binary
crossover operation (bin). The other DE crossover operation
that could also be used in optimizations is exponential (exp).

2.1.3 Selection Operation

The selection operator selects between the target and corre-
sponding trial vectors. The fittest vector, i.e., vector with the
BEST fitness value, becomes a member of the next gener-
ation. Assuming a minimization problem, the particle with
a smaller value of fitness function indicates a better perfor-
mance, while the particle with a larger value of fitness func-
tion correspond to worse performance. The selection opera-
tion is described as

Xi,G+1 =
{

Ui,G , if f (Ui,G) ≤ f (Xi,G)

Xi,G . otherwise
(10)

A schematic description of DE highlighting the working prin-
ciples of the depicted variants is given in Algorithm 1.

Algorithm 1 The pseudo-code for the DE algorithm with
DE/rand/1
1: Begin
2: Initialization();
3: while G ≤ Gmax do
4: for i = 1 to NP do
5: Random select indexes r1 �= r2 �= r3 �= i
6: Vi,G = Xr1,G + F · (Xr2,G − Xr3,G)

7: for j = 1 to D do
8: if randi, j [0, 1] ≤ Cr or j = jrand then

9: u j
i,G = v

j
i,G

10: else
11: u j

i,G = x j
i,G

12: end if
13: end for
14: if f (Ui,G) ≤ f (Xi,G) then
15: Xi,G+1 = Ui,G
16: else
17: Xi,G+1 = Xi,G
18: end if
19: end for
20: G = G + 1
21: end while
22: End

2.2 Adaptive DE Algorithms

Being fascinated by the potential and prospect of DE, many
researchers are working on its improvement, which resulted
in a wealth of variants of the basic DE algorithm. This section

Fig. 1 jDE Self-adapting: encoding aspect

briefly reviews some recent adaptive and self-adaptive DE
algorithms that dynamically update control parameters as the
evolutionary search proceeds.

2.2.1 The jDE Algorithm

Brest et al. [21] presented a new adaptive DE, jDE, which
is based on the classic DE/-rand/1/bin. Similar to other
schemes, jDE fixes the population size during the opti-
mization, while adapting the control parameters F and Cr

associated with each individual in Fig. 1.
The self-adaptive control parameters Fi,G+1 and Cri,G+1

are calculated as follows:

Fi,G+1 =
{

Fl,G + rand1 · Fu,G , if rand2 < τ1

Fi,G , otherwise
(11)

Cri,G+1 =
{

rand3, if rand4 < τ2

Cri,G , otherwise
(12)

They produce control parameters F and Cr in a new vector.
The quantities randk, k ∈ {1, 2, 3, 4} represent uniform ran-
dom values within the range [0, 1]. τ1 and τ2 are probabilities
to adjust control parameters F and Cr , respectively. Con-
stants τ1, τ2, Fl,G , Fu,G are assigned fixed values to 0.1, 0.1,
0.1, 0.9, respectively. The control parameter values Fi,G+1

and Cri,G+1 are obtained before the mutation operation is per-
formed. This means, they influence the mutation, crossover,
and selection operations of the new vector.

2.2.2 The DEahcSPX Algorithm

Local search (LS) algorithms mainly explore a small neigh-
borhood of a candidate solution in the search space until they
find a locally optimal point or meet the terminal criteria. Typ-
ically in LS method, every candidate solution has more than
one neighbor solution; the choice of which one to move to
is taken using only information about the solutions in the
neighborhood of the current one. If the choice of the neigh-
boring solution is done by taking the one locally maximizing
the criterion, the meta-heuristic is named hillclimbing.

In [28], Noman and Iba presented a crossover-based LS
technique to adaptively adjust the length of the search (called
search length) by a hill-climbing heuristic. By introducing
the LS technique in original DE, they proposed an algorithm

123

Arab J Sci Eng (2014) 39:6149–6174 6153

named Differential Evolution with Adaptive Hill Climbing
Simplex Crossover (DEahcSPX). The algorithm took proper
balance of the exploration abilities of DE and the exploita-
tion abilities of a Local Searcher to achieve an high perfor-
mance. More specifically, at each generation, the individual
having best fitness value was selected and would undergo the
LS process in which the simple rule of hill-climbing adap-
tively determines the best search length by taking feedback
from the search and the best search length is added to the
selected individual to generate a new individual. Owing of
the simple hill-climbing mechanism, the adaptive LS does not
add any additional complexity or any additional parameter to
the original algorithm. The experiment results showed that
the proposed new version of DE performs better, or at least
comparably, than classic DE algorithm.

2.2.3 The JADE Algorithm

In JADE [20], a novel mutation strategy and an optional exter-
nal archive are utilized to provide information of progress
direction. This DE/current-to-pbest strategy uses multiple
best solutions to balance the greediness of the mutation and
the diversity of the population, which is generated as follows:

Vi,G = Xi,G + Fi · (Xp
best,G − Xi,G)

+ Fi · (Xr1,G − X̃r2,G) (13)

where Xp
best,G is randomly selected as one of the top 100p%

individuals of the current population with p ∈ (0, 1]. Xi,G ,
Xp

best,G , and Xr1,G are chosen from the current population

P. X̃r2,G is randomly selected from the union, P ∪ A, while
A, an archive, is employed to store the recently explored
inferior solutions, when compared to the current population.
Fi denotes the scaling factor associated with the ith individual
and it is updated dynamically in each generation as follows:

Fi = randci (μF , 0.1) (14)

Cri = randni (μCr , 0.1) (15)

At each generation, Fi and Cri are, respectively, generated
according to a Cauchy distribution and a Normal distribution
with associated mean value μF and μCr . The proposed two
location parameters are initialized to be 0.5 and then updated
at the end of each generation as:

μF = (1 − c) · μF + c · meanL(SF) (16)

μCr = (1 − c) · μCr + c · mean A(SCr) (17)

where c is a positive constant ∈ (0, 1); SF and SCr denote
the set of all successful mutation/crossover rates; meanA(·)
indicates the usual arithmetic mean, and meanL (·) returns the
Lehmer mean:

meanL(SF) =
∑|SF |

i=1 F2
i∑|SF |

i=1 Fi

(18)

The procedure of JADE is described in Algorithm 2.

Algorithm 2 The pseudo-code for the JADE algorithm
1: Begin
2: Initialization()
3: μF = 0.5, μCr = 0.5, A = ∅;
4: while G ≤ Gmax do
5: SF = ∅; SCr = ∅;
6: for i = 1 to NP do
7: Generate Cri = randni (μCr , 0.1), Fi =

randci (μF , 0.1)

8: Vi,G = Xi,G + Fi ·(Xp
best,G −Xi,G)+ Fi ·(Xr1,G −X̃r2,G)

9: for j = 1 to D do
10: if randi, j [0, 1] ≤ Cr or j = jrand then

11: u j
i,G = v

j
i,G

12: else
13: u j

i,G = x j
i,G

14: end if
15: end for
16: if f (Ui,G) ≤ f (Xi,G) then
17: Xi,G+1 = Ui,G ;
18: Xi,G → A; Cri → SCr , Fi → SF
19: else
20: Xi,G+1 = Xi,G
21: end if
22: end for
23: Randomly remove solutions from A (|A| ≤ N P)
24: Calculate and update μF , μCr

25: G = G + 1
26: end while
27: End

2.2.4 The SaDE Algorithm

Qin et al. [18] presented the SaDE algorithm, where one
trial vector generation strategy is chosen from the candidate
pool (“DE/rand/1,” “DE/rand/2,” “DE/rand-to-best/2” and
“DE/current-to-rand/1”) according to the probability learned
from its success rate in generating promising solutions within
a certain number of previous generations, called the learning
period (LP). More specifically, these probabilities are ini-
tially equal and then gradually self-adapted in the following
manner:

pk,G = Sk,G∑K
k=1 Sk,G

(19)

where pk,G , k = 1, 2, . . . , K denotes the probability of
applying the kth strategy, and K is the total number of strate-
gies contained in the pool. Sk,G is the success rate of the trial
vector generated by the kth strategy and successfully entering
the next generation:

Sk,G =
∑G−1

g=G−L P nsk,g∑G−1
g=G−L P nsk,g + ∑G−1

g=G−L P n fk,g
+ ε (20)

where nsk,g and n fk,g record the number of trial vectors gen-
erated by the kth strategy that retain or discard in the selection

123

6154 Arab J Sci Eng (2014) 39:6149–6174

operation in the last LP generations. The small constant value
ε = 0.01 is used to avoid the possible null success rates. At
each generation, for each solution in the current population,
the parameters Fi and Cri,k are independently calculated as:

Fi = randni (0.5, 0.3) (21)

Cri,k = randni (C Rmk, 0.1) (22)

where coefficients are, respectively, generated, for each indi-
vidual, by sampling their values from a normal distribution.
Nevertheless, C Rmk is initialized as 0.5. There are memo-
ries to store those Cr values with respect to the kth strategy
which have generated trial vectors entering the next gener-
ation within the previous LP generations. During the first
LP generations, C Rmk does not change. In every LP gen-
erations, C Rmk is overwritten by the median value of Cr

values.

3 Self-adaptive DE with Population Adjustment
Scheme

In this section, a new differential evolution algorithm is pre-
sented for balancing the local search and global search, which
can improve the search performance efficiently. The novel
algorithm involves two DE strategies and two population
adjustment schemes:

1. Two DE strategies

– DE/current-to-best/1 Strategy
– DE/current-to-pbest/1 Strategy

2. Two population size adjustment schemes

– Population-Decreasing Strategy
– Population-Increasing Strategy

The structure of the self-adaptive DE with population
adjustment scheme (SAPA) is given in Algorithm 3. The
algorithm performs the maximal number of iterations on the
NP individuals. In each iteration, only one DE strategy is
active and is applied to the mutation, crossover, and selec-
tion operations. Furthermore, a monitor is introduced to keep
a track of the progress of individuals and regulate the sensi-
tivity of population adjustment schemes. The DE strategies
and population adjustment schemes are described as follow.

3.1 DE Strategies

Our proposed SAPA algorithm uses two DE strategies:

1. DE/current-to-best/1
2. DE/current-to-pbest/1

Algorithm 3 The SAPA algorithm
1: Begin
2: G=0
3: Create a population of NP vectors randomly with NP ∈

[Lbound, Ubound]
4: Evaluate the fitness values of the population
5: while G ≤ Gmax do
6: for i = 1 to NP do
7: rn = uni f rnd(0, 1)

8: if rn > ϕ then
9: //ϕ is a time-varying variable
10: s = 1; // DE/current-to-best/1 strategy
11: else
12: s = 2; // DE/current-to-pbest/1 strategy
13: end if
14: Take mutation operation on Xi,G by mutation strategy

s
15: Then take the crossover operation to generate trial vec-

tor (Ui,G) as JADE does.
16: if f (Ui,G) ≤ f (Xi,G) then
17: Xi,G+1 = Ui,G , Xi,G → A
18: else
19: Xi,G+1 = Xi,G
20: end if
21: end for
22: [K1, K2, U M, L M] = Trigger Strategy Monitor()
23: if (K1 == 1) or (UM > R) then
24: Population−Decreasing−Strategy()
25: K1 = 0
26: UM = 0
27: end if
28: if (K2 == 1) or (LM > R) then
29: Population−Increasing−Strategy()
30: Evaluate the new additional individuals
31: K2 = 0
32: LM = 0
33: end if
34: G = G + 1
35: Update ϕ

36: end while
37: End

Specifically, DE/current-to-best/1 strategy has fast con-
vergence speed by incorporating best solution information
in the evolutionary search. A mutation vector is generated in
the following manner:

Vi,G = Xi,G + F · (Xbest,G − Xi,G) + F · (Xr1,G − Xr2,G)

(23)

where Xbest,G specifies the vector with the best fitness among
the individuals. A difference vector is calculated between a
pair of vectors Xr1,G and Xr2,G to determine a search direc-
tion. In the difference vector, the indices r1 and r2 are dif-
ferent integers randomly generated from the running index,
which are also different from the target vector index i.

On the other hand, in DE/current-to-pbest/1 strategy, mul-
tiple best solutions are used to balance the greediness of the
mutation and the diversity of the population, which is gener-
ated as follows:

123

Arab J Sci Eng (2014) 39:6149–6174 6155

Vi,G =Xi,G + Fi · (Xp
best,G − Xi,G)+Fi · (Xr i

1,G
−X

′
r i

2,G
)

(24)

where Xp
best,G is randomly selected as one of the top 100p%

individuals of the current population with p ∈ (0, 1]. Xi,G ,
Xp

best,G and Xr i
1,G

are chosen from the current population P.

X
′
r i

2,G
is randomly selected from the union, P ∪ A, while A,

an archive, is employed to store the recently explored inferior
solutions.

The main idea of strategy selection is at an earlier stage of
evolutionary process, DE/current-to-best/1 strategy is used
to achieve fast convergence speed; with the increase of
generation, to prevent strategy trapping into a local mini-
mum, DE/current-to-pbest/1 strategy is adopted to search
a relatively large region, which is biased toward promising
progress directions.

In each iteration of the evolutionary process, only one
strategy is active, as presented in lines 7-11 in Algorithm 3.
The DE/current-to-best/1 strategy is used when rn greater
thanϕ; otherwise, DE/current-to-pbest /1 strategy is adopted.
The rn is a random number from the continuous uniform
distribution on the interval (0,1). Notice ϕ ∈ [0.1, 1] is a
time-varying variable, which increases with every generation
and can be express as:

ϕ = G

Gmax
∗ (ϕmax − ϕmin) + ϕmin (25)

where ϕmin = 0.1, ϕmax = 1, G denotes the generation
counter. Specifically, at earlier stage, DE/current-to-best/1
strategy can be used more frequently because the random
number can be easily greater than ϕ. On the contrary, at later
stage, it is harder that the random number is greater than
ϕ. So that DE/current-to-pbest/1 strategy is applied more
frequently with the increase of generation.

3.2 Trigger Strategy Monitor

Generally, the population size is a significant parameter for
DE algorithm. An appropriate population size can greatly
affect the effectiveness and efficiency of the optimization
performance. However, there is no exact method to find a
suitable population size for DE. On the one hand, it is obvious
that if the population size is too small, the algorithm may
suffer from premature convergence. On the other hand, if the
population is too large, the computational cost may be too
high in practice. Therefore, in this paper, adaptive population
size scheme is proposed for DE to improve the efficiency of
the algorithm.

In our method, the dynamic population size adjustment
scheme depends on a trigger strategy monitor. This monitor
will trigger population-decreasing or increasing strategy in
accordance with the solution-searching status. Specifically,

if a better solution can be found in one iteration process,
it means that redundant individuals may have been existed,
and population-decreasing strategy may be used according to
corresponding probability. Moreover, if a better solution can-
not be obtained in the evolutionary process, new individuals
should be considered to add into population. Considering the
typical learning situation in which the probability to obtain
even better solutions decrease with the running of the algo-
rithm, an increase of the population size is expected with
the number of iterations. Furthermore, the population size
is monitored to avoid breaking the upper and lower bound.
The pseudo-code of the trigger strategy monitor is shown in
Algorithm 4.

Algorithm 4 Trigger Strategy Monitor()
1: Begin
2: //ϑ is the minimum fitness value of function evaluations in each

previous generation
3: // f i tbest is fitness value of the best solution in current genera-

tion.
4: if f i tbest is better than ϑ then
5: if 0 < unifrnd(0,1) ≤ P then
6: K1 = 0;
7: else
8: K1 = 1;
9: end if
10: ϑ = f i tbest
11: else
12: if 0 < unifrnd(0,1) ≤ Q then
13: K2 = 0;
14: else
15: K2 = 1;
16: end if
17: end if
18:
19: if popsi ze ≥ Ubound then
20: UM = UM + 1
21: LM = 0
22: else if popsi ze ≤ Lbound then
23: UM = 0
24: LM = LM + 1
25: end if
26: End

In Algorithm 4, UM and LM denote the upper bound mon-
itor variable and the lower bound monitor variable. Ubound
and Lbound are upper and lower bounds of the population
size, respectively. The proposed K1 and K2 are the trig-
ger variable, which are used to control the sensitivity of the
dynamic population strategy. P ∈ (0, 1] and Q ∈ (0, 1] are
the user-defined probabilities which determine whether the
population adjustment schemes are adopted in this iteration
or not.

More specifically, if there is an improvement in fitness in
one generation, two optional population adjustment ways can
be chosen, i.e., population maintain and population decrease
method. The probability of taking maintain scheme is P ,

123

6156 Arab J Sci Eng (2014) 39:6149–6174

while the probability of adopting decrease scheme is 1 − P .
The trigger variable K1 is set to 1 when unifrnd(0,1) is greater
than P , that is leading to a population-decreasing scheme to
remove poor individuals from current population. Further-
more, similar to above situation, if there is no improvement
in fitness, population maintain and increase scheme will be
used. The probability of them is Q and 1 − Q, respectively.
The population-increasing strategy is used when the trigger
variable K2 is set to 1.

Besides, when the population size is equal to the upper
bound (Ubound) in consecutive generations, the upper bound
monitor (UM) variable will be increased in each generation.
This operator will be terminated when the process happens
in R consecutive generations, i.e., the population-decreasing
strategy will be used if UM > R. Alternatively, if the pop-
ulation size is equal to the lower bound (Lbound) in con-
secutive generations, the lower bound monitor (LM) vari-
able will be increased in each generation. This process is
continuously repeated until achieve a user-defined value R,
i.e., the population-increasing strategy will be applied if
LM > R.

3.3 Population Size Adjustment Scheme

The purpose of the adjustment is that population size
can dynamically increase or decrease based on the online
solution-searching status. In this paper, two population size
adjustment schemes are applied:

1. Population-Decreasing Scheme
2. Population-Increasing Scheme

On the one hand, the objective of the population-decreasing
scheme is to remove the redundant individuals and to save
computational space. More exactly, in population-decreasing
strategy, fitness function values of population are evaluated
firstly. After that, every particle is arranged according to
their fitness function values from small to large. The pop-
ulation reduction mechanism consists in deleting some indi-
viduals with worse performance from the current popula-
tion. The mechanism of population reduction is presented in
Algorithm 5.

Algorithm 5 Decreasing−Strategy()
1: Begin
2: Evaluate the fitness values of the population
3: Rearrange the population with its fitness function values from

small to large
4: F(f(X1), ..., f(XNP)) = (fmin, ..., fmax)

5: δ1 = � m% × NP �
6: Delete the last δ1 individuals from current population
7: End

In Algorithm 5, δ1 is the number of individuals for elimi-
nation. Compared with the algorithm with small δ1, the algo-
rithm for population size reduction is not more computation-
ally expensive when the value of δ1 is very large. However,
the diversity of population might be destroyed due to the
too small population. Therefore, in order to keep a tradeoff
between the population diversity and the search speed, we
fix m on a small value, i.e., m = 1.

On the other hand, in order to improve the diversity of the
population and to enhance local search ability, population-
increasing scheme is introduced to generate better individu-
als. In other words, the purpose of our population-increasing
scheme is to produce new individuals based on best individ-
uals from present population to overcome the weakness of
local exploration.

To begin with, the best δ2 individuals X1,G, X2,G, . . .

Xδ2,G from the current population can be selected. Similar to
population-decreasing strategy, δ2 =
 m%×NP � should not
be too large, and coefficient m is also set to 1. After that, the
idea of mutation with difference vectors in DE is applied into
our population-increasing scheme, i.e., “mutation” operation
is performed on each candidate best individuals. To create a
new individual for every best candidate particle from current
population, two other distinct parameter vector, say Xr,G ,
Xs,G are sampled randomly from the current population. The
indices r and s are mutually exclusive integers randomly cho-
sen from the range [1, NP], which are also different from the
index i . The difference of these two parameter vector is scaled
by a “scalar number” H and the scaled difference is added
to the best chosen individual whence we obtain the new per-
turbation particle Xb,G . We can express the process as

Xb,G = Xi,G + H · (Xr,G − Xs,G) (26)

The pseudocode of the population-increasing scheme is
shown in Algorithm 6.

Algorithm 6 Increasing−Strategy()
1: Begin
2: δ2 =
 m% × NP �
3: Select δ2 best individuals from NP
4: for i = 1 to δ2 do
5: Randomly generate two different vectors Xr,G �= Xs,G

from NP
6: Xb,G = Xi,G + H · (Xr,G − Xs,G)

7: if f (Xb,G) ≤ f (Xi,G) then
8: Store Xb,G into BA (Best-Archive)
9: end if
10: end for
11: Add all the individuals of BA into the current population
12: Empty BA
13: End

The scalar number H typically lies in the interval [0.4, 1],
and we use H = 0.5 in this paper as recommended in [21].

123

Arab J Sci Eng (2014) 39:6149–6174 6157

Moreover, the new particle from “mutation” operation should
be compared with the best source individuals according to
their fitness function values. Only the best ones are stored into
a temporary memory, called Best-Archive (BA). Following
the stage of “mutation” operation, all individuals of BA are
added into the current population, and BA should be emptied
at the end of every generation.

4 Experiments

4.1 Experiments Setup

The test suite that we have used for different experiments con-
sists of 30 benchmark functions. The first ten test functions of

the suite are functions commonly found in the literatures and
the other benchmarks are proposed in the CEC 2005 special
session on real-parameter optimization.

Our test suit is presented in Table 1, where N is the dimen-
sionality of the problem at hand and fbias is a function value
of the global optimum. A more detailed description of these
test functions can be found in [29]. In our test, fsph , fros

and f1 to f5 are unimodal functions; f6 to f14, and fack to
f pn2 are multimodal functions (f13 and f14 are expanded
multimodal functions); f15 to f20 are hybrid composition
functions.

To evaluate the performance of the algorithms, we use the
solution error measure, defined as f (x)− f (x∗), where x is
the best solution found by the algorithm in a run and x∗ is the
global optimum of the benchmark function. Meanwhile, the

Table 1 Benchmark functions

Functions Name Search space fbias

fack(x) Ackley [−32, 32]N 0

fgrw(x) Griewank [−600, 600]N 0

fras(x) Rastrigin [−5, 5]N 0

fsch(x) Generalized Schwefel’s Problem 2.26 [−500, 500]N 0

fsal (x) Salomon [−100, 100]N 0

fwht (x) Whitely [−100, 100]N 0

f pn1(x) Generalized Penalized Function 1 [−50, 50]N 0

f pn2(x) Generalized Penalized Function 2 [−50, 50]N 0

fsph(x) Sphere [−100, 100]N 0

fros(x) Rosenbrock [−100, 100]N 0

f1(x) Shifted Sphere [−100, 100]N −450

f2(x) Shifted Schwefel’s Problem 1.2 [−100, 100]N −450

f3(x) Shifted Rotated High Conditioned Elliptic [−100, 100]N −450

f4(x) Shifted Schwefel’s Problem 1.2 with Noise in Fitness [−100, 100]N −450

f5(x) Schwefel’s Problem 2.6 with Global Optimum on Bounds [−100, 100]N −310

f6(x) Shifted Rosenbrock [−100, 100]N 390

f7(x) Shifted Rotated Griewank’s Function without Bounds [0, 600]N −180

f8(x) Shifted Rotated Ackley’s Function with Global Optimum on Bounds [−32, 32]N −140

f9(x) Shifted Rastrigin [−100, 100]N −330

f10(x) Shifted Rotated Rastrigin [−5, 5]N −330

f11(x) Shifted Rotated Weierstrass [−0.5, 0.5]N 90

f12(x) Schwefel’s Problem 2.13 [−π, π]N −460

f13(x) Expanded Extended F8 plus F2 [−3, 1]N −130

f14(x) Shifted Rotated Expanded Scaffer’s F6 [−100, 100]N −300

f15(x) Hybrid CF1 [−5, 5]N 120

f16(x) Rotated Hybrid CF1 [−5, 5]N 120

f17(x) Rotated Hybrid CF1 with Noise in Fitness [−5, 5]N 120

f18(x) Rotated Hybrid CF2 [−5, 5]N 10

f19(x) Rotated Hybrid CF2 with a Narrow Basin for the Global Optimum [−5, 5]N 10

f20(x) Rotated Hybrid CF2 with the Global Optimum on the Bounds [−5, 5]N 10

123

6158 Arab J Sci Eng (2014) 39:6149–6174

Ta
bl

e
2

E
xp

er
im

en
ta

lr
es

ul
ts

of
30

/5
0/

10
0-

di
m

en
si

on
al

pr
ob

le
m

s
f a

ck
(x

)
–

f 2
0
(x

),
av

er
ag

ed
ov

er
30

in
de

pe
nd

en
tr

un
s

D
im

en
si

on
N

=
30

N
=

50
N

=
10

0

Fu
nc

tio
n

JA
D

E
SA

PA
JA

D
E

SA
PA

JA
D

E
SA

PA
M

ea
n

er
ro

r
±

SD
M

ea
n

er
ro

r
±

SD
M

ea
n

er
ro

r
±

SD
M

ea
n

er
ro

r
±

SD
M

ea
n

er
ro

r
±

SD
M

ea
n

er
ro

r
±

SD

f a
ck

(x
)

2.
66

E
−1

5
±

0.
00

E
+0

0
≈

2.
66

E
−1

5
±

0.
00

E
+0

0
5.

74
E
−1

5
±

1.
22

E
−1

5+
4.

79
E

−1
5

±
1.

77
E

−1
5

8.
67

E
−0

1
±

5.
47

E
−0

1+
4.

90
E

−1
5

±
2.

68
E

−1
5

f g
rw

(x
)

0.
00

E
+0

0
±

0.
00

E
+0

0
≈

0.
00

E
+0

0
±

0.
00

E
+0

0
4.

92
E
−0

4
±

2.
69

E
−0

3+
0.

00
E

+0
0

±
0.

00
E

+0
0

3.
53

E
−0

3
±

5.
91

E
−0

3+
1.

72
E

−0
3

±
4.

24
E

−0
3

f r
as

(x
)

0.
00

E
+0

0
±

0.
00

E
+0

0
≈

0.
00

E
+0

0
±

0.
00

E
+0

0
0.

00
E
+0

0
±

0.
00

E
+0

0
≈

0.
00

E
+0

0
±

0.
00

E
+0

0
0.

00
E
+0

0
±

0.
00

E
+0

0
≈

0.
00

E
+0

0
±

0.
00

E
+0

0

f s
ch

(x
)

0.
00

E
+0

0
±

0.
00

E
+0

0
≈

0.
00

E
+0

0
±

0.
00

E
+0

0
3.

94
E
+0

0
±

2.
16

E
+0

1+
1.

75
E

+0
0

±
1.

97
E

+0
1

7.
89

E
+0

0
±

3.
00

E
+0

1+
4.

10
E

+0
0

±
2.

09
E

+0
0

f s
al

(x
)

2.
03

E
−0

1
±

1.
82

E
−0

2+
1.

79
E

−0
1

±
4.

06
E

−0
2

2.
93

E
−0

1
±

4.
49

E
−0

2+
2.

09
E

−0
1

±
3.

05
E

−0
2

7.
06

E
−0

1
±

8.
27

E
−0

2+
3.

93
E

−0
1

±
4.

49
E

−0
2

f w
h

t(
x)

3.
06

E
+0

1
±

2.
26

E
+0

1−
1.

01
E
+0

2
±

3.
18

E
+0

1
5.

61
E

+0
1

±
3.

97
E

+0
1−

2.
87

E
+0

2
±

1.
00

E
+0

2
4.

03
E
+0

2
±

5.
06

E
+0

2+
2.

50
E

+0
2

±
2.

63
E

+0
2

f p
n1

(x
)

1.
57

E
−3

2
±

5.
56

E
−4

8
≈

1.
57

E
−3

2
±

5.
56

E
−4

8
2.

07
E
−0

3
±

1.
13

E
−0

2+
9.

42
E

−3
3

±
2.

78
E

−4
8

4.
25

E
−0

2
±

8.
59

E
−0

2+
6.

21
E

−0
3

±
1.

89
E

−0
2

f p
n2

(x
)

1.
34

E
−3

2
±

5.
56

E
−4

8
≈

1.
34

E
−3

2
±

5.
56

E
−4

8
1.

34
E
−3

2
±

5.
56

E
−4

8
≈

1.
34

E
−3

2
±

5.
56

E
−4

8
1.

90
E
−0

1
±

5.
94

E
−0

1+
7.

32
E

−0
4

±
2.

78
E

−0
3

f s
ph

(x
)

1.
98

E
−1

07
±

1.
08

E
−1

06
−

1.
45

E
−6

9
±

6.
36

E
−6

9
7.

00
E

−1
88

±
0.

00
E

+0
0−

1.
39

E
−1

85
±

0.
00

E
+0

0
5.

83
E
−1

88
±

0.
00

E
+0

0+
1.

45
E

−1
88

±
0.

00
E

+0
0

f r
os

(x
)

2.
65

E
−0

1
±

1.
01

E
+0

0+
1.

17
E

−3
1

±
6.

43
E

−3
1

3.
98

E
−0

1
±

1.
21

E
+0

0+
2.

65
E

−0
1

±
1.

01
E

+0
0

1.
06

E
+0

0
±

1.
79

E
+0

0+
7.

97
E

−0
1

±
1.

62
E

+0
0

f 1
(x

)
0.

00
E
+0

0
±

0.
00

E
+0

0
≈

0.
00

E
+0

0
±

0.
00

E
+0

0
0.

00
E
+0

0
±

0.
00

E
+0

0
≈

0.
00

E
+0

0
±

0.
00

E
+0

0
6.

56
E
−3

0
±

1.
67

E
−2

9+
0.

00
E

+0
0

±
0.

00
E

+0
0

f 2
(x

)
1.

16
E
−2

8
±

1.
15

E
−2

8+
1.

09
E

−2
9

±
3.

84
E

−2
9

5.
38

E
−2

7
±

5.
68

E
−2

7−
1.

00
E
−2

6
±

1.
17

E
−2

6
1.

90
E
−1

1
±

9.
51

E
−1

1+
3.

87
E

−1
5

±
1.

05
E

−1
4

f 3
(x

)
8.

42
E
+0

3
±

7.
26

E
+0

3+
6.

32
E

+0
3

±
5.

96
E

+0
3

1.
62

E
+0

4
±

7.
19

E
+0

3+
1.

51
E

+0
4

±
6.

34
E

+0
3

2.
22

E
+0

5
±

6.
71

E
+0

4+
1.

66
E

+0
5

±
6.

20
E

+0
4

f 4
(x

)
1.

98
E
−1

4
±

7.
65

E
−1

4+
1.

02
E

−2
7

±
1.

54
E

−2
7

5.
48

E
−0

1
±

1.
13

E
+0

0+
1.

93
E

−0
3

±
3.

21
E

−0
3

6.
55

E
+0

3
±

2.
38

E
+0

3+
1.

98
E

+0
3

±
1.

08
E

+0
3

f 5
(x

)
8.

59
E
−0

8
±

5.
23

E
−0

7+
4.

04
E

−0
9

±
1.

09
E

−0
9

1.
52

E
+0

3
±

4.
25

E
+0

2+
6.

08
E

+0
2

±
3.

80
E

+0
2

3.
81

E
+0

3
±

8.
06

E
+0

2+
2.

53
E

+0
3

±
6.

33
E

+0
2

f 6
(x

)
1.

02
E
+0

1
±

2.
96

E
+0

1+
7.

46
E

−0
1

±
4.

09
E

+0
0

2.
16

E
+0

0
±

8.
25

E
+0

0+
1.

32
E

−0
1

±
7.

27
E

−0
1

9.
57

E
−0

1
±

1.
74

E
+0

0−
1.

59
E
+0

0
±

1.
98

E
+0

0

f 7
(x

)
8.

07
E
−0

3
±

7.
42

E
−0

3+
3.

20
E

−0
3

±
4.

67
E

−0
3

5.
82

E
−0

3
±

9.
27

E
−0

3+
3.

19
E

−0
3

±
7.

30
E

−0
3

5.
12

E
−0

3
±

7.
67

E
−0

3+
3.

69
E

−0
3

±
4.

74
E

−0
3

f 8
(x

)
2.

09
E
+0

1
±

1.
68

E
−0

1
≈

2.
09

E
+0

1
±

5.
66

E
−0

2
2.

12
E
+0

1
±

2.
64

E
−0

1
≈

2.
11

E
+0

1
±

2.
12

E
−0

1
2.

11
E
+0

1
±

4.
28

E
−0

1
≈

2.
11

E
+0

1
±

3.
59

E
−0

1

f 9
(x

)
0.

00
E

+0
0

±
0.

00
E

+0
0−

1.
34

E
−1

1
±

6.
20

E
−1

2
0.

00
E

+0
0

±
0.

00
E

+0
0−

4.
89

E
−1

2
±

2.
60

E
−1

2
7.

11
E
−1

7
±

3.
55

E
−1

6+
5.

92
E

−1
7

±
3.

24
E

−1
6

f 1
0
(x

)
2.

44
E

+0
1

±
6.

09
E

+0
0−

3.
95

E
+0

1
±

6.
16

E
+0

0
4.

67
E
+0

1
±

8.
14

E
+0

0+
3.

74
E

+0
1

±
8.

00
E

+0
0

1.
45

E
+0

2
±

1.
45

E
+0

2−
1.

61
E
+0

2
±

2.
01

E
+0

1

f 1
1
(x

)
2.

53
E

+0
1

±
1.

65
E

+0
0−

2.
68

E
+0

1
±

1.
18

E
+0

0
5.

26
E
+0

1
±

1.
76

E
+0

0
≈

5.
25

E
+0

1
±

2.
05

E
+0

0
1.

27
E
+0

2
±

3.
41

E
+0

0
≈

1.
24

E
+0

2
±

3.
68

E
+0

0

f 1
2
(x

)
6.

15
E
+0

3
±

4.
79

E
+0

3+
6.

01
E

+0
3

±
5.

19
E

+0
3

1.
29

E
+0

4
±

1.
32

E
+0

4+
7.

63
E

+0
3

±
7.

10
E

+0
3

6.
03

E
+0

4
±

4.
74

E
+0

4+
5.

32
E

+0
4

±
3.

95
E

+0
4

f 1
3
(x

)
1.

49
E

+0
0

±
1.

09
E

−0
1−

2.
18

E
+0

0
±

1.
51

E
−0

1
2.

80
E

+0
0

±
1.

60
E

−0
1−

4.
12

E
+0

0
±

2.
41

E
−0

1
6.

64
E

+0
0

±
2.

52
E

−0
1–

9.
54

E
+0

0
±

4.
09

E
−0

1

f 1
4
(x

)
1.

27
E
+0

1
±

3.
11

E
−0

1
≈

1.
26

E
+0

1
±

2.
17

E
−0

1
3.

15
E
+0

1
±

4.
00

E
−0

1+
2.

20
E

+0
1

±
2.

65
E

−0
1

4.
55

E
+0

1
±

5.
43

E
−0

1
≈

4.
59

E
+0

1
±

3.
86

E
−0

1

f 1
5
(x

)
3.

91
E
+0

2
±

1.
28

E
+0

2
≈

3.
93

E
+0

2
±

7.
39

E
+0

1
3.

63
E
+0

2
±

9.
36

E
+0

1+
3.

26
E

+0
2

±
9.

80
E

+0
1

2.
36

E
+0

2
±

4.
57

E
+0

1+
2.

07
E

+0
2

±
2.

00
E

+0
1

f 1
6
(x

)
1.

01
E
+0

2
±

1.
24

E
+0

2+
9.

71
E

+0
1

±
1.

01
E

+0
2

1.
00

E
+0

2
±

1.
21

E
+0

2+
6.

89
E

+0
1

±
3.

16
E

+0
1

5.
76

E
+0

1
±

5.
44

E
+0

0
≈

5.
80

E
+0

1
±

3.
80

E
+0

0

f 1
7
(x

)
1.

47
E
+0

2
±

1.
33

E
+0

2+
1.

26
E

+0
2

±
6.

42
E

+0
1

1.
25

E
+0

2
±

8.
09

E
+0

1−
1.

39
E
+0

2
±

3.
24

E
+0

1
1.

35
E
+0

2
±

1.
07

E
+0

1+
1.

21
E

+0
2

±
1.

05
E

+0
1

123

Arab J Sci Eng (2014) 39:6149–6174 6159

Ta
bl

e
2

co
nt

in
ue

d

D
im

en
si

on
N

=
30

N
=

50
N

=
10

0

Fu
nc

tio
n

JA
D

E
SA

PA
JA

D
E

SA
PA

JA
D

E
SA

PA
M

ea
n

er
ro

r
±

SD
M

ea
n

er
ro

r
±

SD
M

ea
n

er
ro

r
±

SD
M

ea
n

er
ro

r
±

SD
M

ea
n

er
ro

r
±

SD
M

ea
n

er
ro

r
±

SD

f 1
8
(x

)
9.

04
E
+0

2
±

1.
03

E
+

00
≈

9.
03

E
+0

2
±

2.
59

E
−0

1
9.

22
E
+0

2
±

6.
12

E
+0

0
≈

9.
19

E
+0

2
±

3.
62

E
+0

0
1.

08
E
+0

3
±

2.
27

E
+0

1
≈

1.
06

E
+0

3
±

2.
56

E
+0

1

f 1
9
(x

)
9.

04
E
+0

2
±

8.
40

E
−0

1
≈

9.
03

E
+0

2
±

2.
99

E
−0

1
9.

19
E
+0

2
±

5.
16

E
+0

0
≈

9.
18

E
+0

2
±

3.
13

E
+0

0
1.

19
E
+0

3
±

2.
28

E
+0

1+
1.

05
E

+0
3

±
1.

78
E

+0
1

f 2
0
(x

)
9.

04
E
+0

2
±

8.
47

E
−0

1
≈

9.
03

E
+0

2
±

6.
68

E
−0

1
9.

63
E
+0

2
±

3.
44

E
+0

0
+

9.
17

E
+0

2
±

3.
23

E
+0

0
1.

09
E
+0

3
±

2.
14

E
+0

1
≈

1.
06

E
+0

3
±

2.
01

E
+0

1

To
ta

ls
co

re
JA

D
E

SA
PA

JA
D

E
SA

PA
JA

D
E

SA
PA

+
11

*
17

*
20

*

−
6

*
6

*
3

*

≈
13

*
7

*
7

*

initial population is selected uniformly randomly between
the defined bounds for each variable. For each algorithm and
each test function, 30 independent runs are conducted with
N*10,000 function evaluations (FES) as the termination cri-
terion. N is dimensionality of the test functions domains.

In our experiments, we compared our SAPA algorithm
with four state-of-the-art DE algorithms JADE, jDE, SaDE
and DEahcSPX, and classic DE/rand/1/exp. We follow the
parameter settings in original paper of jDE [21], JADE [20],
SaDE [17,18], and DEahcSPX [28]. For the original DE algo-
rithm with DE/rand/1/exp strategy, the parameters are set to
be F = 0.9, Cr = 0.9 and P(Population size) = N(Dimension)
as used in [28].

In the experiments, the strategy configuration of the SAPA
algorithm is listed as follow: The Ubound and Lbound are
set to 200 and 50, respectively. Initial population size is set to
100. The threshold variable of boundary R is set to 4. Con-
sidering literatures suggested, we set the parameters based
on trial and error. All the experiments were performed on a
computer with Core 2 2.26-GHz CPU, 2-GB memory, and
Windows XP operating system.

4.2 Effect of SAPA on JADE

The results of this section are intended to show how the pro-
posed SAPA scheme can improve the performance of JADE.
In order to show the superiority of the novel presented SAPA,
we compared it with JADE carrying out experiments on the
test suite at dimension N = 30, 50 and 100, respectively.
Table 2 reports the experimental results of the mean error and
standard deviation of the solutions in 30 independent runs.
The best result among those DEs is indicated by Boldface in
the table.

Depending on the relative performance of SAPA and
JADE, we divided the experiments into three classes: the low-
dimensional problems (N = 30), the middle-dimensional
problems (N = 50), and the high- dimensional problems
(N = 100). Specifically, in the 30-dimensional problems,
SAPA attains an equal performance in nearly half of the
functions (fack – fsch , f pn1, f pn2, f1, f8, f14, f15, f18 –
f20) and only in eleven cases achieves a significant perfor-
mance improvement (fsal , fros , f2 – f7, f12, f16 and f17).
In general, SAPA produces the smallest errors, which indi-
cate its ability to locate global minimizers. This is more evi-
dent for the unimodal functions fros(x) and f1 − f5. This
behavior also explains the ability of the proposed SAPA algo-
rithm to improve JADE. The outstanding performance of
SAPA should be due to its two greedy mutation strategies
(DE/current-to-best/1, DE/current-to-pbest/1), which leads
to faster convergence than JADE. Meanwhile, SAPA still
performs slightly better than JADE in multimodal func-
tions in ranking. Especially, in hybrid composition functions
f15 − f20, which are much harder than others since each of

123

6160 Arab J Sci Eng (2014) 39:6149–6174

Ta
bl

e
3

E
xp

er
im

en
ta

lr
es

ul
ts

of
30

-d
im

en
si

on
al

pr
ob

le
m

s
f a

ck
(x

)
–

f 2
0
(x

),
av

er
ag

ed
ov

er
30

in
de

pe
nd

en
tr

un
s

w
ith

30
0,

00
0

FE
S

Fu
nc

tio
n

D
E

D
E

ah
cS

PX
jD

E
Sa

D
E

SA
PA

M
ea

n
er

ro
r
±

SD
M

ea
n

er
ro

r
±

SD
M

ea
n

er
ro

r
±

SD
M

ea
n

er
ro

r
±

SD
M

ea
n

er
ro

r
±

SD

f a
ck

(x
)

2.
00

E
−0

9
±

2.
62

E
−0

9+
2.

66
E
−1

5
±

0.
00

E
+0

0
≈

3.
25

E
−1

5
±

1.
34

E
−1

5+
1.

31
E
−0

1
±

3.
43

E
−0

1+
2.

66
E

−1
5

±
0.

00
E

+0
0

f g
rw

(x
)

2.
93

E
−0

3
±

4.
52

E
−0

3+
1.

96
E
−0

3
±

4.
89

E
−0

3+
0.

00
E
+0

0
±

0.
00

E
+0

0≈
5.

17
E
−0

3
±

7.
81

E
−0

3+
0.

00
E

+0
0

±
0.

00
E

+0
0

f r
as

(x
)

1.
54

E
+0

1
±

7.
69

E
+0

0+
3.

10
E
+0

1
±

1.
98

E
+0

1+
0.

00
E
+0

0
±

0.
00

E
+0

0≈
0.

00
E
+0

0
±

0.
00

E
+0

0≈
0.

00
E

+0
0

±
0.

00
E

+0
0

f s
ch

(x
)

5.
01

E
+0

2
±

2.
55

E
+0

2+
4.

99
E
+0

2
±

3.
21

E
+0

2+
0.

00
E
+0

0
±

0.
00

E
+0

0≈
0.

00
E
+0

0
±

0.
00

E
+0

0≈
0.

00
E

+0
0

±
0.

00
E

+0
0

f s
al

(x
)

1.
92

E
−0

1
±

3.
98

E
−0

2≈
1.

80
E
−0

1
±

4.
08

E
−0

2≈
1.

89
E
−0

1
±

3.
05

E
−0

2≈
2.

46
E
−0

1
±

5.
69

E
−0

2≈
1.

79
E
−0

1
±

4.
06

E
−0

2

f w
h

t(
x)

3.
40

E
+0

2
±

1.
67

E
+0

2+
2.

86
E
+0

2
±

2.
00

E
+0

2+
2.

21
E
+0

1
±

3.
22

E
+0

1−
2.

00
E

+0
1

±
1.

94
E

+0
1–

1.
01

E
+0

2
±

3.
18

E
+0

1

f p
n1

(x
)

4.
85

E
−0

2
±

1.
52

E
−0

1+
2.

21
E
−0

2
±

7.
56

E
−0

2+
1.

57
E
−3

2
±

5.
56

E
−4

8≈
1.

57
E
−3

2
±

5.
56

E
−4

8≈
1.

57
E

−3
2

±
5.

56
E

−4
8

f p
n2

(x
)

1.
67

E
−0

1
±

6.
88

E
−0

1+
1.

62
E
−3

1
±

5.
48

E
−3

1+
1.

34
E
−3

2
±

5.
56

E
−4

8≈
1.

09
E
−0

3
±

3.
35

E
−0

3+
1.

34
E

−3
2

±
5.

56
E

−4
8

f s
ph

(x
)

4.
65

E
−1

7
±

3.
13

E
−1

7+
2.

75
E
−3

1
±

6.
09

E
−3

1+
7.

24
E
−6

2
±

9.
98

E
−6

2+
3.

56
E

−1
31

±
1.

17
E

−1
30

−
1.

45
E
−6

9
±

6.
36

E
−6

9

f r
os

(x
)

1.
42

E
+0

1
±

5.
76

E
+0

1+
3.

89
E
+0

0
±

1.
95

E
+0

1+
2.

19
E
+0

1
±

2.
40

E
+0

1+
3.

32
E
+0

1
±

3.
50

E
+0

1+
1.

17
E

−3
1

±
6.

43
E

−3
1

f 1
(x

)
3.

97
E
−1

4
±

2.
51

E
−1

4+
0.

00
E
+0

0
±

0.
00

E
+0

0≈
0.

00
E
+0

0
±

0.
00

E
+0

0≈
0.

00
E
+0

0
±

0.
00

E
+0

0≈
0.

00
E

+0
0

±
0.

00
E

+0
0

f 2
(x

)
8.

21
E
−0

2
±

7.
23

E
−0

2+
5.

63
E
−0

5
±

4.
84

E
−0

5+
1.

11
E
−0

6
±

1.
96

E
−0

6+
8.

26
E
−0

6
±

1.
65

E
−0

5+
1.

09
E

−2
9

±
3.

84
E

−2
9

f 3
(x

)
3.

93
E
+0

6
±

2.
54

E
+0

6+
1.

42
E
+0

6
±

8.
57

E
+0

5+
1.

98
E
+0

5
±

1.
10

E
+0

5+
5.

16
E
+0

5
±

2.
01

E
+0

5+
6.

32
E

+0
3

±
5.

96
E

+0
3

f 4
(x

)
4.

93
E
+0

1
±

6.
45

E
+0

1+
4.

96
E
+0

0
±

8.
12

E
+0

0+
4.

40
E
−0

2
±

1.
26

E
−0

1+
1.

77
E
+0

2
±

2.
67

E
+0

2+
1.

02
E

−2
7

±
1.

54
E

−2
7

f 5
(x

)
1.

01
E
+0

3
±

4.
29

E
+0

2+
9.

00
E
+0

2
±

3.
20

E
+0

2+
5.

11
E
+0

2
±

4.
40

E
+0

2+
3.

17
E
+0

3
±

6.
27

E
+0

2+
4.

04
E

−0
9

±
1.

09
E

−0
9

f 6
(x

)
6.

12
E
+0

1
±

1.
96

E
+0

2+
3.

35
E
+0

0
±

3.
15

E
+0

0+
2.

43
E
+0

1
±

2.
54

E
+0

1+
5.

35
E
+0

1
±

3.
31

E
+0

1+
7.

46
E

−0
1

±
4.

09
E

+0
0

f 7
(x

)
7.

55
E
−0

3
±

7.
96

E
−0

3≈
6.

59
E
−0

3
±

4.
38

E
−0

3≈
1.

18
E
−0

2
±

7.
78

E
−0

3+
1.

57
E
−0

2
±

1.
38

E
−0

2+
3.

20
E

−0
3

±
4.

67
E

−0
3

f 8
(x

)
2.

09
E
+0

1
±

1.
33

E
−0

1≈
2.

09
E
+0

1
±

1.
12

E
−0

1≈
2.

09
E
+0

1
±

5.
39

E
−0

2≈
2.

09
E
+0

1
±

4.
79

E
−0

2≈
2.

09
E
+0

1
±

5.
66

E
−0

2

f 9
(x

)
2.

19
E
+0

1
±

5.
43

E
+0

0+
2.

14
E
+0

1
±

8.
32

E
+0

0+
0.

00
E

+0
0

±
0.

00
E

+0
0−

9.
94

E
−0

2
±

3.
03

E
−0

1+
1.

34
E
−1

1
±

6.
20

E
−1

2

f 1
0
(x

)
6.

96
E
+0

1
±

5.
42

E
+0

1+
6.

00
E
+0

1
±

4.
28

E
+0

1+
5.

54
E
+0

1
±

8.
46

E
+0

0+
4.

55
E
+0

1
±

1.
03

E
+0

1+
3.

95
E

+0
1

±
6.

16
E

+0
0

f 1
1
(x

)
3.

98
E
+0

1
±

1.
25

E
+0

0+
/

2.
88

E
+0

1
±

1.
87

E
+0

0+
1.

92
E

+0
1

±
2.

53
E

+0
0−

2.
68

E
+0

1
±

1.
18

E
+0

0

f 1
2
(x

)
3.

80
E

+0
3

±
3.

93
E

+0
3≈

/
9.

97
E
+0

3
±

8.
53

E
+0

3+
8.

20
E
+0

4
±

1.
96

E
+0

4+
6.

01
E
+0

3
±

5.
19

E
+0

3

f 1
3
(x

)
3.

19
E
+0

0
±

1.
18

E
+0

0+
/

1.
69

E
+0

0
±

1.
36

E
−0

1−
3.

76
E
+0

0
±

5.
42

E
−0

1+
2.

18
E
+0

0
±

1.
51

E
−0

1

f 1
4
(x

)
1.

28
E
+0

1
±

4.
62

E
−0

1+
/

1.
29

E
+0

1
±

2.
46

E
−0

1+
1.

31
E
+0

1
±

1.
69

E
−0

1+
1.

26
E

+0
1

±
2.

17
E

−0
1

f 1
5
(x

)
4.

04
E
+0

2
±

7.
41

E
+0

1≈
/

4.
00

E
+0

2
±

0.
00

E
+0

0≈
2.

38
E

+0
2

±
3.

78
E

+0
1−

3.
93

E
+0

2
±

7.
39

E
+0

1

f 1
6
(x

)
1.

29
E
+0

2
±

1.
53

E
+0

2≈
/

8.
16

E
+0

1
±

8.
25

E
+0

0≈
7.

21
E

+0
1

±
1.

34
E

+0
1≈

9.
71

E
+0

1
±

1.
01

E
+0

2

f 1
7
(x

)
2.

09
E
+0

2
±

2.
07

E
+0

2+
/

1.
28

E
+0

2
±

1.
00

E
+0

1≈
8.

82
E

+0
1

±
4.

90
E

+0
1−

1.
26

E
+0

2
±

6.
42

E
+0

1

f 1
8
(x

)
9.

09
E
+0

2
±

2.
82

E
+0

0+
/

9.
04

E
+0

2
±

6.
16

E
+0

0≈
8.

23
E

+0
2

±
1.

63
E

+0
0−

9.
03

E
+0

2
±

2.
59

E
−0

1

f 1
9
(x

)
9.

10
e+

02
±

1.
65

e+
00

+
/

9.
04

E
+0

2
±

6.
01

E
+0

0≈
8.

23
E

+0
2

±
1.

70
E

+0
0−

9.
03

E
+0

2
±

2.
99

E
−0

1

f 2
0
(x

)
9.

07
e+

02
±

1.
19

e+
01

≈
/

9.
05

E
+0

2
±

6.
58

E
+0

0≈
8.

23
E

+0
2

±
2.

84
E

+0
0−

9.
03

E
+0

2
±

6.
68

E
−0

1

To
ta

ls
co

re
D

E
D

E
ah

cS
PX

jD
E

Sa
D

E
SA

PA

+
23

15
13

15
*

−
0

0
3

8
*

≈
7

5
14

7
*

123

Arab J Sci Eng (2014) 39:6149–6174 6161

0 0.5 1 1.5 2 2.5 3

x 10
5

10
−40

10
−30

10
−20

10
−10

10
0

10
10

10
20

FES

M
ea

n
fit

ne
ss

: f
(x

)
−

 f(
x*

)

SAPA
JADE
jDE
SaDE
DE

0 0.5 1 1.5 2 2.5 3

x 10
5

10
−1

10
0

10
1

10
2

FES

M
ea

n
fit

ne
ss

: f
(x

)
−

 f(
x*

)

SAPA
JADE
jDE
SaDE
DE

10
−140

10
−120

10
−100

10
−80

10
−60

10
−40

10
−20

10
0

10
20

M
ea

n
fit

ne
ss

: f
(x

)−
f(

x*
)

SAPA
JADE
jDE
SaDE
DE

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

10
−15

10
−10

10
−5

10
0

10
5

FES

M
ea

n
fit

ne
ss

:f(
x)

−
f(

x*
)

SAPA
JADE
jDE
SaDE
DE

10
−30

10
−20

10
−10

10
0

10
10

M
ea

n
fit

ne
ss

: f
(x

)
−

 f(
x*

)

SAPA
JADE
jDE
SaDE
DE

0 0.5 1 1.5 2 2.5 3

x 10
5

10
−10

10
−5

10
0

10
5

FES

M
ea

n
fit

ne
ss

: f
(x

)
−

 f(
x*

)

SAPA
JADE
jDE
SaDE
DE

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

20.8

20.9

21

21.1

21.2

21.3

21.4

21.5

FES

M
ea

n
fit

ne
ss

:f(
x)

−
f(

x*
)

SAPA
JADE
jDE
SaDE
data5

0 0.5 1 1.5 2 2.5 3 3.5
x 10

5

0

100

200

300

400

500

600

700

800

900

1000

FES

M
ea

n
fit

ne
ss

:f(
x)

−
f(

x*
)

SAPA
JADE
JDE
SaDE
DE

0 0.5 1 1.5 2 2.5 3

x 10
5

FES

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

FES

(a) (b)

(d)(c)

(e) (f)

(h)(g)

Fig. 2 Performance of the algorithms for eight 30-dimensional benchmark functions. a fros , b fsal , c fsph , d fack , e f4, f f5, g f8, h f10

123

6162 Arab J Sci Eng (2014) 39:6149–6174

them is composed of 10 sub-functions, SAPA obtains statis-
tically significant better performance in two cases (f16, f17),
and attains similar performance in the rest. Obviously, SAPA
could balance exploration and exploitation on these bench-
mark functions by combining different mutation strategies
with different control parameter settings.

In the cases of 50-dimensional problems, SAPA provides
either substantial improvement in four unimodal, ten multi-
modal and three hybrid composition functions (fros , f3 − f5,
fack , fsch , fgrw, fsal , f pn1, f6, f7, f10, f12, f14 and f15, f16,
respectively) or an equal performance (fras , f pn2, f1, f8,
f11, f18, f19), while in six test functions the proposed SAPA
deteriorates performance slightly (fwht , fsch , f2, f9, f13 and
f17). Furthermore, compare with 30- and 50-dimensional test
function versions, SAPA achieves the best performance in
the case of high- dimensional problems (N = 100). To be
specific, SAPA supplies the best performance on the twenty
functions, and only achieves a inferior performance on three
multimodal functions. The results show that SAPA is effec-
tive and efficient even for high-dimensional problem opti-
mization. Furthermore, on complicated or high- dimensional
problems, SAPA exhibits more competitive power due to
duly tuning population structure and right activating proper
mutation strategy.

For a thorough comparison, the t test has been carried
out to compare SAPA with its competitor algorithms in this
paper, respectively. Table 2 presents the total score on every
function of this two-tailed test with a significance level of
0.05 between the SAPA and JADE. Rows “+ (Better),” “=
(Same),” and “− (Worse)” give the number of functions that
the SAPA performs significantly better than, almost the same
as, and significantly worse than the compared algorithm on
fitness values in 30 runs, respectively. As confirmed in t
test, the SAPA in general offers much better performance
than the JADE algorithm. Moreover, the SAPA algorithm
is useful for the high-dimensional problems, which can effi-
ciently adjust the population structure and guide the evolution
process toward more promising solutions. The results show
that the SAPA algorithm has a very competitive performance.
The convergence curves of SAPA and JADE shown in next
part justify effectiveness of SAPA.

4.3 Comparison with Different DEs

In this section, we compare our SAPA algorithm with origi-
nal DE algorithm and some state-of-the-art DE variants (i.e.,
DEahcSPX, jDE, SaDE). All the results of DEahcSPX are
from [28]. The symbol ”/” means no result. We first evaluate
the performance of different DEs over the 30-dimensional
version of our test suite. Table 3 shows the experimental
results of 30-dimensional problems fack – f20, averaged
over 30 independent runs with 300,000 function evaluations

(FES). Figure 2 illustrates the performance of the algorithms
for four 30-dimensional benchmark functions.

From the Table 3 and Fig. 2, the SAPA algorithm provides
the best performance on the fack – fsal , f pn1, f pn2, fros

– f8, f10, and f14, then ranks the second on the fsph and
f9, f11– f13, f15, and f17 – f20. The jDE algorithm offers
the best performance on the f9 and f13. SaDE supplies the
best performance on the fsph , fwht , f11, f15, and f17 – f20.
The algorithms can be sorted by average ranking into the
following order: SAPA, jDE, SaDE, DEahcSPX, and DE.
The best average ranking is obtained by the SAPA algorithm,
which outperformed the other four algorithms.

More specifically, on the first seven unimodal functions
(fsph , fros , and f1 – f5), SaDE outperforms SAPA on func-
tion of fsph , while SAPA performs better than original DE,
DEahcSPX, jDE, SaDE on the rest of the unimodal func-
tions. The outstanding performance of SAPA should be due
to its dynamic population strategy, which leads to very fast
convergence. On the second seventeen multimodal functions
(fack – f pn2, f6 – f14), SAPA achieves a significantly better
performance on fack – fsal , f pn1, f pn2, f6 – f8, f10, and f14,
SaDE and jDE outperforms SAPA on test function f pn2 f9,
f11, and f13, respectively. SaDE performs best on all hybrid
composition functions owing to multiple mutation strategies.
Besides others cannot be better than SAPA on any test func-
tions. Thus, SAPA is the winner on multimodal functions.
This might be due to the fact that SAPA implements the
adaptive population tuning scheme, which can help the algo-
rithm to search the optimum as well as maintaining a higher
convergence speed when dealing with multimodal rotated
functions. It is clear that SAPA works best or second best
in most cases and achieves overall better performance than
other competitive algorithms.

We further evaluate the proposed SAPA on the 50-
dimensional version of the set of benchmark functions.
Tables 4 summarizes the experimental results of 50-
dimensional problems fack – f20, averaged over 30 indepen-
dent runs with 500,000 FES. Figure 3 indicates the perfor-
mance of the algorithms for four 50-dimensional benchmark
functions.

From the Table 4 and Fig. 3, the SAPA provides the best
performance on the fack – fras , fsal , f pn1 – f8, f10, f12,
f14, and f18 – f20, then ranks the second on the fsch , f9,
f11, f13, and f15 – f17. jDE offers the best performance on
the fsch , fwht , f9, f13, and f15. The results show that SAPA
have good ability of convergence speed.

To be specific, on the first seven unimodal functions (fsph ,
fros , and f1 – f5), SAPA is the best among the five meth-
ods. On the second seventeen multimodal functions (fack –
f pn2, f6 – f14), although it worked slightly weaker on some
functions, the SAPA in general offered much improved per-
formance than all the compared DEs. It performs much better
on the fack – fras , fsal , f pn1, f pn2, f6 – f8, f10, f12, and f14

123

Arab J Sci Eng (2014) 39:6149–6174 6163

Ta
bl

e
4

E
xp

er
im

en
ta

lr
es

ul
ts

of
50

-d
im

en
si

on
al

pr
ob

le
m

s
f a

ck
(x

)
–

f 1
0
(x

),
av

er
ag

ed
ov

er
30

in
de

pe
nd

en
tr

un
s

w
ith

50
0,

00
0

FE
S

Fu
nc

tio
n

D
E

D
E

ah
cS

PX
jD

E
Sa

D
E

SA
PA

M
ea

n
er

ro
r
±

SD
M

ea
n

er
ro

r
±

SD
M

ea
n

er
ro

r
±

SD
M

ea
n

er
ro

r
±

SD
M

ea
n

er
ro

r
±

SD

f a
ck

(x
)

2.
69

E
−0

2
±

7.
63

E
−0

3+
1.

23
E
−0

5
±

8.
16

E
−0

6+
5.

86
E
−1

5
±

1.
08

E
−1

5+
1.

18
E
+0

0
±

5.
99

E
−0

1+
4.

79
E

−1
5

±
1.

77
E

−1
5

f g
rw

(x
)

6.
35

E
−0

2
±

1.
62

E
−0

1+
3.

26
E
−0

3
±

5.
58

E
−0

3+
0.

00
E
+0

0
±

0.
00

E
+0

0
≈

1.
15

E
−0

2
±

1.
94

E
−0

2+
0.

00
E

+0
0

±
0.

00
E

+0
0

f r
as

(x
)

6.
32

E
+0

1
±

2.
53

E
+0

1+
3.

78
E
+0

1
±

8.
93

E
+0

0+
0.

00
E
+0

0
±

0.
00

E
+0

0
≈

7.
20

E
−0

1
±

9.
02

E
−0

1+
0.

00
E

+0
0

±
0.

00
E

+0
0

f s
ch

(x
)

1.
17

E
+0

3
±

4.
25

E
+0

2+
9.

24
E
+0

2
±

1.
88

E
+0

2+
1.

81
E

−1
1

±
0.

00
E

+0
0−

3.
94

E
+0

0
±

2.
16

E
+0

1+
1.

75
E
+0

0
±

1.
97

E
+0

1

f s
al

(x
)

1.
78

E
+0

0
±

2.
00

E
−0

1+
6.

80
E
−0

1
±

1.
40

E
−0

1+
2.

26
E
−0

1
±

4.
49

E
−0

2
≈

5.
19

E
−0

1
±

7.
14

E
−0

2+
2.

09
E

−0
1

±
3.

05
E

−0
2

f w
h

t(
x)

1.
63

E
+0

5
±

3.
89

E
+0

5+
1.

61
E
+0

3
±

1.
43

E
+0

2+
7.

67
E

+0
1

±
1.

40
E

+0
2−

2.
18

E
+0

2
±

2.
20

E
+0

2−
2.

87
E
+0

2
±

1.
00

E
+0

2

f p
n1

(x
)

2.
87

E
−0

2
±

6.
83

E
−0

2+
3.

12
E
−0

3
±

1.
28

E
−0

2+
9.

42
E
−3

3
±

2.
78

E
−4

8
≈

6.
02

E
−0

2
±

1.
47

E
−0

1+
9.

42
E

−3
3

±
2.

78
E

−4
8

f p
n2

(x
)

1.
24

E
−0

1
±

4.
35

E
−0

1+
3.

64
E
−0

3
±

2.
74

E
−0

3+
1.

34
E
−3

2
±

5.
56

E
−4

8
≈

1.
15

E
−0

1
±

4.
04

E
−0

1+
1.

34
E

−3
2

±
5.

56
E

−4
8

f s
ph

(x
)

5.
62

E
−0

2
±

9.
42

E
−0

2+
8.

38
E
−0

9
±

2.
20

E
−0

8+
2.

81
E
−7

4
±

6.
06

E
−7

4+
1.

47
E
−1

18
±

6.
31

E
−1

18
+

1.
39

E
−1

85
±

0.
00

E
+0

0

f r
os

(x
)

1.
45

E
+1

0
±

2.
63

E
+1

0+
2.

03
E
+0

2
±

2.
12

E
+0

2+
3.

46
E
+0

1
±

2.
52

E
+0

1+
6.

46
E
+0

1
±

4.
11

E
+0

1+
2.

65
E

−0
1

±
1.

01
E

+0
0

f 1
(x

)
1.

75
E
−0

2
±

1.
24

E
−0

2+
1.

16
E
−0

8
±

1.
48

E
−0

8+
0.

00
E
+0

0
±

0.
00

E
+0

0
≈

1.
00

E
−2

9
±

3.
84

E
−2

9+
0.

00
E

+0
0

±
0.

00
E

+0
0

f 2
(x

)
2.

79
E
+0

4
±

1.
23

E
+0

4+
1.

73
E
+0

3
±

4.
84

E
+0

2+
1.

21
E
−0

2
±

1.
04

E
−0

2+
6.

65
E
−0

2
±

5.
75

E
−0

2+
1.

00
E

−2
6

±
1.

17
E

−2
6

f 3
(x

)
4.

35
E
+0

8
±

2.
62

E
+0

8+
1.

97
E
+0

7
±

7.
41

E
+0

6+
4.

86
E
+0

5
±

2.
29

E
+0

5+
9.

58
E
+0

5
±

3.
83

E
+0

5+
1.

51
E

+0
4

±
6.

34
E

+0
3

f 4
(x

)
5.

04
E
+0

4
±

2.
52

E
+0

4+
1.

65
E
+0

4
±

3.
78

E
+0

3+
5.

17
E
+0

2
±

7.
55

E
+0

2+
6.

44
E
+0

3
±

3.
51

E
+0

3+
1.

93
E

−0
3

±
3.

21
E

−0
3

f 5
(x

)
5.

76
E
+0

3
±

2.
12

E
+0

3+
2.

71
E
+0

3
±

7.
57

E
+0

2+
3.

27
E
+0

3
±

5.
80

E
+0

2+
8.

12
E
+0

3
±

1.
19

E
+0

3+
6.

08
E

+0
2

±
3.

80
E

+0
2

f 6
(x

)
1.

84
E
+0

3
±

1.
40

E
+0

3+
2.

44
E
+0

2
±

3.
68

E
+0

2+
3.

82
E
+0

1
±

2.
69

E
+0

1+
1.

04
E
+0

2
±

6.
00

E
+0

1+
1.

32
E

−0
1

±
7.

27
E

−0
1

f 7
(x

)
1.

43
E
+0

0
±

5.
67

E
−0

2+
2.

25
E
−0

2
±

2.
75

E
−0

2+
7.

94
E
−0

3
±

1.
28

E
−0

2+
7.

96
E
−0

3
±

1.
12

E
−0

2+
3.

19
E

−0
3

±
7.

30
E

−0
3

f 8
(x

)
2.

11
E
+0

1
±

2.
93

E
−0

2
≈

2.
11

E
+0

1
±

3.
63

E
−0

2
≈

2.
11

E
+0

1
±

3.
44

E
−0

2
≈

2.
11

E
+0

1
±

3.
80

E
−0

2
≈

2.
11

E
+0

1
±

2.
12

E
−0

1

f 9
(x

)
7.

44
E
+0

1
±

2.
67

E
+0

1+
5.

56
E
+0

1
±

1.
79

E
+0

1+
0.

00
E

+0
0

±
0.

00
E

+0
0−

1.
82

E
+0

0
±

1.
59

E
+0

0+
4.

89
E
−1

2
±

2.
60

E
−1

2

f 1
0
(x

)
3.

24
E
+0

2
±

1.
98

E
+0

1+
3.

55
E
+0

2
±

2.
60

E
+0

1+
9.

67
E
+0

1
±

1.
58

E
+0

1+
1.

29
E
+0

2
±

2.
15

E
+0

1+
3.

74
E

+0
1

±
8.

00
E

+0
0

f 1
1
(x

)
7.

31
E
+0

1
±

1.
19

E
+0

0+
/

5.
42

E
+0

1
±

2.
94

E
+0

0+
3.

95
E

+0
1

±
4.

07
E

+0
0−

5.
25

E
+0

1
±

2.
05

E
+0

0

f 1
2
(x

)
2.

04
E
+0

4
±

1.
54

E
+0

4+
/

2.
71

E
+0

4
±

2.
10

E
+0

4+
2.

21
E
+0

4
±

1.
46

E
+0

4+
7.

63
E

+0
3

±
7.

10
E

+0
3

f 1
3
(x

)
4.

96
E
+0

0
±

1.
01

E
+0

0+
/

3.
06

E
+0

0
±

1.
93

E
−0

1−
8.

55
E
+0

0
±

1.
65

E
+0

0+
4.

12
E
+0

0
±

2.
41

E
−0

1

f 1
4
(x

)
2.

30
E
+0

1
±

1.
34

E
−0

1+
/

2.
27

E
+0

1
±

2.
02

E
−0

1+
2.

22
E
+0

1
±

3.
28

E
−0

1+
2.

20
E

+0
1

±
2.

65
E

−0
1

f 1
5
(x

)
3.

38
E
+0

2
±

1.
01

E
+0

2
≈

/
2.

80
E

+0
2

±
1.

01
E

+0
2

≈
3.

91
E
+0

2
±

5.
49

E
+0

1−
3.

26
E
+0

2
±

9.
80

E
+0

1

f 1
6
(x

)
2.

25
E
+0

2
±

7.
87

E
+0

1+
/

8.
12

E
+0

1
±

1.
15

E
+0

1+
9.

70
E
+0

1
±

7.
44

E
+0

1+
6.

89
E
+0

1
±

3.
16

E
+0

1

f 1
7
(x

)
2.

89
E
+0

2
±

4.
93

E
+0

1+
/

1.
77

E
+0

2
±

2.
09

E
+0

1+
8.

35
E

+0
1

±
1.

46
E

+0
1−

1.
39

E
+0

2
±

3.
24

E
+0

1

f 1
8
(x

)
9.

23
E
+0

2
±

3.
82

E
+0

0+
/

9.
23

E
+0

2
±

1.
98

E
+0

0+
9.

85
e+

02
±

1.
04

E
+0

1+
9.

19
E

+0
2

±
3.

62
E

+0
0

f 1
9
(x

)
9.

21
E
+0

2
±

4.
57

E
+0

0+
/

9.
18

E
+0

2
±

3.
55

E
+0

0
≈

9.
92

E
+0

2
±

1.
40

E
+0

1+
9.

18
E

+0
2

±
3.

13
E

+0
0

f 2
0
(x

)
9.

22
E
+0

2
±

5.
97

E
+0

0+
/

9.
20

E
+0

2
±

1.
62

E
+0

0+
9.

85
E
+0

2
±

1.
28

E
+0

1+
9.

17
E

+0
2

±
3.

23
E

+0
0

To
ta

ls
co

re
D

E
D

E
ah

cS
PX

jD
E

Sa
D

E
SA

PA

+
28

19
17

25
*

−
0

0
4

4
*

≈
2

1
9

1
*

123

6164 Arab J Sci Eng (2014) 39:6149–6174

0 1 2 3 4 5

x 10
5

10
−15

10
−10

10
−5

10
0

10
5

FES

M
ea

n
fit

ne
ss

: f
(x

)
−

 f(
x*

)

SAPA
JADE
jDE
SaDE
DE

0 1 2 3 4 5

x 10
5

10
−40

10
−30

10
−20

10
−10

10
0

10
10

FES

M
ea

n
fit

ne
ss

: f
(x

)
−

 f(
x*

)

SAPA
JADE
jDE
SaDE
DE

0 1 2 3 4 5 6
x 10

5

10
−200

10
−150

10
−100

10
−50

10
0

10
50

FES

M
ea

n
fit

ne
ss

:f(
x)

−
f(

x*
)

SAPA
JADE
jDE
SaDE
DE

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

FES

M
ea

n
fit

ne
ss

:f(
x)

−
f(

x*
)

SAPA
JADE
jDE
SaDE
DE

0 1 2 3 4 5 6
x 10

5

10
−4

10
−2

10
0

10
2

10
4

10
6

FES

M
ea

n
fit

ne
ss

:f(
x)

−
f(

x*
)

SAPA
JADE
jDE
SaDE
data5

0 1 2 3 4 5
x 10

5

10
2

10
3

10
4

10
5

FES

M
ea

n
fit

ne
ss

: f
(x

)
−

 f(
x*

)

SAPA
JADE
jDE
SaDE
DE

0 1 2 3 4 5
x 10

5

10
0

10
2

10
4

10
6

10
8

10
10

10
12

FES

M
ea

n
fit

ne
ss

: f
(x

)
−

 f(
x*

) SAPA
JADE
jDE
SaDE
DE

0 1 2 3 4 5 6

x 10
5

10
1

10
2

10
3

10
4

FES

M
ea

n
fit

ne
ss

:f(
x)

−
f(

x*
)

SAPA
JADE
jDE
SaDE
data5

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3 Performance of the algorithms for eight 50-dimensional benchmark functions. a fgrw , b f pn1, c fsph , d f1, e f4, f f5, g f6, h f10

123

Arab J Sci Eng (2014) 39:6149–6174 6165

Ta
bl

e
5

E
xp

er
im

en
ta

lr
es

ul
ts

of
10

0-
D

im
en

si
on

al
pr

ob
le

m
s

f a
ck

(x
)

–
f 2

0
(x

),
av

er
ag

ed
ov

er
30

in
de

pe
nd

en
tr

un
s

w
ith

1,
00

0,
00

0
FE

S

Fu
nc

tio
n

D
E

D
E

ah
cS

PX
jD

E
Sa

D
E

SA
PA

M
ea

n
er

ro
r
±

SD
M

ea
n

er
ro

r
±

SD
M

ea
n

er
ro

r
±

SD
M

ea
n

er
ro

r
±

SD
M

ea
n

er
ro

r
±

SD

f a
ck

(x
)

7.
88

E
+0

0
±

7.
16

E
−0

1+
1.

43
E
+0

0
±

2.
37

E
−0

1+
1.

23
E
−1

4
±

2.
45

E
−1

5+
2.

76
E
+0

0
±

4.
37

E
−0

1+
4.

90
E

−1
5

±
2.

68
E

−1
5

f g
rw

(x
)

2.
75

E
+0

1
±

7.
51

E
+0

0+
1.

33
E
+0

0
±

1.
24

E
−0

1+
0.

00
E

+0
0

±
0.

00
E

+0
0−

3.
24

E
−0

2
±

5.
39

E
−0

2+
1.

72
E
−0

3
±

4.
24

E
−0

3

f r
as

(x
)

7.
23

E
+0

2
±

5.
24

E
+0

1+
3.

49
E
+0

2
±

5.
45

E
+0

1+
0.

00
E
+0

0
±

0.
00

E
+0

0≈
1.

07
E
+0

1
±

3.
15

E
+0

0+
0.

00
E

+0
0

±
0.

00
E

+0
0

f s
ch

(x
)

2.
50

E
+0

4
±

2.
64

E
+0

3+
2.

22
E
+0

4
±

2.
94

E
+0

3+
3.

94
E

+0
0

±
2.

16
E

+0
1≈

9.
08

E
+0

1
±

1.
01

E
+0

2+
4.

10
E
+0

0
±

2.
09

E
+0

0

f s
al

(x
)

1.
09

E
+0

1
±

6.
85

E
−0

1+
2.

51
E
+0

0
±

4.
21

E
−0

1+
4.

69
E
−0

1
±

4.
66

E
−0

2+
1.

51
E
+0

0
±

3.
18

E
−0

1+
3.

93
E

−0
1

±
4.

49
E

−0
2

f w
h

t(
x)

4.
69

E
+1

5
±

5.
21

E
+1

5+
4.

11
E
+1

0
±

5.
77

E
+1

0+
2.

92
E
+0

2
±

2.
05

E
+0

2+
2.

04
E
+0

3
±

9.
03

E
+0

2+
2.

50
E

+0
2

±
2.

63
E

+0
2

f p
n1

(x
)

5.
72

E
+0

5
±

7.
46

E
+0

5+
3.

45
E
+0

0
±

2.
80

E
+0

0+
4.

71
E

−3
3

±
1.

39
E

−4
8−

3.
50

E
−0

2
±

7.
50

E
−0

2+
6.

21
E
−0

3
±

1.
89

E
−0

2

f p
n2

(x
)

3.
57

E
+0

6
±

1.
30

E
+0

6+
6.

34
E
+0

1
±

2.
92

E
+0

1+
6.

44
E
−3

2
±

1.
91

E
−3

3−
2.

04
E

−3
2

±
7.

22
E

−3
3−

7.
32

E
−0

4
±

2.
78

E
−0

3

f s
ph

(x
)

3.
23

E
+0

3
±

1.
77

E
+0

3+
4.

61
E
+0

1
±

7.
23

E
+0

1+
1.

51
E
−9

7
±

3.
10

E
−9

7+
1.

28
E
−9

3
±

3.
76

E
−9

3+
1.

45
E

−1
88

±
0.

00
E

+0
0

f r
os

(x
)

2.
43

E
+0

8
±

1.
99

E
+0

8+
1.

32
E
+0

5
±

1.
36

E
+0

5+
1.

08
E
+0

2
±

3.
58

E
+0

1+
1.

57
E
+0

2
±

5.
32

E
+0

1+
7.

97
E

−0
1

±
1.

62
E

+0
0

f 1
(x

)
1.

91
E
−2

7
±

1.
08

E
−2

7+
/

1.
53

E
−2

9
±

4.
02

E
−2

9+
3.

37
E
−3

0
±

9.
01

E
−3

0+
0.

00
E

+0
0

±
0.

00
E

+0
0

f 2
(x

)
4.

46
E
+0

3
±

9.
30

E
+0

2+
/

2.
88

E
+0

1
±

1.
50

E
+0

1+
1.

23
E
+0

2
±

4.
64

E
+0

1+
3.

87
E

−1
5

±
1.

05
E

−1
4

f 3
(x

)
7.

35
E
+0

6
±

2.
10

E
+0

6+
/

2.
10

E
+0

6
±

4.
43

E
+0

5+
5.

02
E
+0

6
±

1.
01

E
+0

6+
1.

66
E

+0
5

±
6.

20
E

+0
4

f 4
(x

)
3.

45
E
+0

4
±

8.
54

E
+0

3+
/

2.
66

E
+0

4
±

7.
80

E
+0

3+
5.

40
E
+0

4
±

1.
06

E
+0

4+
1.

98
E

+0
3

±
1.

08
E

+0
3

f 5
(x

)
3.

67
E
+0

3
±

7.
16

E
+0

2+
/

7.
40

E
+0

3
±

1.
25

E
+0

3+
1.

60
E
+0

4
±

2.
30

E
+0

3+
2.

53
E

+0
3

±
6.

33
E

+0
2

f 6
(x

)
1.

24
E
+0

2
±

4.
05

E
+0

1+
/

8.
59

E
+0

1
±

3.
81

E
+0

1+
2.

18
E
+0

2
±

8.
74

E
+0

1+
1.

59
E

+0
0

±
1.

98
E

+0
0

f 7
(x

)
1.

17
E
+0

4
±

4.
62

E
−1

2+
/

1.
17

E
+0

4
±

2.
27

E
−1

2+
1.

08
E
−0

2
±

1.
48

E
−0

2+
3.

69
E

−0
3

±
4.

74
E

−0
3

f 8
(x

)
2.

13
E
+0

1
±

2.
50

E
−0

2+
/

2.
13

E
+0

1
±

2.
54

E
−0

2+
2.

13
E
+0

1
±

3.
04

E
−0

2+
2.

11
E

+0
1

±
3.

59
E

−0
1

f 9
(x

)
9.

60
E
+0

1
±

6.
84

E
+0

1+
/

0.
00

E
+0

0
±

0.
00

E
+0

0≈
1.

06
E
+0

0
±

1.
17

E
+0

0+
5.

92
E
−1

7
±

3.
24

E
−1

6

f 1
0
(x

)
8.

21
E
+0

2
±

2.
61

E
+0

1+
/

2.
04

E
+0

2
±

2.
93

E
+0

1+
2.

97
E
+0

2
±

3.
09

E
+0

1+
1.

61
E

+0
2

±
2.

01
E

+0
1

f 1
1
(x

)
1.

61
E
+0

2
±

1.
72

E
+0

0+
/

1.
29

E
+0

2
±

3.
65

E
+0

0+
1.

15
E

+0
2

±
7.

31
E

+0
0−

1.
24

E
+0

2
±

3.
68

E
+0

0

f 1
2
(x

)
6.

30
E
+0

4
±

1.
01

E
+0

4+
/

1.
28

E
+0

5
±

1.
53

E
+0

5+
4.

32
E
+0

6
±

4.
09

E
+0

5+
5.

32
E

+0
4

±
2.

31
E

+0
4

f 1
3
(x

)
6.

91
E
+0

1
±

4.
12

E
+0

0+
/

6.
31

E
+0

0
±

5.
07

E
−0

1−
3.

32
E
+0

1
±

1.
87

E
+0

0+
9.

54
E
+0

0
±

4.
09

E
−0

1

f 1
4
(x

)
4.

76
E
+0

1
±

1.
23

E
−0

1+
/

4.
66

E
+0

1
±

4.
42

E
−0

1+
4.

72
E
+0

1
±

2.
53

E
−0

1+
4.

59
E

+0
1

±
3.

86
E

−0
1

f 1
5
(x

)
2.

44
E
+0

2
±

8.
71

E
+0

1+
/

2.
00

E
+0

2
±

0.
00

E
+0

0−
4.

82
E
+0

2
±

2.
38

E
+0

1+
2.

07
E
+0

2
±

2.
00

E
+0

1

f 1
6
(x

)
2.

45
E
+0

2
±

6.
33

E
+0

0+
/

8.
20

E
+0

1
±

8.
97

E
+0

0+
8.

16
E
+0

1
±

8.
07

E
+0

0+
5.

80
E

+0
1

±
3.

80
E

+0
0

f 1
7
(x

)
2.

73
E
+0

2
±

6.
33

E
+0

0+
/

1.
88

E
+0

2
±

1.
02

E
+0

1+
9.

09
E
+0

1
±

9.
43

E
+0

0+
1.

21
E

+0
2

±
1.

05
E

+0
1

f 1
8
(x

)
1.

01
e+

03
±

2.
98

e+
00

−
/

1.
04

E
+0

3
±

1.
72

E
+0

1−
1.

11
E
+0

3
±

1.
18

E
+0

2+
1.

06
E
+0

3
±

2.
56

E
+0

1

f 1
9
(x

)
1.

01
E

+0
3

±
3.

02
E

+0
0−

/
1.

04
e+

03
±

1.
41

e+
01

−
1.

06
E
+0

3
±

1.
50

E
+0

2+
1.

05
E
+0

3
±

1.
78

E
+0

1

f 2
0
(x

)
1.

01
E

+0
3

±
3.

74
E

+0
0−

/
1.

05
E
+0

3
±

1.
95

E
+0

1≈
1.

12
E
+0

3
±

1.
29

E
+0

2+
1.

06
E
+0

3
±

2.
01

E
+0

1

To
ta

ls
co

re
D

E
D

E
ah

cS
PX

jD
E

Sa
D

E
SA

PA
+

27
10

19
28

*
−

3
0

7
2

*
≈

0
0

4
0

*

123

6166 Arab J Sci Eng (2014) 39:6149–6174

0 2 4 6 8 10
x 10

5

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

FES

M
ea

n
fit

ne
ss

: f
(x

)
−

 f(
x*

)
SAPA
JADE
jDE
SaDE
DE

(a)

0 2 4 6 8 10
x 10

5

10
−15

10
−10

10
−5

10
0

10
5

FES

M
ea

n
fit

ne
ss

: f
(x

)
−

 f(
x*

)

SAPA
JADE
jDE
SaDE
DE

(b)

Fig. 4 Performance of the algorithms for two 100-dimensional benchmark functions. a fros , b fras

and attains slightly worse performances than the best solu-
tions on the fsch , fwht , f9, f11, and f13. The t test is also
summarized in the last three rows of Table 4. In fact, SAPA
performs better than DE, DEahcSPX, jDE, and SaDE on 28,
19, 17, and 25 functions, respectively. Thus, SAPA is better
than other competitors in 50-dimensional problems.

Higher dimensional problems are typically harder to
solve, and a common practice is to employ a larger popu-
lation size. In order to test the ability of the SAPA in high-
dimensional problems, we compared it with other DEs in
100-dimensional version of our test functions. In Table 5,
we summarize the experimental results of 100-dimensional
problems, averaged over 30 runs with 1,000,000 FES.
Figure 4 illustrates the performance of the algorithms for
two 100-dimensional benchmark functions.

Besides, similar to experiment in 100-dimensional prob-
lems, we also test our proposed algorithm with different DEs
in 200-dimensional benchmark functions. However, some
functions are up to 100 dimensionality. We test algorithms
on a part of test suite. The experimental results of 200-
dimensional problems fack – fros , averaged over 30 runs
with 2,000,000 FES are summarized in Table 6. The perfor-
mance graph of DEs for two 200-dimensional functions are
plotted in Fig. 5.

From the Table 5 and Fig. 4, the SAPA provides the best
performance on all the unimodal functions, fack , fras , fsal ,
fwht , f6– f8, f10, f12, f14 and f16– f17, and then ranks the
second on the fgrw, fsch , f9, f11, f13 and f15. The jDE offers
the best performance on the fgrw, fsch , f pn1, f13, f15, f18,
and f19. SaDE achieves the best performance on the f pn2 and
f11. The results show that SAPA and jDE have good ability of
convergence speed. Moreover, the results presented in Table 6
and Fig. 5 reveals that newly proposed SAPA algorithm is
better than the other four DEs. More exactly, SAPA achieves
a significantly better performance on unimodal functions of
fsph , fros , f2 – f5 and on multimodal functions of fgrw,
fras , fsal , fwht , f9 and f13, then ranks the second on the
fack , fsch , f pn1, f pn2, f1 and f6.

In the last three rows of Table 6, t test is also presented.
In fact, SAPA performs better than DE, DEahcSPX, jDE,
and SaDE on 17, 10, 13, and 14 out of 17 test functions,
respectively. Hence, SAPA exhibits the highest performance
in high-dimensional problems. Comparing the results and the
convergence graphs, among these DE algorithms, the jDE can
converge to the best solution found so far very quickly though
it is easy to get stuck in local optima. The SaDE has good
global search ability and slow convergence speed. The DE
and the DEahcSPX cannot perform well on all the functions.
The SAPA has good local search ability and global search
ability at the same time.

4.4 Comparison with Other Evolutionary Computation

This subsection provides a performance comparison between
the proposed algorithm and some other hybrid GAs. Two GA
models, minimal generation gap (MGG) [30] and generalized
generation gap (G3) [31] have drawn much attention. Over
the past few years, substantial research effort has been spent
to develop more sophisticated crossover operations for GA
and many outstanding schemes have been proposed, such
as unimodal normal distribution crossover (UNDX) [32],
simplex crossover (SPX) [33], and parent centric crossover
(PCX) [31]. In relative literature, experimental results have
shown that UNDX and SPX perform best with the MGG and
PCX performs best with the G3 generational models. In this
experiment therefore our proposed algorithm is compared
with algorithms MGG+UNDX, G3+PCX, and MGG+SPX
whose results are from [28]. The experimental results of 30-
dimensional problems fack – f10, averaged over 30 runs with
300,000 FES are shown in Table 7.

In our experiment, MGG model was set up with P = 300,
λ = 4 offspring, generated from μ parents, where μ = 6 is
used for UNDX and μ = 3 is used for SPX. For G3 model,
P = 100, λ = 2, and μ = 3 is used. From the Table 7, the
MGG+SPX algorithm could not achieve the target accuracy

123

Arab J Sci Eng (2014) 39:6149–6174 6167

Ta
bl

e
6

E
xp

er
im

en
ta

lr
es

ul
ts

of
20

0-
di

m
en

si
on

al
pr

ob
le

m
s

f a
ck

(x
)

–
f 2

0
(x

),
av

er
ag

ed
ov

er
30

in
de

pe
nd

en
tr

un
s

w
ith

2,
00

0,
00

0
FE

S

Fu
nc

tio
n

D
E

D
E

ah
cS

PX
jD

E
Sa

D
E

SA
PA

M
ea

n
er

ro
r
±

SD
M

ea
n

er
ro

r
±

SD
M

ea
n

er
ro

r
±

SD
M

ea
n

er
ro

r
±

SD
M

ea
n

er
ro

r
±

SD

f a
ck

(x
)

1.
33

E
+0

1
±

1.
43

E
−0

1+
7.

78
E
+0

0
±

2.
69

E
−0

1+
4.

03
E

−1
3

±
1.

33
E

−1
2−

5.
31

E
+0

0
±

6.
64

E
−0

1+
1.

79
E
+0

0
±

2.
45

E
−0

1

f g
rw

(x
)

1.
98

E
+0

3
±

8.
32

E
+0

1+
5.

48
E
+0

1
±

7.
23

E
+0

0+
3.

78
E
−0

2
±

1.
51

E
−0

1+
1.

61
E
−0

1
±

1.
96

E
−0

1+
5.

74
E

−0
4

±
3.

14
E

−0
3

f r
as

(x
)

1.
37

E
+0

3
±

5.
87

E
+0

1+
1.

48
E
+0

3
±

7.
63

E
+0

1+
2.

94
E
−1

2
±

1.
34

E
−1

1+
5.

65
E
+0

1
±

7.
54

E
+0

1+
2.

50
E

−1
3

±
3.

23
E

−1
3

f s
ch

(x
)

5.
48

E
+0

4
±

1.
42

E
+0

3+
5.

21
E
+0

4
±

1.
21

E
+0

3+
3.

94
E

+0
0

±
2.

16
E

+0
1−

1.
85

E
+0

3
±

5.
30

E
+0

2+
1.

18
E
+0

1
±

4.
76

E
+0

1

f s
al

(x
)

2.
95

E
+0

1
±

1.
26

E
+0

0+
1.

34
E
+0

1
±

3.
22

E
−0

1+
1.

03
E
+0

0
±

2.
07

E
−0

1+
4.

24
E
+0

0
±

8.
51

E
−0

1+
1.

07
E

+0
0

±
1.

14
E

−0
1

f w
h

t(
x)

2.
63

E
+1

8
±

8.
25

E
+1

7+
3.

46
E
+1

3
±

1.
33

E
+1

3+
5.

36
E
+0

3
±

5.
20

E
+0

3+
3.

40
E
+0

4
±

9.
92

E
+0

3+
4.

99
E

+0
3

±
4.

85
E

+0
3

f p
n1

(x
)

2.
53

E
+0

8
±

5.
60

E
+0

7+
1.

93
E
+0

1
±

4.
84

E
+0

0+
1.

55
E

−0
3

±
6.

25
E

−0
3−

6.
30

E
−0

2
±

8.
01

E
−0

2+
4.

85
E
−0

2
±

9.
88

E
−0

2

f p
n2

(x
)

7.
21

E
+0

8
±

1.
99

E
+0

8+
5.

21
E
+0

4
±

3.
28

E
+0

4+
8.

35
E

−3
2

±
8.

86
E

−3
2−

5.
89

E
−0

1
±

1.
08

E
+0

0+
2.

07
E
−0

1
±

6.
68

E
−0

1

f s
ph

(x
)

2.
00

E
+0

5
±

3.
12

E
+0

4+
6.

76
E
+0

3
±

1.
44

E
+0

3+
3.

48
E
−1

13
±

1.
40

E
−1

12
+

2.
94

E
−5

6
±

1.
60

E
−5

5+
1.

70
E

−1
45

±
6.

86
E

−1
45

f r
os

(x
)

2.
63

E
+1

0
±

2.
84

E
+0

9+
1.

32
E
+0

8
±

1.
25

E
+0

7+
2.

94
E
+0

2
±

6.
54

E
+0

1+
3.

71
E
+0

2
±

7.
75

E
+0

1+
1.

19
E

+0
0

±
1.

85
E

+0
0

f 1
(x

)
5.

90
E
+0

5
±

1.
70

E
+0

4+
/

5.
70

E
+0

5
±

1.
56

E
+0

4+
5.

02
E

+0
5

±
1.

08
E

+0
4−

5.
15

E
+0

5
±

1.
23

E
+0

4

f 2
(x

)
2.

24
E
+0

6
±

1.
83

E
+0

5+
/

2.
34

E
+0

6
±

1.
85

E
+0

5+
2.

04
E
+0

6
±

1.
92

E
+0

5+
1.

95
E

+0
6

±
2.

32
E

+0
5

f 4
(x

)
2.

59
E
+0

6
±

2.
64

E
+0

5+
/

2.
79

E
+0

6
±

1.
75

E
+0

5+
2.

46
E
+0

6
±

1.
68

E
+0

5+
2.

29
E

+0
6

±
1.

78
E

+0
5

f 5
(x

)
1.

14
E
+0

5
±

4.
19

E
+0

3+
/

1.
05

E
+0

5
±

4.
18

E
+0

3+
1.

09
E
+0

5
±

3.
91

E
+0

3+
1.

00
E

+0
5

±
4.

69
E

+0
3

f 6
(x

)
2.

27
E
+1

1
±

1.
21

E
+1

0+
/

2.
26

E
+1

1
±

1.
37

E
+1

0+
1.

73
E

+1
1

±
6.

59
E

+0
9-

1.
80

E
+1

1
±

7.
15

E
+0

9

f 9
(x

)
3.

35
E
+0

3
±

6.
78

E
+0

1+
/

3.
35

E
+0

3
±

9.
67

E
+0

1+
3.

11
E
+0

3
±

3.
56

E
+0

1≈
3.

10
E

+0
3

±
3.

75
E

+0
1

f 1
3
(x

)
2.

01
E
+0

2
±

2.
35

E
+0

0+
/

1.
99

E
+0

2
±

4.
16

E
+0

0+
1.

89
E
+0

2
±

3.
63

E
+0

0+
1.

81
E

+0
2

±
2.

24
E

+0
0

To
ta

ls
co

re
D

E
D

E
ah

cS
PX

jD
E

Sa
D

E
SA

PA

+
17

10
13

14
*

−
0

0
4

2
*

≈
0

0
0

1
*

123

6168 Arab J Sci Eng (2014) 39:6149–6174

0 0.5 1 1.5 2

x 10
6

10
−150

10
−100

10
−50

10
0

10
50

FES

M
ea

n
fit

ne
ss

: f
(x

)
−

 f(
x*

)

SAPA
JADE
jDE
SaDE
DE

(a)

0 0.5 1 1.5 2

x 10
6

10
−15

10
−10

10
−5

10
0

10
5

FES

M
ea

n
fit

ne
ss

: f
(x

)
−

 f(
x*

)

SAPA
JADE
jDE
SaDE
DE

(b)

Fig. 5 Performance of the algorithms for two 200-dimensional benchmark functions. a fsph , b fras

Table 7 Experimental results of 30-dimensional problems fack(x) – f10(x), averaged over 30 independent runs with 300,000 FES

Function MGG+UNDX G3+PCX MGG+SPX SAPA

Mean error ± SD Mean error ± SD Mean error ± SD Mean error ± SD

fack(x) 8.23E−07 ± 4.64E−07+ 1.48E+01 ± 4.17E+00+ 1.68E+00 ± 2.99E−01+ 2.66E−15 ± 0.00E+00

fgrw(x) 2.96E−04 ± 1.48E−03+ 1.07E−02 ± 1.30E−02+ 1.09E+00 ± 2.24E−02+ 0.00E+00 ± 0.00E+00

fras(x) 1.35E+00 ± 1.03E+00+ 1.75E+02 ± 3.37E+01+ 5.78E+00 ± 1.83E+00+ 0.00E+00 ± 0.00E+00

fsch(x) 4.12E+03 ± 1.72E+03+ 4.04E+03 ± 1.09E+03+ 8.70E+03 ± 2.41E+02+ 0.00E+00 ± 0.00E+00

fsal (x) 1.50E−01 ± 4.95E−02− 4.64E+00 ± 4.74E+00+ 3.82E−01 ± 4.29E−02+ 1.79E−01 ± 4.06E−02

fwht (x) 4.28E+02 ± 3.82E+01+ 7.90E+02 ± 1.27E+02+ 3.28E+03 ± 2.77E+03+ 1.01E+02 ± 3.18E+01

f pn1(x) 4.93E−02 ± 3.50E−02+ 4.35E+00 ± 6.94E+00+ 2.57E−01 ± 6.90E−02+ 1.57E−32 ± 5.56E−48

f pn2(x) 4.39E−04 ± 2.20E−03+ 1.50E+01 ± 1.58E+01+ 2.29E+00 ± 3.72E−01+ 1.34E−32 ± 5.56E−48

fsph(x) 1.37E−11 ± 1.94E−11+ 3.58E−81 ± 1.36E−81– 8.75E+00 ± 2.87E+00+ 1.45E−69 ± 6.36E−69

fros(x) 2.81E+01 ± 1.23E+01+ 4.18E+00 ± 9.68E+01+ 1.38E+03 ± 6.45E+02+ 1.17E−31 ± 6.43E−31

f1(x) 2.83E−11 ± 3.33E−11+ 3.52E−13 ± 1.22E−13+ 4.71E+04 ± 4.21E+03+ 0.00E+00 ± 0.00E+00

f2(x) 1.41E+00 ± 7.15E−01+ 4.14E−12 ± 1.21E−12+ 3.96E+04 ± 3.89E+03+ 1.09E−29 ± 3.84E−29

f3(x) 8.76E+05 ± 2.98E+05+ 1.07E+03 ± 1.29E+03– 7.16E+08 ± 1.34E+08+ 6.32E+03 ± 5.96E+03

f4(x) 5.01E+01 ± 3.62E+01+ 9.35E+04 ± 2.66E+04+ 4.45E+04 ± 3.73E+03+ 1.02E−27 ± 1.54E−27

f5(x) 1.67E+03 ± 6.01E+02+ 8.13E+03 ± 2.65E+03+ 3.34E+04 ± 2.11E+03+ 4.04E−09 ± 1.09E−09

f6(x) 1.79E+02 ± 2.38E+02+ 1.34E+02 ± 2.48E+02+ 1.56E+10 ± 1.47E+09+ 7.46E−01 ± 4.09E+00

f7(x) 7.26E−03 ± 8.19E−03+ 2.01E−02 ± 1.85E−02+ 1.02E+04 ± 4.71E+02+ 3.20E−03 ± 4.67E−03

f8(x) 2.09E+01 ± 5.62E−02 ≈ 2.11E+01 ± 6.67E−12 ≈ 2.10E+01 ± 4.06E−02 ≈ 2.09E+01 ± 5.66E−02

f9(x) 4.65E+01 ± 5.41E+01+ 2.44E+02 ± 3.98E+01+ 3.15E+02 ± 1.04E+01+ 1.34E−11 ± 6.20E−12

f10(x) 4.76E+01 ± 5.03E+01+ 3.89E+02 ± 9.96E+01+ 5.31E+02 ± 2.85E+01+ 3.95E+01 ± 6.16E+00

Total score MGG+UNDX G3+PCX MGG+SPX SAPA

+ 18 17 19 *

− 1 2 0 *

≈ 1 1 1 *

levels for any test function. MGG+UNDX presents the best
performance on the fsal . The G3+PCX algorithm achieved
a slightly better error average for some functions (fsph and
f3)

but is outperformed by SAPA for the other functions. So
in general, it can be concluded from the t test in Table 7 that
our SAPA algorithm exhibits overall better performance than
the other algorithms in the table.

123

Arab J Sci Eng (2014) 39:6149–6174 6169

Table 8 Effects of DE strategies selection on 30-dimensional problems f1(x) – f20(x), averaged over 30 independent runs

Function SAPA Best Pbest Pbb

Mean error ± SD Mean error ± SD Mean error ± SD Mean error ± SD

f1(x) 0.00E+00 ± 0.00E+00 1.12E+03 ± 3.18E+02+ 0.00E+00 ± 0.00E+00≈ 1.08E+03 ± 4.52E+02+
f2(x) 1.09E−29 ± 3.84E−29 5.38E+03 ± 1.10E+03+ 2.90E−29 ± 3.02E−29+ 4.44E+03 ± 1.14E+03+
f3(x) 6.32E+03 ± 5.96e+03 2.72E+07 ± 1.93E+07+ 7.08E+03 ± 3.75E+03≈ 2.98E+07 ± 1.97E+07+
f4(x) 1.02E−27 ± 1.54E−27 8.75E+03 ± 1.71E+03+ 1.75E−22 ± 3.61E−22+ 8.67E+03 ± 2.17E+03+
f5(x) 4.04E−09 ± 1.09E−09 6.57E+03 ± 7.48E+02+ 9.97E−09 ± 1.51E−08+ 6.71E+03 ± 1.08E+03+
f6(x) 7.46E−01 ± 4.09E+00 1.17E+10 ± 4.03E+09+ 6.85E+00 ± 1.45E+01+ 9.44E+09 ± 3.25E+09+
f7(x) 3.20E−03 ± 4.67E−03 9.47E+02 ± 5.69E+02+ 3.40E+03 ± 9.70E+02+ 8.32E+02 ± 6.14E+02+
f8(x) 2.09E+01 ± 5.66E−02 2.10E+01 ± 3.51E−02 ≈ 2.09E+01 ± 4.11E−02 ≈ 2.09E+01 ± 4.88E−02 ≈
f9(x) 1.34E−11 ± 6.20E−12 7.71E+01 ± 1.30E+01+ 1.50E−11 ± 9.94E−12≈ 7.94E+01 ± 1.50E+01+
f10(x) 3.95E+01 ± 6.16E+00 2.08E+02 ± 3.03E+01+ 4.12E+01 ± 1.32E+00+ 1.95E+02 ± 2.24E+01+
f11(x) 2.68E+01 ± 1.18E+00 2.68E+01 ± 1.28E+00≈ 2.91E+01 ± 1.22E+00 + 2.66E+01 ± 2.10E+00+
f12(x) 6.01E+03 ± 5.19E+03 5.59E+04 ± 1.11E+04+ 6.87E+03 ± 6.06E+03≈ 5.50E+04 ± 1.39E+04+
f13(x) 2.18E+00 ± 1.51E−01 2.93E+00 ± 5.22E−01+ 2.34E+00 ± 1.05E−01+ 2.95E+00 ± 6.23E−01+
f14(x) 1.26E+01 ± 2.17E−01 1.27E+01 ± 2.24E−01 ≈ 1.26E+01 ± 1.71E−01≈ 1.28E+01 ± 2.18E−01+
f15(x) 3.93E+02 ± 7.39E+01 3.06E+02 ± 1.76E+02− 3.88E+02 ± 7.00E+01 ≈ 2.91E+02 ± 1.71E+02–

f16(x) 9.71E+01 ± 1.01E+02 2.48E+02 ± 3.45E+01+ 8.32E+01 ± 6.58E+01 ≈ 3.53E+02 ± 6.06E+01+
f17(x) 1.26E+02 ± 6.42E+01 3.10E+02 ± 3.26E+01+ 1.30E+02 ± 8.01E+01 ≈ 4.34E+02 ± 6.55E+01+
f18(x) 9.03E+02 ± 2.59E−01 8.50E+02 ± 1.04E+01− 9.04E+02 ± 6.33E−01+ 8.55E+02 ± 9.46E+00−
f19(x) 9.03E+02 ± 2.99E−01 8.53E+02 ± 9.53E+00− 9.04E+02 ± 2.74E−01+ 8.47E+02 ± 7.78E+00−
f20(x) 9.03E+02 ± 6.68E−01 8.52E+02 ± 1.17E+01− 9.04E+02 ± 2.72E−01+ 8.46E+02 ± 8.92E+00−
Total score

+ * 13 11 15

− * 4 0 4

≈ * 3 9 1

4.5 Effect of the DE Strategies Selection

In the SAPA algorithm, two DE strategies are chosen as the
mutation strategies. This section intends to show the effect
of the DE strategies selection. We test three SAPA variants
which just adopt one mutation strategy to generate individ-
uals or swap the sequence of mutation strategies. The leg-
end “Best” denotes SAPA with DE/current-to-best/1 strat-
egy, while “Pbest” denotes SAPA with DE/current-to-pbest/1
strategy. “Pbb” denotes SAPA variant with the opposed of
DE strategies selection. The results are shown in Table 8.
Figure 6 presents the convergence characteristics of the
three algorithms on 30-dimensional problems, f2, f6, f9 and
f15.

As we can see, SAPA performs best among the four algo-
rithms. Specially, the convergence curves of SAPA and Pbest
are close together, and so do Pbb and Best. It seems that the
one used more frequently in later evolution stage decides the
algorithm’s convergence character. SAPA performs best on

15 out of 20 functions. Hence, DE strategies selection works
well.

4.6 Performance of Trigger Monitor

In our proposed SAPA algorithm, a trigger strategy moni-
tor is introduced to control the population strategy in accor-
dance with the solution-searching status. The status monitor
is described in Algorithm 4. In all the experiments, thresh-
old R is set to 4 and P and Q are analyzed in the follow-
ing. Moreover, the parameter m is also considered, which
denotes the number of potential candidates for elimination
or perturbation in Algorithms 5–6. An example of the change
in population size for two 30-dimensional benchmark func-
tions is shown in Fig. 7 in which the population size varies
as iterations increases.

In this paper, P and Q are user-defined parameters, which
determine whether the population adjustment schemes

123

6170 Arab J Sci Eng (2014) 39:6149–6174

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0

2

4

6

8

10

12

14
x 10

4

Best
Pbest
SAPA
Pbb

(a)

0 0.5 1 1.5 2 2.5 3 3.5
x 10

5

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

Best
Pbest
SAPA
Pbb

(b)

0 0.5 1 1.5 2 2.5 3 3.5
x 10

5

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Best
Pbest
SAPA
Pbb

(c)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

200

400

600

800

1000

1200

1400
Best
Pbest
SAPA
Pbb

(d)

Fig. 6 Effect of the DE strategies selection for four 30-dimensional benchmark functions. a f2, b f6, c f9, d f15

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

90

100

110

120

130

140

150

160

170

180

190

FES

po
ps

iz
e

(a)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

80

100

120

140

160

180

200

220

FES

po
ps

iz
e

(b)

Fig. 7 Example of the change in population size for two 30-dimensional benchmark functions. a fsph , b f12

are adopted in this iteration or not. The range of their val-
ues is (0,1]. Once P and Q are set as one, the population
size will be maintained in each generation. Setting big P and
Q values will result in a low sensitivity of the SAPA, while
small P and Q values will result in a higher efficiency of the
population adjustment. On the other hand, coefficient m also

influences the perturbation or elimination process substan-
tially.

Table 9 shows the comparisons between SAPA with other
three parameter settings of SAPA over 30-dimensional ver-
sion of the 15 benchmark functions. It indicates that SAPA is
still sensitive to adjustment of parameters. But, from Tables 3

123

Arab J Sci Eng (2014) 39:6149–6174 6171

Table 9 Effects of parameters on search accuracy of SAPA

Function P = 0.6, Q = 0.6, m = 1 P = 0.8, Q = 0.8, m = 1 P = 0.8, Q = 0.4, m = 5 P = 0.4, Q = 0.8, m = 6
Mean error ± SD Mean error ± SD Mean error ± SD Mean error ± SD

f1(x) 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 ≈ 0.00E+00 ± 0.00E+00 ≈ 0.00E+00 ± 0.00E+00 ≈
f2(x) 1.09E−29 ± 3.84E−29 1.16E−28 ± 1.26E−28+ 2.32E−29 ± 4.51E−29+ 2.11E−28 ± 1.36E−28+
f3(x) 6.32E+03 ± 5.96E+03 7.49E+03 ± 6.76E+03+ 4.67E+03 ± 1.26E+03− 5.11E+03 ± 2.31E+03−
f4(x) 1.02E−27 ± 1.54E−27 9.65E−28 ± 1.12E−28− 2.63E−25 ± 9.82E−25+ 1.98E−22 ± 1.66E−22+
f5(x) 4.04E−09 ± 1.09E−09 8.56E−08 ± 5.52E−08+ 9.80E−04 ± 1.52E−03+ 8.32E−02 ± 1.98E−01+
f6(x) 7.46E−01 ± 4.09E+00 1.02E−02 ± 3.52E+00− 1.26E+01 ± 3.41E+01+ 1.29E+01 ± 3.42E+01+
f7(x) 3.20E−03 ± 4.67E−03 6.46E−03 ± 3.64E−03+ 4.26E−02 ± 1.26E−02+ 7.96E−01 ± 2.85E−01+
f8(x) 2.09E+01 ± 5.66E−02 2.09E+01 ± 1.68E−02 ≈ 2.09E+01 ± 3.25E−02 ≈ 2.09E+01 ± 4.32E−02 ≈
f9(x) 1.34E−11 ± 6.20E−12 2.74E−10 ± 1.37E−10+ 5.63E−10 ± 4.26E−10+ 5.41E−10 ± 1.54E−11+
f10(x) 3.95E+01 ± 6.16E+00 3.32E+00 ± 1.55E+01− 6.59E+01 ± 1.45E+01+ 5.48E+01 ± 1.57E+01+
f11(x) 2.68E+01 ± 1.18E+00 2.96E+01 ± 3.68E+00+ 3.01E+01 ± 2.40E+00+ 1.62E+01 ± 1.03E+00−
f12(x) 6.01E+03 ± 5.19E+03 5.99E+03 ± 4.95E+03 ≈ 5.26E+03 ± 5.43E+03− 6.36E+03 ± 2.39E+03+
f13(x) 2.18E+00 ± 1.51E−01 1.02E+00 ± 2.14E−01− 2.11E+00 ± 2.23E−01 ≈ 3.42E+00 ± 1.40E−01+
f14(x) 1.26E+01 ± 2.17E−01 1.64E+01 ± 4.27E−01+ 1.23E+01 ± 3.20E−01 ≈ 1.02E+02 ± 3.24E−01+
f15(x) 3.93E+02 ± 7.39E+01 4.02E+02 ± 9.57E+01+ 3.89E+02 ± 7.61E+01 ≈ 3.31E+02 ± 1.52E+02–

and 9, SAPA is still better or comparable with other compar-
ison algorithms. In order to make a balance of the search
accuracy and robustness, P = 0.6, Q = 0.6, and m = 1 are
used as a representative parameter setting in our paper. This
will prevent the instant elimination of a newborn individual
and keep the status monitor high sensitivity.

4.7 Effect of the Population Size Adjustment Scheme

The population size adjustment scheme (PSA) is the cru-
cial part of SAPA. In this section, in order to show the
effect of PSA, we present the test results on the CEC bench-
mark functions at dimension 30, 50 and 100. In Table 10,
the “without PSA” indicates the SAPA algorithm without
the population size adjustment scheme. From Table 10,
SAPA achieves better optimal solutions in absolute size on
most functions. Meanwhile, in general, it can be concluded
from the statistical analysis results that SAPA’s performance
is superior to that of the SAPA algorithm without PSA,
which means PSA is effective to improve the algorithm’s
performance.

Specially, in the two expanded multimodal functions (f13,
f14), the benefit from the PSA scheme is not evident. How-
ever, in f15 − f20, the hybrid composition functions with a
huge number of local minima, SAPA performs slightly better
than the SAPA algorithm without PSA. Among the five uni-
modal functions (f1 − f5), SAPA obtains significantly better
results on four 30-dimension, two 50-dimension and all five
100-dimension version functions. This behavior indicates the
ability of PSA to improve SAPA to locate global minimiz-
ers. As the dimensionality increases, the benefit from PSA

scheme seems to be apparent. In general, PSA keep a good
balance between global search and local search, by which
SAPA is substantially enhanced.

5 Conclusion

This paper proposed a SAPA algorithm. This algorithm was
evaluated on a benchmark suite consisting of 10 functions
carefully chosen from the literatures and 20 numerical opti-
mization problems used in CEC2005 special session on real-
parameter optimization.

The algorithm uses two DE’s strategies, two newly pro-
posed population strategy, and a method of trigger strat-
egy monitor. To save computational space and time, the
population-decreasing strategy is introduced to stochasti-
cally remove redundant individuals from population, while
to improve the diversity of the population, the population-
increasing strategy is applied to generate better individuals.
Those population size adjustment schemes depend on a trig-
ger strategy monitor, which controls the sensitivity of the
dynamic population strategy.

The obtained results and statistical analysis give evidence
that the SAPA algorithm is a highly competitive algorithm
in 30, 50, 100, and 200-dimensional problems. To summa-
rize the results of the tests, the SAPA algorithm presents
significantly better results than the remaining algorithms, in
most cases. In our future work, we will investigate the DE
strategies selection further and study how to adaptively tune
parameters P, Q and ϕ. Moreover, we will apply the pro-

123

6172 Arab J Sci Eng (2014) 39:6149–6174

Table 10 Effects of population size adjustment scheme on 30-Dimensional, 50-Dimensional, and 100-Dimensional Problems f1(x) – f20(x),
averaged over 30 independent runs

Function 30-Dimensional 50-Dimensional

SAPA Without PSA SAPA Without PSA
Mean error ± SD Mean error ± SD Mean error ± SD Mean error ± SD

f1(x) 0.00E+00 ± 0.00E+00 0.0E+00 ± 0.00E+00≈ 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00≈
f2(x) 1.09E−29 ± 3.84E−29 1.20E−28 ± 1.04E−28+ 1.00E−26 ± 1.17E−26 3.71E−27 ± 2.45E−27−
f3(x) 6.32E+03 ± 5.96e+03 9.21E+03 ± 7.28E+03+ 1.51E+04 ± 6.34E+03 1.55E+04 ± 8.65E+03≈
f4(x) 1.02E−27 ± 1.54E−27 3.05E−16 ± 7.62E−16+ 1.93E−03 ± 3.21E−03 4.90E−01 ± 9.20E−01+
f5(x) 4.04E−09 ± 1.09E−09 6.02E−09 ± 1.46E−08+ 6.08E+02 ± 3.80E+02 1.62E+03 ± 4.90E+02+
f6(x) 7.46E−01 ± 4.09E+00 5.56E+00 ± 1.73E+01+ 1.32E−01 ± 7.27E−01 7.20E+00 ± 3.72E+01+
f7(x) 3.20E−03 ± 4.67E−03 4.70E+03 ± 2.71E−12+ 3.19E−03 ± 7.30E−03 6.20E+03 ± 2.93E−12+
f8(x) 2.09E+01 ± 5.66E−02 2.09E+01 ± 2.23E−01≈ 2.11E+01 ± 2.12E−01 2.11E+01 ± 4.86E−02≈
f9(x) 1.34E−11 ± 6.20E−12 0.00E+00 ± 0.00E+00− 4.89E−12 ± 2.60E−12 0.00E+00 ± 0.00E+00−
f10(x) 3.95E+01 ± 6.16E+00 2.44E+01 ± 5.26E+00− 3.74E+01 ± 8.00E+00 4.81E+01 ± 9.71E+00+
f11(x) 2.68E+01 ± 1.18E+00 2.55E+01 ± 1.63E+00− 5.25E+01 ± 2.05E+00 5.19E+01 ± 2.23E+00≈
f12(x) 6.01E+03 ± 5.19E+03 7.72E+03 ± 4.64E+03+ 7.63E+03 ± 7.10E+03 1.33E+04 ± 9.12E+03+
f13(x) 2.18E+00 ± 1.51E−01 1.45E+00 ± 8.64E−02− 4.12E+00 ± 2.41E−01 2.77E+00 ± 2.06E−01−
f14(x) 1.26E+01 ± 2.17E−01 1.23E+01 ± 3.50E−01≈ 2.20E+01 ± 2.65E−01 2.18E+01 ± 3.70E−01≈
f15(x) 3.93E+02 ± 7.39E+01 3.73E+02 ± 1.17E+02≈ 3.26E+02 ± 9.80E+01 2.93E+02 ± 9.81E+01≈
f16(x) 9.71E+01 ± 1.01E+02 1.15E+02 ± 1.39E+02≈ 6.89E+01 ± 3.16E+01 1.03E+02 ± 1.22E+02+
f17(x) 1.26E+02 ± 6.42E+01 1.44E+02 ± 1.40E+02≈ 1.39E+02 ± 3.24E+01 1.34E+02 ± 9.55E+01≈
f18(x) 9.03E+02 ± 2.59E−01 9.04E+02 ± 3.67E−01≈ 9.19E+02 ± 3.62E+00 9.20E+02 ± 5.32E+00≈
f19(x) 9.03E+02 ± 2.99E−01 9.04E+02 ± 6.60E−01≈ 9.18E+02 ± 3.13E+00 9.23E+02 ± 4.27E+00≈
f20(x) 9.03E+02 ± 6.68E−01 9.04E+02 ± 7.15E−01≈ 9.17E+02 ± 3.23E+00 9.17E+02 ± 2.50E+00≈
Total score
+ * 7 * 7
− * 4 * 3
≈ * 9 * 10

Function 100-Dimensional

SAPA Without PSA

Mean error ± SD Mean error ± SD

f1(x) 0.00E+00 ± 0.00E+00 5.15E−30 ± 1.54E−29+
f2(x) 3.87E−15 ± 1.05E−14 1.59E−12 ± 7.89E−12+
f3(x) 1.66E+05 ± 6.20E+04 2.41E+05 ± 6.91E+04+
f4(x) 1.98E+03 ± 1.08E+03 6.56E+03 ± 2.98E+03+
f5(x) 2.53E+03 ± 6.33E+02 4.27E+03 ± 8.41E+02+
f6(x) 1.59E+00 ± 1.98E+00 1.86E+00 ± 2.02E+00≈
f7(x) 3.69E−03 ± 4.74E−03 1.17E+04 ± 5.29E−12+
f8(x) 2.11E+01 ± 3.59E−01 2.12E+01 ± 3.69E−01≈
f9(x) 5.92E−17 ± 3.24E−16 1.18E−16 ± 4.51E−16+
f10(x) 1.61E+02 ± 2.01E+01 1.49E+02 ± 1.52E+01−
f11(x) 1.24E+02 ± 3.68E+00 1.27E+02 ± 4.74E+00≈
f12(x) 5.32E+04 ± 3.95E+04 5.28E+04 ± 4.34E+04≈
f13(x) 9.54E+00 ± 4.09E−01 6.65E+00 ± 3.28E−01−
f14(x) 4.59E+01 ± 3.86E−01 4.55E+01 ± 5.41E−01≈
f15(x) 2.07E+02 ± 2.00E+01 2.57E+02 ± 1.01E+02+
f16(x) 5.80E+01 ± 3.80E+00 5.82E+01 ± 2.27E+00≈

123

Arab J Sci Eng (2014) 39:6149–6174 6173

Table 10 continued

f17(x) 1.21E+02 ± 1.05E+01 1.29E+02 ± 1.13E+01+
f18(x) 1.06E+03 ± 2.56E+01 1.08E+03 ± 2.61E+01≈
f19(x) 1.05E+03 ± 1.78E+01 1.08E+03 ± 3.57E+01≈
f20(x) 1.06E+03 ± 2.01E+01 1.08E+03 ± 3.48E+01≈
Total score

+ * 9

− * 2

≈ * 9

posed algorithm to solve some real-world problems. We will
also want to verify the potential of the SAPA algorithm for
multi-objective optimization.

References

1. Zou, D.; Liu, H.; Gao, L.; Li, S.: A novel modified differential evo-
lution algorithm for constrained optimization problems. Comput.
Math. Appl. 61(6), 1608–1623 (2011)

2. Hu, C.; Yan, X.: A hybrid differential evolution algorithm inte-
grated with an ant system and its application. Comput. Math.
Appl. 62(1), 32–43 (2011)

3. Sayah, S.; Hamouda, A.; Zehar, K.: Economic dispatch using
improved differential evolution approach: a case study of the
Algerian electrical network. Arabian J. Sci. Eng. 38(3), 715–
722 (2013)

4. Das, S.; Sil, S.: Kernel-induced fuzzy clustering of image
pixels with an improved differential evolution algorithm. Inf.
Sci. 180(8), 1237–1256 (2010)

5. Das, S.; Abraham, A.; Konar, A.: Automatic clustering using an
improved differential evolution algorithm. IEEE Trans. Syst. Man
Cybern. Part A 38(1), 218–237 (2008)

6. Tasgetiren, M.F.; Suganthan, P.N.; Pan, Q.-K.: An ensemble of dis-
crete differential evolution algorithms for solving the generalized
traveling salesman problem. Appl. Math. Comput. 215(9), 3356–
3368 (2010)

7. Tang, Y.; Wang, Z.; Fang, J.: Controller design for synchroniza-
tion of an array of delayed neural networks using a controllable
probabilistic PSO. Inf. Sci. 181, 4715–4732 (2011)

8. Tang, Y.; Wang, Z.; Fang, J.: Feedback learning particle swarm
optimization. Appl. Soft Comput. 11, 4713–4725 (2011)

9. Abido, M.A.; Al-Ali, N.A.: Multi-objective optimal power flow
using differential evolution. Arabian J. Sci. Eng. 37(4), 991–
1005 (2012)

10. Gamperle, R.; Muller, S.D.; Koumoutsakos, P.: A parameter study
for differential evolution, in Proceedings of Advanced Intelligent
System, Fuzzy Systems, Evolutionary Computation, Crete, Greece,
pp. 293–298 (2002)

11. Zhang, J.; Sanderson, A.C.: An approximate Gaussian model of
differential evolution with spherical fitness functions. In: Proceed-
ings of IEEE Congress on Evolutionary Computation, Singapore,
pp. 2220–2228 (2007)

12. Huang, V.L.; Qin, A.K.; Suganthan, P.N.: Self-adaptive differential
evolution algorithm for constrained real-parameter optimization. In
Proceedings of IEEE Congress on Evolutionary Computation,

Vancouver, BC, Canada, pp. 17–24 (2006)
13. Brest, J.; Zumer, V.; Maucec, M.S.: Self-adaptive differential evo-

lution algorithm in constrained real-parameter optimization. In:
Proceedings of IEEE Congress on Evolution Computation, Van-
couver, BC, Canada, pp. 215–222 (2006)

14. Brest, J.; Boskovic, B.; Greiner, S.; Zumer, V.; Maucec, M.S.: Per-
formance comparison of self-adaptive and adaptive differen-
tial evolution algorithms, soft computing—a fusion of founda-
tions. Methodol. Appl. 11(7), 617–629 (2007)

15. Teo, J.: Exploring dynamic self-adaptive populations in differen-
tial evolution. Soft computing—a fusion of foundations. Methodol.
Appl. 10(8), 673–686 (2006)

16. Yang, Z.; Tang, K.; Yao, X.: Self-adaptive differential evolution
with neighborhood search. In: Proceedings of IEEE Congress on
Evolution Computation, Hong Kong, China, pp. 1110–1116 (2008)

17. Qin, A.K.; Suganthan, P.N.: Self-adaptive differential evolution
algorithm for numerical optimization. In: Proceedings of IEEE
Congress on Evolutionary Computation, Edinburgh, UK, pp. 1785–
1791 (2005)

18. Qin, A.K.; Huang, V.L.; Suganthan, P.N.: Differential evolution
algorithm with strategy adaptation for global numerical optimiza-
tion. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)

19. Mallipeddi, R.; Mallipeddi, S.; Suganthan, P.: Ensemble strategies
with adaptive evolutionary programming. Inf. Sci. 180(9), 1571–
1581 (2010)

20. Zhang, J.Q.; Sanderson, A.C.: JADE: adaptive differential evo-
lution with optional external archive. IEEE Trans. Evol. Com-
put. 13(5), 945–958 (2009)

21. Brest, J.; Greiner, S.; Boscovic, B.; Mernik, M.; Zumer, V.: Self-
adapting control parameters in differential evolution: a compara-
tive study on numerical benchmark problems. IEEE Trans. Evol.
Comput. 10(6), 646–657 (2006)

22. Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M.A.: A novel pop-
ulation initialization method for accelerating evolutionary algo-
rithms. Comput. Math. Appl. 53, 1605–1614 (2007)

23. Jansen, T.; Jong, K.D.; Wegener, I.: On the choice of the off-
spring population size in evolutionary algorithms. Evol. Com-
put. 13(4), 413–440 (2005)

24. Tan, K.C.; Lee, T.H.; Khor, E.F.: Evolutionary algorithms with
dynamic population size and local exploration for multiobjective
optimization. IEEE Trans. Evol. Comput. 5(6), 565–588 (2001)

25. Eiben, A.E.; Marchiori, E.; Valko, V.A.: Evolutionary algorithms
with on-the-fly population size adjustment. In: Proceedings of the
8th International Conference on Parallel Problem Solving from
Nature. Lecture Notes in Computer Science, vol. 3242, pp. 41–50
(2004)

26. Brest, J.; Maucec, M.S.: Population size reduction for the differen-
tial evolution algorithm. Appl. Intell. 29(3), 228–247 (2008)

123

6174 Arab J Sci Eng (2014) 39:6149–6174

27. Epitropakis, M.G.; Tasoulis, D.K.; Pavlidis, N.G.: Enhancing
differential evolution utilizing proximity-based mutation opera-
tors. IEEE Trans. Evol. Comput. 15(1), 99–119 (2011)

28. Nasimul, N.; Iba, H.: Accelerating differential evolution using an
adaptive local search. IEEE Trans. Evol. Comput. 12(1), 107–
125 (2008)

29. Suganthan, P.N.; Hansen, N.; Liang, J.J.; Deb, K.; Chen, Y.-P.;
Auger, A.; Tiwari, S.: Problem definitions and evaluation criteria
for the CEC 2005 special session on real-parameter optimization,
Nanyang Technol. Univ., Singapore, IIT Kanpur, Kanpur, India,
Tech. Rep. KanGAL (2005)

30. Satoh, H.; Yamamura, M.; Kobayashi, S.: Minimal generation gap
model for GAs considering both exploration and exploitation. In:
Proceedings of IIZUKA96, Iizuka, Fukuoka, Japan, pp. 494–497
(1996)

31. Deb, K.; Anand, A.; Joshi, D.: A computationally efficient evo-
lutionary algorithm for real-parameter optimization. Evol. Com-
put. 10(4), 371–395 (2002)

32. Ono, I.; Kita, H.; Kobayashi, S.: Advances in Evolutionary Com-
puting. New York: Springer, ch. A Real-Coded Genetic Algorithm
Using the Unimodal Normal Distribution Crossover, pp. 213–237
(2003)

33. Tsutsui, S.; Yamamura, M.; Higuchi, T.: Multi-parent recombi-
nation with simplex crossover in real coded genetic algorithms.
In: Proceedings of Genetic and Evolution Computation, Orlando,
Florida, USA, pp. 657–664 (1999)

123

	A Novel Self-adaptive Differential Evolution Algorithm with Population Size Adjustment Scheme
	Abstract
	1 Introduction
	2 Differential Evolution Algorithms
	2.1 Differential Evolution
	2.1.1 Mutation Operation
	2.1.2 Crossover Operation
	2.1.3 Selection Operation

	2.2 Adaptive DE Algorithms
	2.2.1 The jDE Algorithm
	2.2.2 The DEahcSPX Algorithm
	2.2.3 The JADE Algorithm
	2.2.4 The SaDE Algorithm

	3 Self-adaptive DE with Population Adjustment Scheme
	3.1 DE Strategies
	3.2 Trigger Strategy Monitor
	3.3 Population Size Adjustment Scheme

	4 Experiments
	4.1 Experiments Setup
	4.2 Effect of SAPA on JADE
	4.3 Comparison with Different DEs
	4.4 Comparison with Other Evolutionary Computation
	4.5 Effect of the DE Strategies Selection
	4.6 Performance of Trigger Monitor
	4.7 Effect of the Population Size Adjustment Scheme

	5 Conclusion
	References

