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Abstract Parameter and state estimation problems are
encountered when modeling processes that involve uncer-
tain quantities to be estimated from measurements. The aim
of this paper was to show the interval arithmetic approach as
the suitable tool to solve problems of estimating the parame-
ters of nonlinear systems in a bounded-error context. Pertur-
bations are assumed bounded but otherwise unknown. This
approach computes outer (or inner) approximations of the
set of all parameters. An example of planar robot manipula-
tor is presented to illustrate the effectiveness and potential of
an interval approach in parameter’s estimation. A simulation
is conducted to compare these estimates in terms of mean
squared.
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1 Introduction

When modeling a physical process, there are always discrep-
ancies between the model and real behavior due to simplifica-
tions and neglected effects. Moreover, the parameters of the
real process are never rigorously constant and may vary all
along the time around a mean value. Thus, the process state
estimation will strongly depend on these variations which
are unknown and thus may be considered as uncertainties
[1]. Introduction of uncertain aspects in the analysis, gener-
ally, is obtained from a probabilistic description of the uncer-
tain model parameters. However, the classical probabilistic
methods are subject to important theoretical and practical
[2]. An alternative method to describe uncertainties is pro-
vided by interval analysis, which assumed that all uncertain
quantities (perturbation, measurement noise, and parame-
ter) are bounded and belong to known sets. Bounded errors
may encompass significant structural errors that cannot be
accounted for by random variables or noise errors without
specifying any statistical properties. Parameter estimation is
a common problem in many areas of process modeling, both
in online applications such as real-time optimization and in
offline applications such as the modeling of reaction kinetics
and phase equilibrium. The goal is to determine values of
model parameters that provide the best fit to measured data.
The reliability of numerical results depends on the level of
uncertainties associated with the system’s parameters and
errors due to numerical schemes used to obtain approximate
solutions.

Applications of interval methods have been explored in
finite element analysis to model systems with parametric
uncertainties and to account for the impact of truncation error
on the solutions.
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2 Estimation Theory

Parameters and state estimated from experimental measures
are usually obtained within a stochastic framework in which
known distribution laws are associated with interferences
and noisy measurements. Oppositely, in the bounded error,
context measures and modeling errors are supposed to be
unknown but to stay within known and acceptable bounds.

Errors between measured and predicted outputs may rely
on many factors, among them: limited sensors accuracy, inter-
ferences, noise, structured uncertainties, some are quantifi-
able, and some are not. When we model an industrial product,
the model brings in certain number of parameters, represent-
ing generally measurable physical quantities (lengths, coef-
ficients of proportionality). Their values are either identified
from experiments or specified by the designer.

The models are then used to realize simulations allowing
forecasting the answer of the product. During this process, the
sources of uncertainties are numerous. First of all, the models
are only representations simplified by products or phenom-
ena which they represent. So, when we identify the value
of a parameter from measures, this one can be rarely deter-
mined in an unambiguous way. However, all these uncertain
quantities have an influence on the results of the simulations
and contribute a discrepancy between the real and simulated
answers. To size their products exactly, most of the industri-
alists try to quantify and to master this contribution.

To do it, a usual initiative consists on the one hand in mul-
tiplying the essays on the product, and on the other hand in
oversizing this one by taking into account dispersal observed
experimentally, to assure at best the conformity of the answer
with the requirements. However, the oversizing and the essays
are expensive practices, and the industrialists try to minimize
their employment by resorting massively to numeric simula-
tions.

Usually, most of the solvers used in the industry are deter-
ministic that is they appeal to models the parameters of which
have unique values and supply a unique result on. They do
not thus allow directly taking into account the uncertainties.
When the value of uncertainties is considered, we have to
add additional constraints to find the exact solution [3]. For
that reason, interval analysis provides efficient tools at mod-
eling the uncertainties, and simulating their influence on the
answer, [4,5]. In this paper, the problem of parameter set esti-
mation from bounded-error data is expressed using interval
analysis, and the results of simulation on a robot planar are
represented.

2.1 Parameter Bounding

In the bounded-error context, the sensors used for data mea-
surements are frequently characterized with a prior maxi-
mum measurement error. Under the hypothesis of additive

noise, and relating to the definition given by [6–8], parame-
ter set estimation consists with all observed data and a priori
error bounds. The response of an unknown system can be
expressed as follows:

f : Rm → R, excited by tk ∈ Rm

yk = f (tk), k = 1, . . . , N (2.1)

The system can be static and depend only on the current
value of the input, or the system can be dynamic and depend
on previous values of the input and output. Actual system
response can be given by the following:

ymk = yk + emk, k = 1, . . . . . . , N (2.2)

where emk denotes the additive error and N is the number
of observations. The unknown system can be modeled using
a parametric function f p : Rm×n → R, parameterized on
p ∈ Rn so that an estimate of the response equals

�
yk = �

f (tk, p) (2.3)

and the error between the unknown system and the model is
called modeling error and is defined as

eok = yk − �
yk (2.4)

and the error between the measured observation and model
is equal to

ek = ymk − �
yk (2.5)

from (2.4) and (2.5) the estimation error due to the measure-
ment noise and modeling error is expressed by the following:

ek = emk + eok (2.6)

2.1.1 Bounded-Error Parameter Set Estimation

Bounded error is a data structure where an array is used; the
array dimension’s is bounded. There is a lower and an upper
value. In bounded-error parameter set estimation, the mea-
surement error and the modeling error are assumed bounded
with |emk | ≤ Emk and |eok | ≤ Eok , respectively. Therefore,
the error between the model and the observed response is
also bounded. The bound is given by
∣
∣
∣
∣
ymk − �

yk

∣
∣
∣
∣
≤ Ek

where Ek = Emk + Eok

(2.7)

From these, parameter set estimation from bounded-error
data is a set of feasible parameters consistent with data and
known bounds on the error, which can be expressed by the
following:

pk = {p :
∣
∣
∣
∣
ymk − �

f (tk, p)

∣
∣
∣
∣
≤ Ek} (2.8)
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As previously mentioned, algorithms that compute para-
meter set bounds from bounded-error data have many advan-
tages, a minimal number of assumptions are made regarding
the error, and parameters with lower uncertainty have bound-
ing sets with smaller volumes than parameters with greater
uncertainty and global optimal parameters are contained in
the feasible set [4].

3 Interval Analysis

In this paper, uncertainties and numerical errors are treated
as interval quantities. The main principle of interval analy-
sis is to replace every real number by an interval enclosing it
and whose bounds are representable by the computer [9–11].
For instance, π can be represented by the interval [3.14159,
3.14160] if 6 significant radix-10 digits are used. Data known
with some degree of uncertainty can also be represented, for
instance, data measured with bounded measurement errors.
Interval vectors and interval matrices are vectors and matri-
ces with interval components u. The major advantage of this
arithmetic is the fact that every result is guaranteed.

3.1 Basics Tools

An interval [X ] = [

x, x
]

is a closed and connected subset of
R; it may be characterized by its lower and upper bounds x
and x or equivalently by its center c([x]) = (x+x)

2 = m(x)

and width w([x]) = x − x .
A point interval or degenerate interval is an interval con-

tains a single real number x with x = x .
Arithmetical operations on intervals can be defined by

∀◦ ∈ {+,−, ∗, /}, [x] ◦ [y] = {x ◦ y |x ∈ [x] , y ∈ [y] }.
Obtaining an interval corresponding to [x] ◦ [y] is easy for
the first three operators as follows:

[x] + [y] =
[

x + y, x + y
]

, [x] − [y] =
[

x − y, x − y
]

,

[x] ∗ [y] =
[

min(xy, x y, x y, x y), max(x y, x y, x y, x y)
]

For division, when 0 /∈ [y] ,

[x] / [y] =
[

min(x/y, x/y, x/y, x/y), max(x/y, x/y,

x/y, x/y)
]

and extended intervals have to be introduced

when 0 ∈ [y] , see [11].
More generally, the interval counterpart of a real-valued

function is an interval-valued function defined as

f ([x]) = [{ f (x) |x ∈ [x] }] , or as f (S) for S = [x] .

where [S] denotes the interval hull of a set S, i.e., the small-
est interval that contains it. Interval enclosures for continu-
ous elementary functions are easily obtained. For monotonic
functions, only computations on bounds are required.

exp([x]) = [

exp(x), exp(x)
]

,

log([x]) = [

log(x), log(x)
]

if x > 0

For non-monotonic elementary functions, such as the
trigonometric functions, algorithmic definitions are still eas-
ily obtained. For instance, the interval square function can
be defined by

[x]2 =
{[

0, max(x2, x2)
]

, i f 0 ∈ [x]
[

min(x2, x2), max(x2, x2)
]

else

}

For more complicated functions, it is usually no longer pos-
sible to evaluate their interval counterpart, hence the impor-
tance of the concept of inclusion function. An inclusion func-
tion [ f ] (.) for a function f (.) defined over a domain D ⊂ R
is such that the image of an interval by this function is an
interval, guaranteed to contain the image of the same inter-
val by the original function:

∀ [x] ⊂ D, f ([x]) ⊂ [ f ] ([x]) (3.1)

This inclusion function is convergent if limw([x])→0

w([ f ] ([x])) = 0 and inclusion
Monotonic i f [x] ⊂ [y] ⇒ [ f ] ([x]) ⊂ [ f ] ([y]).
Various techniques are available for building convergent

and inclusion-monotonic inclusion functions. Among them,
the simplest is to replace all occurrences of the real variable
by its interval counterpart which results in what is called a
natural inclusion function.

Example 3.1 Consider the function

f (x) = x2 − 3(x − exp(x)).

An inclusion function f or f, is
[ f ] ([x]) = [x]2 − 3([x] − exp([x]))
Evaluate [ f ] over [0, 1] ,

[ f ] ([0, 1]) = [0, 1]2 − 3([0, 1] − exp([0, 1]))
When the inclusion in (3.1) becomes
= [0, 1] − 3([0, 1] − [1, e]) = [0, 1] − 3([−e, 0])
= [0, 1] + [0, 3e] = [0, 3e + 1] ⊂ [0, 9.16]
compare with
f ([0, 1]) = [3,−2 + 3e] ⊂ [3, 6.16]
of course, f ([0, 1]) ⊂ [ f ] ([0, 1])

Equality, the inclusion function is minimal. Usually, some
pessimism is introduced by the inclusion function, as in
Example 3.1.

This pessimism is due to the fact that each occurrence
of the interval variable is considered as independent from
the others. Various approaches may be considered to reduce
pessimism. A first one is to reduce the number of occurrences
of the variable by symbolic manipulations.

4 Planar Robot Manipulator Model

Robot manipulators are commonly employed in the wide
range of the tasks such as transportation, material handling,
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loading, welding, miling, and drilling and material assem-
bling. Industrial manipulators are essentially open kinematic
chain arm like devices and are generally composed of ternary
links interconnected to each other by revolute and prismatic
joints. Generally, open kinematic chain robot arms have
insufficient mechanical stiffness and exhibit undesired elas-
tic behavior [1]. On the other hand, closed kinematic chain
robot arms are preferable due to their high structural stiffness.
Slider-crank mechanism-based robot arm has many excellent
and superior features of the open and closed kinematic chain
robot arm. A slider-crank motion generator was designed for
the planar four-bar mechanisms(R-RRT). The Slider-Crank
is a linkage that transforms linear motion (piston) to circular
motion (crank) or vice versa [12]. We recognize it, since
it is used in the internal combustion engine, wherein the
input force is the gas pressure on the piston. This multibody
mechanical system consists of four rigid bodies, which repre-
sent the ground, the crank, the connecting rod, and the slider
as shown in Fig. 1. The ground, the crank, the connecting
rod, and the slider are constrained via ideal revolute joints.
The center of mass of each body is considered to be located
at the mid-distance of the bodies’ total length.

In this paper, we apply the least squares method to esti-
mate the interval lengths of two connecting links of a sim-
ulated slider-crank model, for various changes in geometric
dimensions. To elaborate a model of a slider-crank system in
Cartesian coordinate, the proposition cited below is consid-
ered.

In each body i, we associated a base direct orthonormal
(xi, yi, zi). The connections and the parameter setting of the
various bodies of slider-crank system are the following ones:

A: Connection pivot of axis (A,
→
Z 0), we put (

→
x 0,

→
x 1) =

(
→
y 0,

→
y 1) = θ .

B: Connection pivot of axis (B,
→
Z 0), we put (

→
x 2,

→
x 1) =

(
→
y 2,

→
y 1) = θ1.
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Fig. 1 Planar slider crank

Fig. 2 The midpoint C2 in the Cartesian reference frame

C: Connection pivot of axis (C,
→
Z 0), we put (

→
x3,

→
x2) =

(
→
y3,

→
y 2) = θ3, and Connection slippery pivot of axis (C,

→
x3),

we put AC = xC.

A Cartesian reference frame xOy is selected, as illustrated
in the Fig. 2. The joint A is in the origin of the reference
frame, that is, A ≡ 0. The vectors loop of planar slider-crank
scheme yields the following equations:

→
AB + →

BC = →
AC (4.1)

The coordinates of the joint B are as follows:

xA = AB cos(θ), yB = AB sin(θ) (4.2)

The unknowns are the coordinates of the joint C, xC and
yC . The joint C is located on the horizontal axis yc = 0.

The connecting rod BC has a general plane motion: trans-
lation along the x-axis, translation along the y-axis, and rota-
tion about the z-axis. The mass center of link BC is located
at C2. The mass center of the link BC is the midpoint of the
segment BC, xC2 = xB+xC

2 , yC2 = yB+yC
2 .

The lengths of the segments AB and BC are L1 and L2,
respectively. Using Pythagoras’ theorem for the BxBC right-
angled triangle as illustrated in Fig. 2, the following relations
can be written:

(xC − xB)2 + (yC − yB)2 = BC2, (4.3)

As mentioned above,

yC = 0, ‖AB‖ = L1 and ‖BC‖ = L2,

The equation (4.3) can be rewritten as follows:

(xC − xB)2 + (yB)2 = (L2)2, (4.4)

From (4.2),

yB = AB sin(θ) = L1 sin(θ), xB = L1 cos(θ),

And XC can be expressed as

XC = L1 cos θ +
√

((L2)2 − (L1 sin θ)2). (4.5)
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Fig. 3 a Graphic of the mechanism. b Closed path described by the
point C2. c Path described by C (theta)

Equation (4.5) is the kinematic equation for the slider-crank
mechanism, the values of L1, L2 are unknown parameters,
and the input parameter � is known for kinematic analysis.

The mechanism and the closed path described by the point
C2 (the center of mass of BC) for a complete rotation of
the driver link AB, and for desired values of parameters are
shown in Fig. 3a in the plane (ox, oy), and in Fig. 3b in the
plane(oy, oθ). Figure 3c shows the closed path described by
the point C in the plane (ox, oθ).
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Fig. 4 Closed path described by interval

Interval analysis allows taking into account changes in
geometric dimensions, caused by manufacturing variation,
revealing the resulting variations in the system’s configura-
tion from its nominal configuration. The crank and connect-
ing links L1 and L2 are allowed to be variable in length;
this small change is expressed by �L = �L1 = �L2.
Therefore, L1, L2 can be represented as follows: L1 =
[L1 − �L , L1 + �L] , L2 = [L2 − �L , L2 + �L].

To illustrate what proceeds. We suppose that the error
between the unknown system and the model is equal to zero.
Thus, from the equation (2.4), we conclude that yk = XC .

With L1 and L2 are intervals, Xc can be rewritten as an
interval with lower and upper borne, respectively:

[XC ]=[

xc, xc
]= [L1+�L , L1−�L] cos θ

+
√

(([L2+�L , L2−�L])2−([L1+�L , L1−�L] sin θ)2).

(4.6)

Actual system response is defined as follows:

XC−mk = {X : X ∈ S},
S = [XC ] + WGN.

WGN: is white Gaussian noise and generate random number
value which is uniformly distributed in the interval (0, 1)

[13]. From these, parameter set estimation from bounded-
error data is a set of feasible parameters consistent with data
and known bounds on the error, which can be expressed by
the following: Lk = {

L : ∣
∣XC−mk −(L1 cos(θ)+sqrt((L2)2

− (L1 sin(θ)2))
∣
∣ ≤ Ek

}

where L = [L1; L2].
The parameters of the model are intervals of the width

of which equals twice the value of tolerance applied to each
segments. Figure 4 shows the closed path described by the
point C2, the mass center of link BC in the Cartesian reference
frame xOy, when an addition of noise and the tolerance of
segments are considered.
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Table 1 Values of the
parameters after simulation Description Length (cm) Tolerance �L (cm) L ± �L Estimate value

∧
L W [∧

L]
Crank [L1] 5 0.2 [4.8, 5.2] [4.99, 5] 0.01

Connecting rod [L2] 10 0.2 [9.8, 10] [10, 10] 0

Crank [L1] 5 0.5 [4.5, 5.5] [4.9, 5] 0.1

Connecting rod [L2] 10 0.5 [9.5, 10.5] [10, 10] 0

Crank [L1] 25 0.2 [24.8, 25.2] [24.99, 25] 0.01

Connecting rod [L2] 40 0.2 [39.8, 40.2] [40, 40] 0

Parameter estimation is the problem of finding the values
of the unknowns of a mathematical model for simulating
a complex system. In our case, unknowns are the bounded
parameters, L1 and L2. In the literature [4], the fitting of y to
experimental data is often implemented by iterative methods
for nonlinear regression analysis, which compute “best-fit”
shapes, for instance, the point least squares method or the
minmax interval approximation as defined in [14].

The lower bound and upper bound of interval data form
two of point data. By applying point least squares approxi-
mation to them separately, we obtain two point estimations.
These two estimations can form interval estimation. This
method has been reported and applied in [14].

Lsqcurvefit (least squares curves fit) is a function in MAT-
LAB, appropriate to resolve parameters estimation problems
by point least squares method, and we have the choice, in
medium dimension, between techniques of Gauss Newton
and of levenberg as well as two choices of technics of linear
research. And in large dimension, the algorithm is of type
reliable region, subproblems being resolved by an algorithm
of gradient.

5 Simulation Results

In order to clearly show the effectiveness and potential of
an interval approach in parameter’s estimation, a geomet-
ric properties of the slider-crank mechanism cited below are
used to estimate the parameters. The interval of the estimated

parameters is designed by
∧
L .

Therefore, WGN = 0.5rand.
The rand is a function in MATLAB and generates arrays of

random numbers whose elements are uniformly distributed
in the interval (0, 1).

From this, the bound of WGN is: ‖WGN‖ ≤ 0.5.
By applying the point least squares method to the model

presented in Fig. 4, the intervals of the estimated parameters
are given in the Table 1 seen below:

From the result of simulation cited above, nominal value of
parameters L1 and L2 belong to the intervals of the estimated

parameters, and the widths of these intervals are more less
than the width of the uncertainty interval as cited in Sect. 4.

6 Conclusion

We have described here the least squares method for reliably
solving interval parameter estimation problems. Approach
provides a mathematical and computational guarantee that
the global optimum in the parameter estimation problem is
found. We applied the technique here to several data sets, in
which the model parameters were used as initial guess.

On the other hand, this becomes inaccurate when the initial
guess value is far from the desired one.
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