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Abstract This paper proposes a model for multi-mode
resource availability cost problem (MMRACP) in project
scheduling which minimizes the resource availability cost
required to finish all activities in a project at a given project
deadline. Precedence relations exist among the activities of
the project in the model. Furthermore, renewable and nonre-
newable resources are both considered. MMRACP is a non-
deterministic polynomial time hard (NP-hard) problem, as a
result it is very difficult to use an exact method to solve it. For
solving MMRACP, we developed a modified particle swarm
optimization method combined with path relinking proce-
dure and designed a heuristic algorithm to improve the fit-
ness of the solution. At the end, a computational experiment
including 180 instances was designed to test the performance
of the modified particle swarm optimization. Comparative
computational results show that the modified particle swarm
optimization is very effective in solving MMRACP.

Keywords Project scheduling · MMRACP · Path
relinking · Particle swarm optimization · NP-hard ·
Heuristics

J.-J. Qi (B) · Y.-J. Liu · H.-T. Lei · B. Guo
College of Information System and Information Management,
National University of Defense Technology, Changsha,
410073 Hunan, Republic of China
e-mail: hustqjj@126.com

B. Guo
e-mail: boguo@nudt.edu.cn

1 Introduction

Profitability is the most important factor for a contractor,
on the condition that the project is accomplished within the
specified deadline. When the project deadline is confirmed,
contractors usually attempt to minimize the total cost of the
project. Thus, job schedules and resource availability are very
important for the contractor. This leads to the resource avail-
ability cost problem (RACP).

The earliest study on RACP was by Möhring [1] motivated
by a bridge construction project, and an exact algorithm based
on graph theory was proposed in his study. Yamashita [2,
3] adopted a scatter search mechanism to solve RACP and
created robust model of RACP. Shadrokh [4] proposed a
genetic algorithm for RACP to minimize penalty. Ranjbar [5]
solved the problem by a path relinking and genetic algorithm.
Rodrigues [6] developed an exact algorithm that consists of a
hybrid method in which the initial feasible solution is found
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heuristically. These studies have good performance in solv-
ing RACP.

Actually, most jobs in a project have more than one mode
for selection and the duration of the job is changed with
the mode. For example, the job of bricklaying needs four
master bricklayers to work for three days or three master
bricklayers to work for four days. This is a very simple
case in a project, wherein the proper scheme is selected
according to the situation. Therefore, the multi-mode RACP
(MMRACP) is more prevalent than the single-mode RACP in
practice. The most familiar problem with MMRACP is the
multi-mode resource-constrained project scheduling prob-
lem (MMRCPSP) [7–13], which is also a nondeterministic
polynomial time hard (NP-hard) problem that involves job
scheduling, mode selection of the job, and amounts of renew-
able and nonrenewable resources. MMRCPSP is so compli-
cated that determining the best scheduling is very difficult
when the number of jobs exceeds 30. Most researchers try
to use artificial intelligence algorithms, to solve this prob-
lem such as evolution algorithm [8], genetic algorithm [9],
estimation of distribution algorithm (EDA) [12] and so on.
Most of these studies target on minimizing the duration of
the project. However, the resource availability cost problem
concerned by the contractors has not yet been solved well.

Particle swarm optimization (PSO) is a widely used artifi-
cial intelligence algorithms proposed by Kennedy [14], which
can be applied extensively in solving tough problems [15–17].
Biswas solved the machine-loading problems in flexible man-
ufacturing systems based on pseudo PSO. Deng [15] pro-
posed a pseudo elite archiving method adopting the PSO
algorithm to solve the injection moulding optimization prob-
lem. Chen [17] used PSO with justification and designed
mechanisms for RCPSP. From these articles, PSO was known
to have a very good performance in solving scheduling prob-
lems. In this study, MMRACP is investigated. The model
of MMRACP is created with the following assumptions:
(1) deadline of the project is confirmed that has no rela-
tionship with the other factors; (2) total cost of the project
is the mainly issue that concerned by the contractor, aside
from the project’s deadline; (3) renewable and nonrenewable
resources are both required in the project; and (4) there exist
precedence relationships among different jobs. MMRACP is
more complicated than RACP and MMRCPSP. Thus, a mod-
ified particle swarm optimization (MPSO) combined with
path relinking procedure is proposed to solve
MMRACP.

The remaining content of this article is organized as fol-
lows. In Sect. 2, the model of MMRACP is proposed. MPSO
for solving MMRACP is presented in the third section. The
computational experiment and computational results
are presented in Sect. 4. Conclusions are made in the last
section.

2 Problem Descriptions

RACP can be stated as follows [1–5]. A project composed of
n + 2 activities, including n real activities and two dummy
activities. Each activity has its own duration and requires
some units of renewable resource over its duration. Finish–
start-type precedence relations exist among the activities, and
the deadline of the project is confirmed. The objective of
RACP is to find the best feasible schedule for minimizing
total cost of the project.

In MMRACP, most activities have multiple candidate
modes for selection and the durations are changed depend-
ing on the selected mode. During the duration of the activ-
ity, renewable and nonrenewable resources are both required.
MMRACP has no differences with RACP on the other aspects
such as precedence relations, deadline and so on.

2.1 Mathematical Model

This section provides the mathematical formulation of
MMRACP. The notation used is shown as follows:

N : Number of activities;
i : Index of the activity;
Ni : Mode number of the i th activity;
m : Mode index of the activity;
xim : Whether the mth mode is selected for

activity i . If selected, xim = 1, other-
wise, xim = 0;

Kr : Number of renewable resource types;
Kn : Number of nonrenewable resource

types;
K : Number of resource types and K =

Kr + Kn ;
k(k = 1, 2, . . . K ) : Index of resource types. If k ≤ Kr ,

the kth resource is renewable resource,
else nonrenewable resource;

ak : Amount of the kth resource type that
the project needs.

pk : Whether the kth resource type is non-
renewable, if nonrenewable pk = 1;
otherwise, pk = 0;

rimk : Amount of resource type k that needed
by the i th activity in the mth mode;

dim : Duration required to finish the i th
activity as needed in the mth mode;

si : Start time of the i th activity;
D : Deadline of the project;
Ck : Cost of one unit resource of type k;
t : The t th time unit;
At : Set of activities in progress during the

time interval (t − 1, t]
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Fig. 1 Precedence relations of the activities

The objective of the MMRACP is to minimize total cost of
the project, which is equivalent to the sum of resource cost,
including both renewable and nonrenewable resource.

Minimize f =
∑

k∈R

Ckak (1)

The constraints are defined as follows:

Mi∑

m=1

xim = 1, i = 1, 2, . . . Ni (2)

si +
Mi∑

m=1

dim xim ≤ s j (3)

sN+2 ≤ D (4)

i=N+2∑

i=1

Ni∑

m=1

ximrimk pk = pkak ∀k ∈ R (5)

∑

i∈At

Ni∑

m=1

rimk |pk − 1| ≤ ak (6)

The constraint denoted in Eq. (2) indicates that each activity
has only one mode for selection. Equation (3) shows that
the schedules must satisfy the finish-start-type precedence
relation among the activities, where activity j is a successor
of activity i and

∑Mi
m=1 dim xim is the duration of activity

i . Equation (4) ensures that the project is finished before
the deadline. Equation (5) determines that the sum of the
nonrenewable resource required for each activity equal to
pkak . Equation (6) requires that the sum of the renewable
resource used at each time unit in progress should be no
more than ak .

2.2 An Example

In this section, an instance is provided. A project consists
of 12 activities including two dummy activities and ten real
activities, and the precedence relations are shown in Fig. 1.

Table 1 Detailed information of the activities

Jobnr. Mode Duration R1 R2 N1 N2

1 1 0 0 0 0 0

2 1 9 0 5 0 4

2 2 10 2 0 0 4

2 3 10 2 0 10 0

3 1 2 0 3 7 0

3 2 3 0 3 5 0

3 3 7 10 0 5 0

4 1 7 6 0 0 8

4 2 7 0 2 10 0

4 3 8 6 0 0 7

5 1 6 7 0 9 0

5 2 6 0 5 8 0

5 3 10 0 3 6 0

6 1 1 5 0 0 2

6 2 3 4 0 10 0

6 3 10 3 0 6 0

7 1 4 10 0 10 0

7 2 5 0 2 0 7

7 3 5 0 2 10 0

8 1 4 0 7 0 8

8 2 5 5 0 9 0

8 3 5 5 0 0 7

9 1 3 4 0 8 0

9 2 6 3 0 0 6

9 3 9 2 0 3 0

10 1 4 5 0 0 6

10 2 5 0 4 2 0

10 3 6 5 0 0 5

11 1 7 7 0 0 2

11 2 8 0 7 0 2

11 3 9 0 3 5 0

12 1 0 0 0 0 0

Each real activity has three modes for selection. Furthermore,
two types of renewable resource (R1 and R2) and two types
of nonrenewable resource (N1 and N2) are required in the
project. Detailed information of the activities is shown in
Table 1. Assuming that the deadline is 30 days and one unit
cost of each type resource is given, the problem is to find a fea-
sible schedule minimizing resource availability
cost.

As MMRACP is a NP-hard problem, using an exact
method to solve this problem is difficult. For the instance
shown in Table 1 and Fig. 1, more than 310 × (10!) ≈
2.1 × 1011 schedules exist, including infeasible and feasi-
ble schedules. Thus, the best method available is the use of
intelligent algorithm to find the “best” solution.
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Table 2 Two schedules for the project

Number activity Schedule 1 Schedule 2

Start time Mode Start time Mode

2 1 1 0 1

3 9 1 7 1

4 2 1 7 3

5 13 1 9 3

6 11 1 16 1

7 12 2 12 2

8 17 1 17 1

9 11 3 17 3

10 21 2 21 2

11 19 1 19 1

Two schedules are shown in Table 2. Schedule 1 needs 9
units of resource R1 (a1 = 9), 10 units of R2 (a2 = 10), 18
units of N1 (a3 = 18), and 31 units of N2 (a4 = 31). How-
ever, a1 = 9, a2 = 10, a3 = 16, and a4 = 30 in schedule 2.
Thus, schedule 2 is better than schedule 1.

3 Modified Particle Swarm Optimization for Solving
MMRACP

In this section, the principle of PSO is introduced in the first
part. Then, the schedule representation for solving MMRACP
is shown in the second part. And the third part represents
a heuristic algorithm for repairing the particles and decod-
ing scheme. Path relinking procedure combined with PSO is
proposed in the fourth section. At the end, the flowchart of
modified PSO is given.

3.1 Principle of PSO

PSO-incorporated swarming behaviours are observed in
flocks of birds, schools of fish, swarms of bees, and even
human social behaviour [18,19]. It consists of a swarm of
particles in a space, wherein the position vector of each par-
ticle presents a solution. At the beginning, the particles are
randomly positioned, looking for the best position with best
fitness. In each generation, each particle moves to a new
position as a new solution, which is guided by a velocity.
The velocity is influenced by the position of the global and
local best experiences.

Let N denote the dimension of the space and M repre-
sent the number of particles in the space. N is typically
concerned with the definition of the problem. Let Xi =
[Xi1, Xi2, . . . , Xi N ]represent the position of the particle i .
The velocity of the particle i is Vi = [Vi1, Vi2, . . . , Vi N ],
and the local best experience of the individual particle is

Li = [Li1, Li2, . . . , Li N ]. G = [G1, G2, . . . , G N ] repre-
sents the global best experience of all particles. The com-
ponent j of particle i is updated according to the following
equation:

⎧
⎨

⎩

Vi j (t + 1) = ωVi j (t) + c1r1(Li j (t) − Vi, j (t))
+c2r2(Gi j (t) − Vi j (t))

Xi j (t + 1) = Xi j (t) + Vi j (t + 1)

(7)

where ω is the inertia weight used to determine the influence
of the previous velocity on the new velocity. c1 and c2 are
the learning factors that drive the particle in approaching a
new position, maintaining the proper distance in an individ-
ual local and global best experience. In addition, r1 and r2 are
the random numbers uniformly distributed in [0, 1], control-
ling the trade-off between the global and local exploration
abilities during the search.

Normally, PSO promotes cooperation instead of rivalry,
and saves the beneficial information of the particles, while
most of other meta-heuristics discard them [20]. As a result,
the convergence of PSO is very fast. PSO is widely used to
combine with other algorithms, such as simulated annealing
(SA) [21–23], DNA computing [24] and so on [25].

3.2 Solution Representation and Initial Population

For MMRACP, the position vector of a solution is repre-
sented by two subvectors: the scheduling vector containing
the scheduling information and the mode vector devoted to
the mode information.

For the scheduling information, the most popular repre-
sentation used in solving the scheduling problem is a serial
schedule generation scheme. However, it is not a good choice
for solving RACP because of the indeterminate amount of
resource. Thus, the start time is used as the component of the
position vector in this study. Following this way, the objective
function could be calculated directly. Furthermore, the sched-
ule can avoid the influence of the uncertainty of resource. The
shortcoming of this schedule representation is that most of
the schedules are not feasible without considering the prece-
dence determined in Sect. 3.3.

For activities with different modes, the shorter the dura-
tion is, the larger the mode number is and the more resources
needed are. The mode number of the activity is observed to
express a great deal of useful information. Thus, the mode
number can be used to represent the mode vector of the solu-
tion, which is suitable for PSO.

With the above description, a multi-mode encoding
scheme is used to transform the representation to a sched-
ule. An example is shown as follows:

S = (s1, s2, . . . si , . . . sN , m1, m2, . . . mi , . . . m N )
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in which si (0 ≤ si < D) denotes the start time of the i th
activity and mi (mi = 1, 2, . . . Ni ) indicates that the mi th
mode is selected for the i th activity.

A good solution representation is crucial for solving the
NP-hard problem, besides, the method of creating the ini-
tial population is very important. Most researchers propose
heuristics to solve scheduling problems efficiently [26,27].
The initial solutions are built step-by-step as follows:

Step 1: The mode information is randomly generated;
Step 2: The earliest start time EST j and latest finish time

LFT j of activity j are calculated based on the information of
the mode, precedence relations and deadline of the project.

Step 3: The position vectors of particle i are randomly
assigned as listed in Eq. (8):

Xi j = �EST j + ram × (LFT j − EST j )� (8)

where ram is a random number uniformly distributed in [0, 1]
and Xi j = �a� is the biggest integer smaller than a.

3.3 Heuristics to Repair the Particles and Decoding Scheme

The appearance of the infeasible solutions during the process
of optimization is inevitable. Thus, repairing the particle is
necessary when decoding the scheme if the solution of the
particle is infeasible. The heuristic to repair the particles is
shown as follows:

Step 1: Convert the position vector of each particle to be a
schedule. As the position vector of each particle is composed
of real numbers, it is necessary to convert the real numbers to
be integer numbers to generate a schedule. For the scheduling
information, the transformation process is shown as follows:

si = �Xi� i = 1, 2, . . . N (9)

For the mode information, the transformation process is as
listed in Eq. (10):

mi = �Xi+N � i = 1, 2, . . . N (10)

As the mode vector is not involved in the process of repairing
the solution after this step, it is necessary to make sure that
the mode vector does not lead to the appearance of infeasible
solution. If mi > Ni , let mi = Ni . If mi < 1, let mi = 1.

Step 2: Repair the particle to make the solution meet the
precedence relations among the activities. All activities are
checked from the first to the last. If the successor of activity
i starts before activity i finished, the start time of the suc-
cessor is set equal to the finish time of activity i . If activity
j is a successor of activity i , it must be j > i . This step
continues further until that all activities meet the precedence
restrictions. The pseudo-code is shown in algorithm 1.

Algorithm.1 Pseudo-code of step 2  

1: int mark=0; 
2: for each activity from 1i  to N  do 
3:   for each activity j from 1j i  to N  do 

4:     if ( i jf s )and (activity j  is a successor 

of activity i ) then 
5:       j is f ; 

6:       bfeasible=false; 
7:     end if 
8:   end for 
9: end for 
10: Go to step 3; 

Step 3: Let all activities start as early as possible and
make sure whether the duration of this solution overrun the
deadline of the project. If the solution is infeasible, go to step
7. Otherwise, go to step 4. The pseudo-code of this step is
shown in algorithm 2, in which E A denotes the start time of
the foremost start activity and L A represents the end time of
the last finish activity. E A is subtracted from the start time
of all activities to reduce the duration of the whole project. If
L A − E A ≤ D, it means that the project is finished before
the deadline. Otherwise, the solution is infeasible.

Algorithm.2 Pseudo-code of step 3 

1: EA D ; 
2: 0LA  ; 
3:  for each activity from 1i  to N  do 
4:    if iEA s  then 

5:      iEA s ; 

6:    end if 
7:    if iLA f  then 

8:      iLA f ; 

9:    end if 
10: end for 
11: for each activity from 1i  to N  do 
12:   i is s EA ; 

13: end for 
14: if LA EA D  then 
15:   Go to Step 4; 
16: else 
17:   Go to step 7; 
18: end if 

Step 4: Sort all activities in an ascending order by the
start time. For each activity, the position in the array and the
value of the start time are both needed in step 4. As a result, its
position and value are both saved during the process of sorting
activities. For the i th start activity, the value of sort_acti is
the index of the activity and the value of sort_t imei is the
start time of the sort_acti th activity.
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Algorithm.3 Pseudo-code of step 4

1: for each activity from 1i to N do
2: _ isort act i ;

3: _ i isort time s ;

4: end for
5: for each _ isort time from 1i to N do

6: for each _ jsort time from 1j i to N do

7: if _ _i jsort time sort time then

8: Exchange values between _ isort time

and _ jsort time ;

9: Exchange values between _ isort act and 

_ jsort act ;

10: end if
11: end for
12: end for
13: Go to step 5;

Step 5: Repair the particle to make the duration of the
project shorter. The pseudo-code of this step is shown in
algorithm 4. As a result of that the first starting activity must
start at time 0, the activities are repaired from i = 2 to n. For
activity sort_acti , all activities are visited from j = 1 to j =
i − 1. If the sort_act th

j activity has a resource competition
with activity sort_acti and is finished before the start of
activity ssort_acti , or activity sort_act j is a predecessor of
activity sort_acti , compare max _start with fsort_act j : If
max _start < fsort_act j , max _start = fsort_act j . Finally,
let ssort_acti = max _start .

Algorithm.4 Pseudo-code of step 5 

1: for each _ isort act  from 2i  to N  do 
2:   Int  0max start ; 
3:   for each _ jsort act  from 1j  to i  do 

4:     if ( _ jsort act  is _ isort act ’s predecessor ) 

or ( _ _i jsort act sort acts f  and resource competition exists 

between activity _ isort act and _ jsort act ) then 

5:        if _max_
jsort actstart f  then 

6:           _max_
jsort actstart f ; 

7:        end if 
8:      end if 
9:    end for 
10:   _ max_

isort acts start  ; 

11: end for 
12: Go to step 6 ; 

Step 6: Repair the particle last time to make sure that the
solution is feasible. All activities are checked from the first
to the last. If the start time of the checked activity is larger

than its latest start time, the start time is equal to its latest
start time. Then, go to step 7.

Step 7: End
Although it is complicated to repair the schedules, it is

very easy to calculate the objective function following Eqs.
(5) and (6) shown in Sect. 2.1.

3.4 Path Relinking Procedure

The path relinking procedure is used to generate new solu-
tions from existing solutions. The best solution of the first
generation is regarded as the initial solution (x1). After this,
PSO is used to find a better solution (global), which is regarded
as the guide solution (x2). The relinking method is then used
to generate new solutions: if a better solution is not found,
x1 = x2 and PSO is used to find a new solution; otherwise the
best experienced solution is updated. Then let x1 = global
and PSO is continued until a new better solution is found.
The pseudo-code of the path relinking procedure is shown in
algorithm 5.

Algorithm.5 Pseudo-code of path relinking procedure

1: 1X =the best experienced position;

2: if better solution (global) is found based on PSO then
3: 2X global;

4: for each i from 1 to N do
5: if 1 2[ ] [ ]X i X i then

6: Let i be the crossing points and 1X and 

2X are father and mother solutions New 

solution1 and New solution2 are generated;
7: 1G =Decoding(New solution1 );

8: 2G =Decoding(New solution2 );

9: if gbest value> 1G then

10: gbest value= 1G ;

11: global= New solution1 ;
12: end if
13: if gbest value> 2G then

14: gbest value 2G ;

15: global= New solution2 ;
16: end if
17: end if
18: end for
19: 1X global;

20: end if

In Algorithm 5, New_solution1 and New_solution2 are the
new solutions and Decoding (New_solution) is the function in
calculating the fitness of New_solution. gbest_value denotes
the fitness of the global best experience of all particles.

A solution is represented by two vectors, the position vec-
tor and the mode vector; thus, the two-point crossover is used
to generate a new solution. The operator works as follows:
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let i(0 < i ≤ N ) be the first crossing point and i + N be
the second crossing point. Assume that parent1 and parent2
activity lists are given as follows:

parent1 = (p1, p2, . . . , pN , m1, m2, . . . , m N )

and

parent2 = (α1, α2, . . . , αN , β1, β2, . . . , βN )

Then, two new solutions are generated as follows:

New_solution1 = (p1, . . . , pi−1, αi , . . . , αN ,

m1, . . . , mi−1, βi , . . . , βN )

and

New_solution2 = (α1, . . . , αi−1, pi , . . . , pN ,

β1, . . . , βi−1, mi , . . . , m N )

The advantage of the two-point crossover is that, for the
same activity, both the position vector and the mode vec-
tor are changed simultaneously, which is more effective in
generating solutions with quality.

3.5 Framework of the Modified PSO

With the above design, the procedure of the MPSO for solv-
ing the MMRACP is summarized in Fig. 2.

First, the initialization is implemented, and then the mode
vectors for the initial solutions are built. The earliest start time
and latest start time of each activity can be calculated based
on the information of the mode, deadline of the project and
precedence relations, which will be used to build the posi-
tion vectors for the initial solutions according to the method
shown in Sect. 3.2. After that, the schedules are repaired fol-
lowing the procedure shown in Sect. 3.3. The fitness of each
solution is determined and the global experience solution
can be found. Moreover, PSO is used to build new solutions.
For each generation, if a better solution is found, the path
relinking procedure is used to build new solutions. If a bet-
ter solution is found during the path relinking procedure, the
global experience swarm of the PSO is updated. No matter
a better solution is found or not in the path relinking pro-
cedure, let “X1=global”. The PSO is then continued until
that the stop condition is met. Finally, the “best” schedule is
achieved. Straightforwardly, the framework of the modified
PSO is illustrated in Fig. 2.

4 Experimental Results

In this section, computational experiments were designed to
test the performance of the modified PSO for MMRACP.
The experiments were performed on a PC G630, 2.7 and

Initialization

Calculate the earliest start 
time of each activity

Calculate the latest start 
time of each activity

Build position vectors for 
the initial solutions

Repair

Calculate the solution’s total 
cost and let X1= global

Build new solutions 
(PSO)

Repair

Stopping condition is met?

End

No

Yes

better solution is found

Path relinking 

Repair

No

Yes

better solution is found

Update global and let 
X1= global

let X1= global

No
Yes

Build mode vectors for 
the initial solutions

Fig. 2 Flowchart of the MPSO

2.69 GHz with 2.99 GB of RAM. All procedures were coded
in C language.

4.1 Generation of the Problem Instances

MMRACP and MMRCPSP share common data, therefore
it is easy to adapt existing instances of the MMRCPSP to
the MMRACP. In this study, the instances used are directly
obtained from project scheduling problem library [28]
(PSPLIB) involving 10, 12, 16, 18, 20, and 30 activities. Each
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instance contains three modes, two renewable and two non-
renewable resources. There are some important parameters
for the instances shown as follows:

• Resource factor (RF): reflects the density of different resource
types needed by an activity and takes the values 0.5, 0.75
and 1. We did not distinguish renewable resource from
nonrenewable resource when fixing RF. For the instance
shown in section, RF is 0.5 which means that 50 % of the
resource types are required by each real activity.

• Deadline factor (DF): reflects the deadline of the project,
such that D = DF×max EFi , where EFi is the earliest fin-
ishing time of activity i on the condition that all activities
choose the mode with the shortest duration. DF is fixed at
1.2.

• Object function: this function is considered as f =∑
k∈R Ckak where Ckare drawn from a uniform distrib-

ution U [1, 10].

Seven important parameters for the modified PSO are as fol-
lows:

1. ω = 1 : an inertia weight used to determine the influence
of the previous velocity to the new velocity;

2. c1 = 1 : the first learning factor;
3. c2 = 1 : the second learning factor;
4. vmax _P = 5 : max velocity of the position vector;
5. vmin _P = −5 : min velocity of the position vector;
6. vmax _M = 1 : max velocity of the mode vector;
7. vmin _M = −1 : min velocity of the mode vector.

For comparison, two important parameters [8] are used to
evaluate the solution quality that can be obtained via the devi-
ation from the best solution. According the studied problems,
it is very difficult for us to get the best solution. Thus, MPSO,
PSO, and genetic algorithm (GA) with 100,000 schedules,
are used to find the almost “best” solution for each instance,
named “up bound” solution. Each algorithm is executed five
times and the best solution found is seemed as “up bound”
solution. In this way, the deviation from the “up bound” solu-
tion is used to evaluate the quality of the solution, which is
expressed as:

DEVi = fitnessi − UBi

UBi
× 100 % (11)

ADEV =
∑Ninstaces

i=1 DEVi

Ninstaces
(12)

where Ninstaces is the number of instances, UBi is the fitness
of the “up_bound” solution for the i th instance and fitnessi

denotes the fitness of the solution found by the used algo-
rithm. DEV is the deviation from the “up bound”’ solution
and ADEV is the average deviation.

Table 3 The max settings of DEV in MPSO, PSO, and GA (50,000
schedules)

Activities DF RF MPSO PSO GA

10 1.2 0.5 3.26 2.17 2.82

10 1.2 0.75 3.31 2.06 3.51

10 1.2 1 2.15 0.5 3.67

12 1.2 0.5 1.85 4.54 5.55

12 1.2 0.75 2.01 3.97 4.89

12 1.2 1 0.21 2.95 1.97

16 1.2 0.5 1.82 1.84 2.01

16 1.2 0.75 1.80 1.93 2.06

16 1.2 1 0.18 0.90 0.38

18 1.2 0.5 2.95 3.71 11.4

18 1.2 0.75 1.84 2.46 4.08

18 1.2 1 0.15 0.29 3.03

20 1.2 0.5 1.44 1.32 3.76

20 1.2 0.75 1.34 1.38 2.63

20 1.2 1 0.23 0.47 2.50

30 1.2 0.5 0.20 0.15 0.53

30 1.2 0.75 0.37 1.24 4.29

30 1.2 1 0.47 1.17 3.33

Global 1.2 1.84 3.47

4.2 Computational Experiment

In this section, computational experiments were designed. To
the best of our knowledge, there were no researchers study-
ing MMRACP before, so we had to design computational
experiments by ourselves. The computational results from
the implementation of MPSO, PSO, and GA have the same
encoding and repairing methods.

Ten instances were included in each experiment group,
wherein 6 × 3 × 10 = 180 instances were used in the com-
putational experiment. The settings of max DEV in MPSO,
PSO, and GA with 50,000 schedules are shown in Table 3.
The settings of ADEV in MPSO, PSO, and GA with 1,000,
10,000, and 50,000 schedules are shown in Table 4.

The following observations were obtained from the results:

1. If the instance is simple and the number of schedules is
large enough, the performances of MPSO, PSO, and GA
are similar;

2. If the instance is complicated and the number of schedules
is not large enough, the performances of MPSO and PSO
are much better than GA;

3. The performance of MPSO is almost the same with PSO
when the schedules are not excessive, but it is more effi-
cient than PSO as the size of the computation increases;

4. The performance of MPSO is steadier than PSO and GA;
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Table 4 The settings of ADEV in MPSO, PSO, and GA

Activities DF RF MPSO PSO GA

1,000 10,000 50,000 1,000 10,000 50,000 1,000 10,000 50,000

10 1.2 0.5 2.46 2.44 1.72 3.07 1.89 1.75 4.86 3.00 1.65

10 1.2 0.75 3.35 2.05 0.80 3.85 2.10 0.97 7.25 5.70 3.25

10 1.2 1 1.18 0.57 0.165 1.28 1.00 0.72 6.49 2.87 2.1

12 1.2 0.5 1.47 0.97 0.62 2.04 1.63 1.51 6.84 5.56 3.58

12 1.2 0.75 3.19 2.32 0.28 3.65 2.25 1.02 3.92 3.87 4.27

12 1.2 1 0.52 0.17 0.07 1.46 1.34 1.21 3.13 2.26 0.97

16 1.2 0.5 1.32 0.81 0.72 1.24 0.78 0.73 4.83 2.78 0.78

16 1.2 0.75 0.75 0.63 0.30 1.33 0.72 0.48 3.76 2.59 0.84

16 1.2 1 0.25 0.15 0.12 0.74 0.21 0.20 3.40 1.97 0.30

18 1.2 0.5 0.69 0.14 0.10 1.47 1.25 1.21 13.60 9.21 7.56

18 1.2 0.75 1.55 0.82 0.15 1.32 1.09 0.86 8.65 6.87 3.51

18 1.2 1 0.58 0.33 0.05 0.40 0.21 0.09 5.72 3.99 2.21

20 1.2 0.5 0.71 0.66 0.44 0.58 0.52 0.48 7.82 6.21 3.41

20 1.2 0.75 0.97 0.74 0.34 0.39 0.27 0.21 6.59 5.43 2.91

20 1.2 1 0.43 0.09 0.07 0.29 0.15 0.15 5.39 4.02 2.14

30 1.2 0.5 1.02 0.26 0.13 1.31 0.77 0.52 7.31 5.74 3.01

30 1.2 0.75 0.93 0.71 0.51 1.48 0.81 0.62 7.38 5.29 3.07

30 1.2 1 0.42 0.23 0.15 1.52 0.63 0.48 6.57 4.67 3.12

Global 1.21 0.78 0.37 1.52 0.98 0.73 6.31 4.56 2.70

Table 5 Average CPU-time (s) of the MPSO, PSO, and GA

30 20 18 16 12 10

MPSO 2.10 0.9 0.87 0.46 0.42 0.28

PSO 2.06 0.88 0.85 0.42 0.4 0.27

GA 3.08 1.31 1.17 0.89 0.56 0.42

5. The performance of MPSO is more applied than that of
PSO and GA in solving MMRACP problems.

The average CPU-time (s) of the MPSO, PSO, and GA
with 50,000 schedules is shown in Table 5. The performance
of MPSO is better than GA and slightly worse than PSO.

Fig. 3 Process of optimizing
the instance in Sect. 2.2
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As the ADEV and max DEV of MPSO are much better than
PSO, the computational experiments prove that MPSO is the
best choice for solving MMRACP. The process of optimizing
the instance in Sect. 2.1 is shown in Fig. 3.

5 Conclusions

In this study, the model of MMRACP is established, which
is much more applicable than RACP in practice. A modified
PSO is presented to solve MMRACP, and a heuristic algo-
rithm is designed to improve the fitness of the solution. All
these procedures were tested on an available test. The com-
putational results show that the modified PSO inherited the
advantages of PSO and GA, which is more efficient in solving
such complicated problem. The proposed method can pro-
vide high-quality solutions for large instances of MMRACP
in a short time.

For further research, we recommend the fuzzy resource
availability cost problem. The durations of most activities
in the project are fuzzy in practice, thus the existed mod-
els about RACP have some limitations in solving the actual
project scheduling problem. It is valuable to build the model
of the fuzzy resource availability cost problem and provide
an efficient heuristic algorithm to solve this problem.
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