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Abstract In this paper, a modified particle swarm opti-
mization (PSO) algorithm called autonomous groups par-
ticles swarm optimization (AGPSO) is proposed to further
alleviate the two problems of trapping in local minima and
slow convergence rate in solving high-dimensional problems.
The main idea of AGPSO algorithm is inspired by individu-
als’ diversity in bird flocking or insect swarming. In natural
colonies, individuals are not basically quite similar in terms
of intelligence and ability, but they all do their duties as mem-
bers of a colony. Each individual’s ability can be useful in
a particular situation. In this paper, a mathematical model
of diverse particles groups called autonomous groups is pro-
posed. In other words different functions with diverse slopes,
curvatures, and interception points are employed to tune the
social and cognitive parameters of the PSO algorithm to
give particles different behaviors as in natural colonies. The
results show that PSO with autonomous groups of particles
outperforms the conventional and some recent modifications
of PSO in terms of escaping local minima and convergence
speed. The results also indicate that dividing particles in
groups and allowing them to have different individual and
social thinking can improve the performance of PSO signif-
icantly.
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1 Introduction

Particle swarm optimization (PSO) is one of the most widely
used evolutionary algorithms inspired by the social behavior
of animals [1,2]. The simplicity and inexpensive computa-
tional cost make this algorithm very popular. Due to these
advantages, PSO has been applied to many domains such as
medical detection [3], grid scheduling [4], robot path plan-
ning [5], video abstraction [6], airfoil design [7], and neural
networks [8–10]. In spite of these advantages, trapping in
local minima and slow convergence rate are two unavoidable
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problems [11], which are common for all types of evolution-
ary algorithms [12–22]. These two problems deteriorate with
increased problem dimensionality.

There are many methods in the literature to combat these
problems. Some of them focus on the hybridization of PSO
with other algorithms such as PSO-Genetic Algorithm (GA)
[23], PSO-Gravitational Search Algorithm (GSA) [9,24],
and PSO-ant colony optimization (ACO) [25]. Some studies
manipulate the interaction neighborhood topology of PSO
to do this [26–28]. Regardless of their promising results,
increased computational cost is the main problem of these
methods.

Using dynamic parameter tuning is a method that increases
the performance of PSO without suffering from high com-
putational cost [29–34]. The main parameters of PSO are the
weighting factor (w), cognitive coefficient (c1) and social
coefficient (c2). The similarity of these approaches is that
the parameters are tuned with the same strategy for all par-
ticles. Therefore, all the particles follow the same pattern in
their social and individual behaviors. In other words, the par-
ticles are obliged to search without any self-determination
and intelligence. In this paper, we propose a new approach
of utilizing autonomous groups to give particles a sort of
independence with the purpose of increasing performance.

The rest of the paper is organized as follows: Sect. 2
describes the related works. Section 3 discusses the basic
principles of the PSO algorithm. The proposed method is
explained in Sect. 4. The experimental results are demon-
strated in Sect. 5. Finally, Sect. 6 concludes the work and
suggests some directions for future research.

2 Related Works

To improve the PSO algorithm’s performance, recently some
modified algorithms have been proposed. In 2009, Cai [29]
proposed a new modified PSO based on the black stork forag-
ing process. He defined two types of particles inspired from
the foraging behavior of adult and infant black storks. These
two types of particles have different cognitive coefficients
(c1) that are a function of best fitness value in the current
iteration, worst value in the entire swarm, and current fitness
values. The results show that the modified PSO has better
performance than the conventional PSO when dealing with
high-dimensional, multimodal optimization problems.

Cai et al. also proposed a new setting for the social factor
(c2) to improve the convergence speed [30,31]. The social
coefficient is a function of the best fitness value in the cur-
rent iteration, the worst fitness value in the entire swarm, and
the current fitness value. This method can be considered as a
PSO algorithm with N different particles in terms of follow-
ing social consensus. This algorithm suffers from trapping
in local minima more than the conventional PSO. For this

reason, the authors equipped the algorithm with a mutation
strategy.

There are some studies which have used time-varying
coefficients for both cognitive and social coefficients. In
2009, Ziyu and Dingxue [32] introduced an exponentially
time-varying acceleration function for adjusting both cogni-
tive and social coefficients to control the global search abil-
ity and convergence to the global best solution. In 2009, Bao
and Mao suggested an asymmetric time-varying acceleration
coefficient adjustment strategy [33]. They tried to utilize this
strategy to balance local search and global search. They used
some linear time-varying acceleration functions to adjust
social and cognitive coefficients. In 2008, Ciu et al. [34]
employed three non-linear time-varying cognitive adjust-
ment strategies as well as a time-varying social coefficient
adjustment strategy. The social factor was a function of the
cognitive factor. The authors tried to find effective non-linear
time-varying strategies for c1 and c2 to solve complex func-
tion optimization. The results showed that the PSO with the
proposed time-varying adjustment strategy was superior to
the conventional PSO.

Due to the complex nature of optimization problems, con-
stant and linear time-varying values for cognitive and social
factor may not work well in many cases. Using a non-linear
time-varying coefficient for PSO could yield better perfor-
mance in some cases. However, one non-linear time-varying
strategy for all particles may not lead to a general opti-
mizer with good performance. In this paper, we propose
autonomous groups of particles for PSO which have differ-
ent social and individual behaviors to improve local minima
avoidance and convergence speed.

3 Overview of the PSO Algorithm

PSO is an evolutionary computation technique that was pro-
posed by Kennedy and Eberhart [1,2]. It was inspired from
the social behavior of bird flocking which uses a number
of individuals (particles) flying around the search space to
find the best solution. The particles trace the best location
(best solution) in their paths over the course of iterations.
In other words, particles are influenced by their own best
locations found as well as the best solution obtained by the
swarm. These concepts have been mathematically modeled
[1] using a position vector (x) and velocity vector (v) of
length D, where D indicates the dimension (number of vari-
ables) of the problem. In the course of iterations, a particle
adjusts its position and velocity as follows:

vt+1
i = wvt

i + c1 × rand × (pbesti − xt
i ) + c2

×rand × (gbest − xt
i ) (1)

xt+1
i = xt

i + vt+1
i (2)
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Fig. 1 a Some samples of all possible functions for updating c1 and c2, b specific functions for updating c1, and c specific functions for updating
c2 where L is the upper bound of the c1 and c2

where w is the inertial weight which is responsible for con-
trolling the PSO algorithm’s stability and usually is in [0.4,
0.9], c1 is the cognitive coefficient that controls the influence
of the individual memory of good solutions found, conven-
tionally selected in (0, 2], c2 is the social factor also con-
ventionally chosen from the range (0, 2] which controls the
extent to which a particle’s motion is influenced by the best
solution found by the whole swarm, rand is a random number
between 0 and 1 which tries to give PSO more randomized
search ability, and pbest and gbest are two variables to store
the best solutions obtained so far by each particle and the
whole swarm, respectively. As can be observed, there are
three main coefficients, w, c1, and c2. Dynamic tuning of
these parameters is a way to give particles different behav-
iors as the algorithm proceeds. In this work, c1 and c2 are
targeted to increase the performance of PSO.

4 Proposed Method

4.1 Motivation of Proposed Method

Finding the global minimum is a common, challenging task
among all minimization methods [35]. In population-based
optimization methods, generally, the desirable way to con-

Table 1 Updating strategies

Algorithm Updating formula

C1 C2

AGPSO1

Group1 (−2.05/T )t + 2.55 (1/T )t + 1.25

Group2 (−2.05/T )t + 2.55 (2t3/T ) + 0.5

Group3 (−2t3/T 3) + 2.5 (1/T )t + 1.25

Group4 (−2t3/T 3) + 2.5 (2t3/T 3) + 0.5

AGPSO2

Group1 2.5−(2log(t)/log(T )) (2log(t)/log(T )) + 0.5

Group2 (−2t3/T 3) + 2.5 (2t3/T 3) + 0.5

Group3 0.5 + 2exp[−(4t/T )2] 2.2−2exp[4t/T )2]

Group4 2.5 + 2(t/T )2 −2(2t/T ) 0.5−2(t/T )2 + 2(2t/T )

AGPSO3

Group1 1.95−2t1/3/T1/3 2t1/3/T1/3 + 0.05

Group2 (−2t3/T 3) + 2.5 (2t3/T 3) + 0.5

Group3 1.95−2t1/3/T 1/3 (2t3/T 3) + 0.5

Group4 (−2t3/T 3) + 2.5 2t1/3/T 1/3 + 0.05

verge towards the global minimum can be divided into two
basic phases. In the early stages of the optimization, the indi-
viduals should be encouraged to scatter throughout the entire
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Fig. 2 Mathematical models of autonomous groups for AGPSO1

Group 1 Group 2

Group 3 Group 4
0 Max iteration

0

1

2

3

c1

c2

0 Max iteration
0

1

2

3
c1

c2

0 Max iteration
0

1

2

3
c2

c1

0 Max iteration
0

1

2

3

c1

c2

Fig. 3 Mathematical models of autonomous groups for AGPSO2
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Fig. 4 Mathematical models of autonomous groups for AGPSO3

search space. In other words, they should try to explore the
whole search space instead of clustering around local min-
ima. In the latter stages, the individuals have to exploit infor-
mation gathered to converge on the global minimum. In PSO,
with fine-adjusting of the parameters c1 and c2, we can bal-
ance these two phases to find global minimum with fast con-
vergence speed.

Considering these points, we propose the autonomous
groups concept as a modification of the conventional PSO.
In this method, each group of particles autonomously tries
to search the problem space with its own strategy, based on
tuning c1 and c2. The groups’ strategies can contain constant,
linear time-varying, exponential, or logarithmic time-varying
values for c1 and c2 as shown in Fig. 1.

Create and initialize a D-dimensional PSO
Divide particles randomly into autonomous groups
Repeat

Calculate particles’ fitness, Gbest, and Pbest
For each particle:

Extract the particle’s group
Use its group strategy to update c1 and c2 

Use c1 and c2 to update velocities (1)
Use new velocities to define new positions (2)

End for
Until stopping condition is satisfied

Fig. 5 Pseudo-code for the proposed modification of PSO algorithm
(AGPSO)
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Table 2 Unimodal benchmark functions

Function Dim Range fmin

F1(x) = ∑n
i=1 x2

i 300 [−100,100] 0

F2(x) = ∑n
i=1 |xi | + ∏n

i=1 |xi | 300 [−10,10] 0

F3(x) = ∑n
i=1

(∑n
j−1 x j

)2
300 [−100,100] 0

F4(x) = maxi {|xi | , 1 ≤ i ≤ n} 300 [−100,100] 0

F5(x) = ∑n−1
i=1

[
100(xi+1 − x2

i )2 300 [−30,30] 0

+(xi − 1)2
]

F6(x) = ∑n
i=1 ([xi + 0.5])2 300 [−100,100] 0

F7(x) = ∑n
i=1 i x4

i + random[0, 1) 300 [−1.28,1.28] 0

4.2 Autonomous Groups and AGPSO Algorithm

The concept of autonomous groups is inspired by the indi-
viduals’ diversity in animals flocking or insects swarming.
In any gathering, individuals are not quite similar in terms of
intelligence and ability, but they all do their duties as a mem-
ber of the group. Each individual’s ability can be useful in
a particular situation. In a termite colony, for instance, there
are four types of termites such as soldier, worker, babysit-
ter, and queen. They all have diverse abilities, but these
differences are necessary for survival of their colony. Sol-
diers have greater bulk with giant jaws to fight with ene-

Table 3 Multimodal
benchmark functions

Function Dim Range fmin

F8(x) = ∑n
i=1 −xi sin

(√|xi |
)

300 [−500,500] −418.9829 × 300

F9(x) = ∑n
i=1

[
x2

i − 10 cos(2πxi ) + 10
]

300 [−5.12,5.12] 0

F10(x) = −20exp

×
(

−0.2
√

1
n

∑n
i=1 x2

i

)

− exp
( 1

n

∑n
i=1 cos(2πxi )

) + 20 + e

300 [−32,32] 0

F11(x) = 1
4000

∑n
i=1 x2

i − ∏n
i=1 cos( xi√

i
) + 1 300 [−600,600] 0

F12(x) = π
n

{
10sin(πy1) + ∑n−1

i=1 (yi − 1)2
[
1 + 10sin2(πyi+1)

]

+(yn − 1)2
}

+ ∑n
i=1 u(xi , 10, 100, 4)

yi = 1 + xi +1
4

u(xi , a, k, m) =
⎧
⎨

⎩

k(xi − a)m xi > a
0 − a < xi < a
k(−xi − a)m xi < −a

300 [−50,50] 0

F13(x) = 0.1
{
sin2(3πx1) + ∑n

i=1(xi − 1)2
[
1 + sin2(3πxi + 1)

]
300 [−50,50] 0

+(xn − 1)2
[
1 + sin2(2πxn)

] } + ∑n
i=1 u(xi , 5, 100, 4)

Table 4 Fixed-dimension
multimodal benchmark
functions

Function Dim Range fmin

F14(x) =
(

1
500 + ∑25

j=1
1

j+∑2
i=1(xi −ai j )

6

)−1

2 [−65,65] 1

F15(x) = ∑11
i=1

[

ai − x1(b2
i +bi x2)

b2
i +bi x3+x4

]2

4 [−5,5] 0.00030

F16(x) = 4x2
1 − 2.1x4

1 + 1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5,5] −1.0316

F17(x) =
(

x2 − 5.1
4π2 x2

1 + 5
π

x1 − 6
)2 + 10

(
1 − 1

8π

)
cosx1 + 10 2 [−5,5] 0.398

F18(x) = [
1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2 )

]

× [
30 + (2x1 − 3x2)

2 × (18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2 )
]

2 [−2,2] 3

F19(x) = − ∑4
i=1 ci exp

(
− ∑3

j=1 ai j
(
x j − pi j

)2
)

3 [1,3] −3.86

F20(x) = − ∑4
i=1 ci exp

(
− ∑6

j=1 ai j
(
x j − pi j

)2
)

6 [0,1] −3.32

F21(x) = − ∑5
i=1

[
(X − ai )(X − ai )

T + ci
]−1

4 [0,10] −10.1532

F22(x) = − ∑7
i=1

[
(X − ai )(X − ai )

T + ci
]−1

4 [0,10] −10.4028

F23(x) = − ∑10
i=1

[
(X − ai )(X − ai )

T + ci
]−1

4 [0,10] −10.5363
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Table 5 Updating strategies

Algorithm Updating formula

C1 C2

SPSO [2] 2 2

TACPSO [32] 0.5 + 2exp[−(4t/T )2] 2.2 − 2exp[−(4t/T )2]

MPSO [33] (−2.05/T )t + 2.55 (1/T )t + 1.25

IPSO [34] 2.5 + 2(t/T )2 – 2(2t/T ) 0.5 − 2(t/T )2 + 2(2t/T )

mies. Workers are smaller than soldiers, so they can move
around very fast to find and provide food for the colony.
They also have the ability of excavating to build the nest. The
queen and babysitters reproduce and raise children. These
four types of termite can be considered as four autonomous
groups which have a common goal of promoting the colony’s
survival.

In conventional PSO, all particles behave the same in terms
of local and global search, so particles can be considered as a
group with one strategy. However, using diverse autonomous
groups with a common goal in any population-based opti-
mization algorithm theoretically could result in more ran-
domized and directed search simultaneously. In this paper,

we mathematically model the autonomous groups, utilizing
different strategies for updating c1 and c2. In other words,
the groups behave differently in terms of the extent to which
they follow individual and social leads.

Updating strategies of autonomous groups could be imple-
mented with any continuous function whose range is in the
interval [0, L]. Figure 1 represents some of the functions
that can be used for updating cognitive and social factors.
These functions consist of ascending or descending linear
and polynomial, as well as exponential and logarithmic func-
tions. In Fig. 1, the blue and red curves can be used for
updating c1 and c2, respectively. As may be observed, c1

is decreased over the iteration, whereas cs is increased. It
is clear that particles tend to have higher local search abil-
ity when c1 is greater than c2. In contrast, particles search
the search space more globally when c2 is greater than c1.
Finding a good balance between c1 and c2 and consid-
ering them as dynamic coefficients is investigated in this
study.

We define four groups based on termite colonies which
have their own patterns to search the problem search
space locally and globally. We also develop three differ-
ent versions of PSO with different autonomous groups
named AGPSO1, AGPSO2, and AGPSO3. The dynamic

Table 6 Comparison results among all algorithms on unimodal benchmark functions

Test Function AGPSO1 AGPSO2 AGPSO3 SPSO MPSO TACPSO IPSO

F1
Average best so far 1.35E+04 1.63E+04 4.15E+03 8.69E+05 8.93E+04 3.53E+04 3.93E+04
Median best so far 1.3393E+04 1.5894E+04 4.2138E+03 8.7488E+05 8.6431E+04 3.4401E+04 3.7548E+04
SD best so far 3.3699E+03 3.7457E+03 1.1488E+03 1.9307E+04 1.3441E+04 6.4825E+03 6.3760E+03

F2
Average best so far 5.38E+04 3.47E+02 1.10E+02 7.21E+09 1.58E+06 1.21E+05 8.59E+03
Median best so far 3.9440E+04 3.4272E+02 1.1068E+02 2.7663E+08 3.5944E+05 5.3477E+04 3.5306E+03
SD best so far 4.6654E+04 6.4717E+01 1.2805E+01 3.3309E+10 6.1156E+06 1.4437E+05 1.3154E+04

F3
Average best so far 3.23E+05 2.74E+05 2.56E+05 5.03E+06 4.60E+05 2.40E+05 3.21E+05
Median best so far 2.9637E+05 2.6753E+05 2.4995E+05 5.0515E+06 4.5800E+05 2.3158E+05 3.1431E+05
SD best so far 6.1328E+04 6.4660E+04 4.6873E+04 1.7152E+06 7.4540E+04 5.7444E+04 8.0702E+04

F4
Average best so far 5.93E+01 6.28E+01 6.26E+01 9.78E+01 9.22E+01 5.88E+01 5.93E+01
Median best so far 5.9099E+01 6.2104E+01 6.2783E+01 9.7744E+01 9.6449E+01 5.8866E+01 5.9099E+01
SD best so far 3.4682E+00 3.3038E+00 2.4881E+00 4.5566E-01 8.8241E+00 2.4359E+00 3.4682E+00

F5
Average best so far 2.74E+06 2.80E+06 4.63E+05 3.82E+09 1.19E+08 2.54E+07 2.74E+06
Median best so far 2.5478E+06 2.4039E+06 4.6453E+05 3.8447E+09 1.2626E+08 2.4604E+07 2.5478E+06
SD best so far 9.5801E+05 1.4135E+06 1.4947E+05 1.6960E+08 3.0795E+07 7.6467E+06 9.5801E+05

F6
Average best so far 1.36E+04 1.64E+04 4.26E+03 8.72E+05 9.34E+04 3.54E+04 3.82E+04
Median best so far 1.3293E+04 1.6556E+04 4.0308E+03 8.7876E+05 9.2104E+04 3.5586E+04 3.7781E+04
SD best so far 2.2733E+03 3.4075E+03 1.2613E+03 2.3473E+04 1.8672E+04 5.2585E+03 6.5413E+03

F7
Average best so far 2.3529E+01 3.7165E+01 1.1886E+01 1.8920E+04 4.9963E+02 1.4398E+02 2.1712E+02
Median best so far 2.2634E+01 3.4481E+01 1.0926E+01 1.9000E+04 4.8630E+02 1.3566E+02 2.0407E+02
SD best so far 6.5380E+00 1.4691E+01 3.4267E+00 9.5780E+02 1.3928E+02 5.2471E+01 6.9669E+01
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Table 7 Comparison results among all algorithms on multimodal benchmark functions

Test function AGPSO1 AGPSO2 AGPSO3 SPSO MPSO TACPSO IPSO

F8

Average best so far −6.662E+04 −5.90E+04 −6.83E+04 −3.83E+04 −4.81E+04 −6.63E+04 −6.39E+04

Median best so far −6.719E+04 −5.819E+04 −6.896E+04 −3.785E+04 −4.707E+04 −6.674E+04 −6.377E+04

SD best so far 5.0885E+03 4.7799E+03 4.2049E+03 3.7701E+03 4.3025E+03 2.3123E+03 2.9516E+03

F9

Average best so far 1.4010E+03 1.4983E+03 1.3493E+03 3.1436E+03 2.3469E+03 1.3428E+03 1.6243E+03

Median best so far 1.3944E+03 1.4794E+03 1.3457E+03 3.1595E+03 2.3642E+03 1.3181E+03 1.3944E+03

SD best so far 7.8790E+01 1.2466E+02 1.0394E+02 1.6415E+02 9.5798E+01 9.4062E+01 7.8790E+01

F10

Average best so far 1.6990E+01 1.7313E+01 1.7089E+01 1.9966E+01 1.9356E+01 1.5317E+01 1.8093E+01

Median best so far 1.6962E+01 1.7429E+01 1.7103E+01 1.9966E+01 1.9367E+01 1.5267E+01 1.8166E+01

SD best so far 4.2914E−01 5.1447E−01 2.4298E−01 1.9365E−04 9.8243E−02 8.9630E−01 2.9006E−01

F11

Average best so far 1.9974E+02 1.7726E+02 5.5658E+01 2.8277E+03 1.2274E+03 2.5232E+02 2.7665E+02

Median best so far 2.0386E+02 1.6590E+02 4.2906E+01 2.7726E+03 1.2170E+03 2.5856E+02 2.0386E+02

SD best so far 6.7637E+01 5.3999E+01 3.6911E+01 2.9022E+02 1.7422E+02 5.6008E+01 6.7637E+01

F12

Average best so far 2.3642E+03 2.3793E+04 5.6427E+01 1.8896E+09 5.7484E+08 2.2419E+06 6.4022E+06

Median best so far 3.7962E+02 1.6973E+04 4.1806E+01 1.8026E+09 5.4422E+08 1.9938E+06 5.2430E+06

SD best so far 4.6017E+03 2.3723E+04 3.8456E+01 5.1837E+08 2.8703E+08 1.5327E+06 3.9894E+06

F13

Average best so far 3.7934E+05 1.2170E+06 3.4986E+04 3.6421E+09 1.1519E+09 2.2574E+07 5.3217E+07

Median best so far 2.2776E+05 7.8352E+05 2.5203E+04 3.6631E+09 1.0375E+09 2.1180E+07 3.8380E+07

SD best so far 3.9792E+05 1.3654E+06 3.5129E+04 6.7487E+08 5.0529E+08 1.1331E+07 7.9149E+07

coefficients of these algorithms are presented in Table 1
and Figs. 2, 3, 4. In this table, T indicates the maxi-
mum number of iterations and t is the current iteration.
We try to use a diverse range of functions to investigate
their effects on the performance of PSO. These functions
have been chosen with different slopes, curvatures, and
interception points to investigate the efficiency of these
characteristics in improving the performance of PSO. For
instance, the particles of AGPSO1 in group 1 tend to fol-
low social behavior earlier than other groups, followed by
group 2. In contrast, the particles in group 4 prefer to
search individually in the majority of the iterations since
the intersection points of c1 and c2 are close to the last
iterations.

It may be observed that AGPSO1 uses two linear functions
for group 1, linear and cubic functions for groups 2 and 3,
and two cubic functions for group 3. AGPSO2 employs two
logarithmic, two cubic, two exponential, and two quadratic
functions for groups 1 to 4, respectively. It is worth men-
tioning that these functions have different patterns, changing
during the course of the iterations. For instance, the particles
in group 1 of AGPSO 2 tend to change the global and local

search ability much earlier than group 2. AGPSO3 utilizes
two principal third root, two cubic functions for groups 1 and
2 as well as one principal third root and cubic functions for
groups 3 and 4.

In PSO with autonomous groups (AGPSO), at first all par-
ticles are randomly placed in the problem search space. After
that, the particles are randomly divided into some predefined
autonomous groups. At each iteration, gBest, pBest, and the
fitness of the particles are defined. For each particle, the coef-
ficients c1and c2 are updated using its group’s strategy. After
calculating c1and c2, the velocities and positions of particles
will be updated using Eqs. (1) and (2). Figure 5 shows the
pseudo-code of AGPSO.

To see how autonomous groups are effective in AGPSO,
some points may be noted:

• Autonomous groups have different strategies to update c1,
so particles could explore the search space locally with
different capability than the convectional PSO.

• Autonomous groups have different strategies to update
c2, so particles could follow social behavior more
autonomously than the conventional PSO.
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Table 8 Comparison results among all algorithms on fixed-dimension benchmark functions

Test function AGPSO1 AGPSO2 AGPSO3 SPSO MPSO TACPSO IPSO

F14

Average best so far 9.98E−01 9.98E−01 9.98E−01 9.98E−01 9.98E−01 9.98E−01 9.98E−01

Median best so far 9.98E−01 9.98E−01 9.98E−01 9.98E−01 9.98E−01 9.98E−01 9.98E−01

SD best so far 3.3876E−16 3.3876E−16 3.3876E−16 3.3876E−16 3.3876E−16 3.3876E−16 3.3876E−16

F15

Average best so far 3.3824E−04 3.9905E−04 3.6853E−04 1.0108E−03 4.4773E−04 4.1489E−04 4.1489E−04

Median best so far 3.0749E−04 3.0749E−04 3.0749E−04 7.8266E−04 3.0749E−04 3.0749E−04 3.0749E−04

SD best so far 1.6714E−04 2.7940E−04 2.3232E−04 4.6281E−04 2.7642E−04 2.8739E−04 2.8739E−04

F16

Average best so far −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

Median best so far −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

SD best so far 0 0 0 0 0 0 0

F17

Average best so far 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979

Median best so far 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979

SD best so far 0 0 0 0 0 0 0

F18

Average best so far 3 3 3 3 3 3 3

Median best so far 3 3 3 3 3 3 3

SD best so far 0 0 0 0 0 0 0

F19

Average best so far −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628

Median best so far −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628

SD best so far 0 0 0 0 0 0 0

F20

Average best so far −3.2625 −3.2586 −3.2824 −3.2361 −3.2704 −3.2665 −3.2665

Median best so far −3.2625 −3.2031 −3.3220 −3.2031 −3.3220 −3.3220 −3.3220

SD best so far 6.0463E−02 6.0328E−02 5.7005E−02 7.5065E−02 6.0063E−02 6.0328E−02 6.0328E−02

F21

Average best so far −8.4675 −9.3111 −9.1412 −8.1262 −7.8784 −8.6360 −8.7238

Median best so far −10.1532 −10.1532 −10.1532 −10.1532 −10.1532 −10.1532 −10.1532

SD best so far 2.4247 1.9151 2.0586 2.5251 2.6820 2.3573 2.4471

F22

Average best so far −9.5225 −10.0513 −10.0513 −9.6984 −9.5212 −9.8755 −9.8742

Median best so far −10.4029 −10.4029 −10.4029 −10.4029 −10.4029 −10.4029 −10.4029

SD best so far 2.0023 1.3381 1.3381 1.8271 2.0054 1.6093 1.6135

F23

Average best so far −10.3577 −9.4643 −10.0003 −9.4627 −10.3561 −10.0003 −10.5364

Median best so far −10.5364 −10.5364 −10.5364 −10.5364 −10.5364 −10.5364 −10.5364

SD best so far 0.9787 2.1810 1.6357 2.1842 0.9873 1.6357 0

• Dynamic and diverse patterns of c1 and c2 cause balanc-
ing between local and global search during the course of
iterations.

• Autonomous groups contain non-linear patterns such
as exponential and logarithmic functions for c1 and
c2, so they could be more effective than the con-

ventional PSO in solving complex optimization prob-
lems.

• PSO with autonomous groups has diverse strategies for
updating c1 and c2, so it perhaps could be more adaptable
than the conventional PSO in solving a wider range of
optimization problems.
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Fig. 6 Convergence curves of the algorithms on unimodal benchmark functions

These points theoretically could give AGPSO the potential
of having high performance. In the following section, the
effectiveness of AGPSO is investigated and proved.

5 Experimental Results and Discussions

5.1 Selected Benchmark Functions

As shown in Tables 2, 3, 4, twenty-three standard bench-
mark functions are employed to testify the performance of
AGPSO [9,36–41]. The objective is to find the global mini-
mum. These benchmark functions can be divided into three
groups: unimodal, multimodal, and fixed-dimension multi-
modal. In these tables, Dim indicates the dimension of the
function, Range gives the boundaries of the search space, and
fmin is the minimum value of the function. Note that uni-
modal and multimodal functions with 300 dimensions have
been chosen to examine the performance of the proposed

method in dealing with problems of high dimensionality. In
addition, ten fixed-dimension benchmark functions have also
been selected to provide a comprehensive study. A detailed
description of the benchmark functions is available in the
Appendix.

To validate the results of AGPSO, it is compared with
the conventional and some recent modifications of PSO with
time-varying accelerators such as TACPSO [32], MPSO [33],
and IPSO [34]. Please note that the source codes of the
AGPSO algorithm can be found in http://www.alimirjalili.
com/Projects.html.

5.2 Parameter Setting

The coefficients of SPSO, TACPSO, MPSO, and IPSO are
listed in Table 5. The inertial weight w for all the algo-
rithms AGPSO1 to AGPSO3 is decreased linearly from 0.9
to 0.4. There are 100 particles, and the maximum iteration is
2000.
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Fig. 7 Convergence curves of the algorithms on multimodal benchmark functions

5.3 Performance Analysis

To compare the performance of all algorithm, the results are
collected over 30 independent runs. The average, median, and
standard deviation of the best solution in the last iteration are
reported in Tables 6, 7, 8. The best results are indicated in
bold type.

Table 6 shows the results for unimodal functions. As may
be seen from this table, AGPSO3 has the best results in
five out of seven unimodal benchmark functions. In general,
the results of AGPSO1 to AGPSO3 are much better than
the other algorithms. These results show that autonomous
groups could improve the performance of PSO algorithm
for these benchmark functions. Figure 6 illustrates the con-
vergence curves of the algorithms. As can be seen from
these curves, AGPSO3 has the best convergence rates for
most of the benchmark functions, followed by AGPSO1
and AGPSO2. It is worth noting that unimodal benchmark
functions have only one global minimum and there are
no local minima in the search space. So these kinds of
functions are quite suitable for benchmarking the conver-
gence ability of algorithms. Consequently, the results of the
AGPSO algorithms indicate that autonomous groups could
improve the convergence ability of the PSO algorithm sig-
nificantly. The reason for the superior results is that the
particles have diversity in the population and are able to
exploit knowledge of the location of near optimal solutions
effectively.

The results for the multimodal benchmark functions are
provided in Table 7. In contrast to the unimodal func-
tions, these benchmark functions have many local min-
ima that increase exponentially with problem dimension-
ality. Therefore, they are suitable for benchmarking the
capability of algorithms in avoiding local minima. As the
results show, AGPSO3 performs better than the other algo-
rithms in most of the multimodal benchmark functions. The
only benchmark function on which AGPSO3 is not able to
outperform TACPSO is F10, but the results of these two
algorithms are very close. In general, the AGPSO algo-
rithms have the best results. The results of Table 7 show
that the autonomous groups increased the performance of
the PSO algorithm in terms of avoiding local minima. As
may be observed in Fig. 7, similar to the results of uni-
modal benchmark functions, the convergence rate of the
AGPSO algorithms is better than the other algorithms.
The AGPSO3 algorithm has the best convergence rates
of the AGPSO algorithms. The reason for the improved
ability in avoiding local minima is that the autonomous
groups give AGPSO more randomized search in compari-
son with the conventional and recent modifications of the
PSO algorithm, so the particles are not easily trapped in local
minima.

In contrast to the multimodal functions, the fixed-dimen-
sion multimodal benchmark functions have few local min-
ima. As shown in Table 8, the results of all algorithms
are equal on five of the functions. However, the AGPSO
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Fig. 8 Convergence curves of the algorithms on fixed-dimension multimodal benchmark functions

algorithms outperform the other algorithms on F15, F20,
F21, and F22. AGPSO3 has the best results in three of
these functions. Figure 8 illustrates the convergence behav-
ior of the algorithms dealing with fixed-dimension func-
tions. All the algorithms have close convergence curves,
slightly better for the AGPSO algorithms. The similar-
ity of results and convergence curves is due to the low-
dimensional characteristic of these benchmark functions; the

effect of autonomous groups is more observable for the high-
dimensional problems.

To summarize, the results show that the proposed method
is useful for the PSO algorithm in terms not only of avoiding
local minima but also improved convergence rate. Statisti-
cally speaking, the AGPSO3 algorithm has the best results
for seventeen out of twenty-three benchmark functions, more
than half. The AGPSO1 and AGPSO2 algorithms also show
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the best results on 5 and 6 benchmark functions, respec-
tively. This shows that there is a significant superiority for the
AGPSO3 algorithm compared to others. As can be seen in
the tables, generally the results of the AGPSO algorithms are
much better than those of the SPSO algorithms. The SPSO
algorithm provides good results on 5 out of 23 test functions,
mostly on low-dimensional functions. However, the AGPSO
algorithms show much better results on high-dimensional
unimodal and multimodal test functions. The results of uni-
modal functions revealed that SPSO failed to provide fast
convergence behavior in the high-dimensional problems,
whereas the proposed approach allows AGPSO to provide
high convergence rates because of different cognitive behav-
iors for particles. In addition, the results of high-dimensional
multimodal functions indicated the poor ability of SPSO in
avoiding local optima. The results of the AGPSO algorithms
show that the proposed autonomous groups allow particles
to have different patterns for following the social behavior of
the whole swarm, resulting in higher local optima avoidance
capability.

Among the three proposed groups, the third groups show
much better results. As can be inferred from Figs. 2 to 4,
group 1 of AGPSO3 has the most local search ability because
the intersection point of c1 and c2 is close to the start of iter-
ations. However, group 2 better allows particles to search
globally because c1 intersects c2 after almost three quarters
of the allowed iterations. Group 3 and group 4 also provide
smooth transition between local and global search ability.
This combination prevents particles from easily becoming
trapped in local optima. This is the main reason for the
superior results of the proposed autonomous groups (espe-
cially the third group). It should be noted that this remark-
able improvement has been made just with dividing particles
to autonomous groups and utilizing the new mathematical
functions. There is no extra computational cost for the pro-
posed method. The results support the contention that the
proposed approach has merit for solving high-dimensional
problems.

6 Conclusion

In this paper, a new modification of PSO called AGPSO
is proposed utilizing the concept of autonomous groups
inspired by the diversity of individuals in natural colonies.
Three versions of AGPSO with different autonomous groups
were introduced. To evaluate their performance, twenty-three
benchmark functions were employed, and the results com-
pared with the conventional, and some recent modifications
of PSO. The results show that AGPSO has merit compared
to other algorithms in terms of improving avoidance of trap-
ping in local minima and convergence speed, particularly for
problems of higher dimensionality. The results also showed
that dividing particles in groups and allowing them to have
different individual and social behavior can improve the per-
formance of PSO significantly without any extra computa-
tional burden.

For future studies, it would be interesting to apply AGPSO
in optimization problems to evaluate the efficiencies of
AGPSO in solving real-world problems. Increasing the num-
ber of autonomous groups is also worthy of investigation.
Moreover, employing different types of function with greater
variety of slopes, curvatures, and interception points is rec-
ommended for future study.

Appendix

Tables 9, 10, 11, 12, 13 14, 15, 16 contain the details of the
benchmark functions.

Table 9 ai, j in F14

ai, j =
( −32,−16, 0, 16, 32,−32, . . . ., 0, 16, 32

−32,−32,−32,−32,−16, . . . ., 32, 32, 32

)
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Table 10 ai and bi in F15

i 1 2 3 4 5 6 7 8 9 10 11

ai 0.1957 0.1947 0.1735 0.1600 0.0844 0.0627 0.0456 0.0342 0.0342 0.0235 0.0246

b−1
i 0.25 0.5 1 2 4 6 8 10 12 14 16

Table 11 aij and ci in F19 i ai1 ai2 ai3 ci

1 3 10 30 1

2 0.1 10 35 1.2

3 3 10 30 3

4 0.1 10 30 3.2

Table 12 pi j in F19 i pi1 pi2 pi3

1 0.3689 0.1170 0.2673

2 0.4699 0.4387 0.7470

3 0.1091 0.8732 0.5547

4 0.03815 0.5743 0.8828

Table 13 ai j and ci in F20 i ai1 ai2 ai3 ai4 ai5 ai6 ci

1 10 3 17 3.5 1.7 8 1

2 0.05 10 17 0.1 8 14 1.2

3 3 3.5 1.7 10 17 8 3

4 17 8 0.05 10 0.1 14 3.2

Table 14 pi j in F20 i pi1 pi2 pi3 pi4 pi5 pi6

1 0.131 0.169 0.556 0.012 0.828 0.588

2 0.232 0.413 0.830 0.373 0.100 0.999

3 0.234 0.141 0.352 0.288 0.304 0.665

4 0.404 0.882 0.873 0.574 0.109 0.038

Table 15 ai j and ci in F21, F22,
and F23

i ai1 ai2 ai3 ai4 ci

1 4 4 4 4 0.1

2 1 1 1 1 0.2

3 8 8 8 8 0.2

4 6 6 6 6 0.4

5 3 7 3 7 0.4

6 2 9 2 9 0.6

7 5 6 3 3 0.3

8 8 1 8 1 0.7

9 6 2 6 2 0.5

10 7 3.6 7 3.6 0.5
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Table 16 Best solution for
fixed-dimension multimodal
functions

F X output F min

F14 (−32, 32) 1

F15 (0.1928, 0.1908, 0.1231, 0.1358) 0.00030

F16 (0.089, −0.712), (−0.089, 0.712) −1.0316

F17 (−3.14, 12.27), (3.14, 2.275), (9.42, 2.42) 0.398

F18 (0,_1) 3

F19 (0.114, 0.556, 0.852) −3.86

F20 (0.201, 0.15, 0.477, 0.275, 0.311, 0.657) −3.32

F21 5 local minima in ai j , i = 1, 2, 3, 4, 5 −10.1532

F22 7 local minima in ai j ,i = 1, 2, 3, 4, 5, 6, 7 −10.4028

F23 10 local minima in ai j , i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 −10.5363
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