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Abstract This paper studies a real case of bin packing prob-
lems. The problem is inspired from a car manufacturer that
aims at improving logistic activities of its engine assembly
line. It is to plan transportations of parts from a warehouse to
workstations. The first objective is to find the minimum pos-
sible motorized vehicles to conduct all the transportations.
The second objective is to smooth the workload of vehickles
to the maximum extent possible. To tackle the problem, it is
first formulated in form of a mixed integer linear program-
ming model. Then, a local-based greedy heuristic is proposed
to solve the problem in large-sized cases.
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1 Introduction

A bin packing problem (BPP) is referred to as the problem in
which objects of different volumes have to be packed into a
finite number of bins with limited capacity [1,2]. The objec-
tive is to minimize the number of bins needed. Some other
variations of BPP are two-dimensional packing, linear pack-
ing, packing by weight, packing by cost, and so on [3–5].
BPP belongs to a special class of combinatorial optimiza-
tion problems, known as NP-hard problems [6,7]. Falkenauer
[8] proposes a grouping genetic algorithm to solve cluster-
ing problems. Chan et al. [9] and Kang et al. [10] propose
genetic algorithms to solve BPPs. Other metaheuristics are
also applied, for example, simulated annealing by Dowsland
[11], particle swarm optimization by Liu et al. [12] and vari-
able neighborhood search by Hemmelmayr et al. [2].

BPPs have many applications, such as filling up contain-
ers, loading trucks with weight capacity, creating file backup
in removable media and technology mapping in field-progra-
mmable gate array semiconductor chip design [13,14]. The
problem treated is inspired by a real case study concern-
ing Irankhodro Co., a well-known Iranian car manufacturer.
Irankhodro Co. is essentially interested in improving logis-
tics activities of its assembly lines.

Assembly lines are designed for flow-oriented produc-
tion systems. They are mainly intended for continuous pro-
duction of high-volume and low-variety commodities [15].
An assembly line consists of workstations arranged along
a conveyor belt or a similar mechanical material handling
equipment. The commodities are sequentially passed through
the line and are moved from a workstation to the next. At
each workstation, several tasks, typically installing parts to
commodities, are repeatedly performed and their operation
sequence or precedence relationship is predetermined [16–
18].
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Fig. 1 The schematic view of
the problem

Typically, a simple assembly line balancing problem can
be stated as follows. Given a set of tasks, time requirement of
each task, and precedence relationship of tasks, the problem
is to assign the tasks to an ordered sequence of workstations
while meeting the production requirement at minimum num-
ber of workstations or minimum cycle time [19].

The problem under consideration is inspired from assem-
bly line of Irankhodro Co.; yet it is not actually the classical
assembly line balancing itself. It is necessary to indicate that
apart from transporters, like conveyors, needed for moving
commodities themselves to next workstations, some other
transporters are also required. These transporters carry the
parts, assembled on commodities at each workstation, from
the warehouse to each workstation. These transporters could
be either manual trucks or motorized vehicles such as lift
trucks.

In Irankhodro Co., the assembly line is already balanced
and optimal assignment of tasks to each workstation is deter-
mined. Now, Irankhodro Co. aims at determining the mini-
mum number of lift trucks required to transfer parts from the
local warehouse of the assembly line to their corresponding
workstations. After finding the minimum possible lift trucks
to conduct all transportations, there is a second objective
which is to smooth the workload of each used lift truck to
maximum extent possible. In other words, the purpose is to
make the work of each lift truck equal or nearly equal. There-
fore, the case of Irankhodro Co. is a multi-objective problem.
Figure 1 shows the schematic of the problem.

In its principles, this problem is more similar to BPP than
assembly line balancing. To describe the problem in bin pack-
ing terms, we can state that each part transportation is an
object and the transportation time can be considered as the
volume of object. Each lift truck is like a bin and the total
available time of a lift truck is the capacity of bin. There
are some other technical constraints regarding other aspects
of the problem discussed later. This paper first designs a
mathematical model in the form of mixed integer linear pro-
gramming model to deal with the problem. It then proposes
an effective greedy heuristic algorithm to solve large-sized
problems.

The rest of the paper is organized as follows. Section 2 for-
mally defines and formulates the problem. Section 3 presents
the proposed local search greedy heuristic. Section 4 solves
the real case studied. Section 5 finally concludes the paper.

2 Problem Definition and Formulation

The problem under consideration is inspired from a real case
study in Irankhodro industrial Co., an Iranian car manufac-
turer. In this problem, there are a set of n tasks each of
which corresponds to transportation of one part from a local
warehouse to a workstation. The time execution of task j
(i.e., the transportation time of carrying a batch of part j
to its corresponding workstation) is denoted by p j where
j = 1, 2, . . . , n. There are a maximum number of m lift
trucks available to operate the tasks. The daily production
rate is D. The batch size and quantities of part j in the end
product are b j and r j , respectively. Since there is no holding
place in workstations, only one batch can be held close to the
workstation. In this case, for each part j , one lift truck needs
to operate task j a number of D · r j

b j
times. Therefore, it daily

takes

p j

(
D · r j

b j

)

time units from one lift truck to carry part j . For example,
assume production rate (D) = 1,000, batch size (b j ) =
100, quantities of part in the end product (r j ) = 2 and the
transportation time of each batch from the warehouse to the
workstation (p j ) = 15. For this part, 1,000· 2

100 = 20 batches
are daily needed. Since p j = 15, the total transportation time
of this part becomes 300 time units.

The total working time of a day is denoted by C time
units while the allowance is A time units. This results in a
total of C − A daily available time units for each lift truck. In
our case, we interpret this problem as a bi-objective case
in lexicographic manner (more details could be found in
Chankong and Haimes [20]). That is, the objectives are opti-
mized sequentially, not simultaneously. The first objective is
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to find the minimum number of lift trucks. The second objec-
tive is to assign parts to lift trucks to carry parts from the local
warehouse to workstations in such a way that the used lift
trucks have the equal (or near equal) workload. To smooth
the workload assigned to lift trucks, we decided to minimize
the maximum workload difference among lift trucks.

The assignment has to be done in a way that one part is
allocated to exactly one lift truck. Moreover, for ease of trans-
portation and to avoid any interruption, disordering of the
assignments is prevented. In other words, tasks are sequen-
tially assigned to lift trucks. For example, consider three parts
j − 1, j and j + 1. It is not feasible to assign parts j − 1
and j + 1 to one lift truck while assigning part j to another
lift truck.

Before presenting the mathematical model, the established
notations and parameters are presented below.
n Number of tasks (parts)
m Maximum number of available lift trucks
j Index for tasks
i, l Indices for lift trucks
D Production rate
p j Execution time of activity j in minutes
b j Batch size of activity
r j Quantities of part j in end product
C Total available time in minutes
A Allowance time in minutes

The problem under consideration can be mathematically
formulated as a mixed integer linear programming model. To
formulate the problem, two binary variables are defined. The
first one is used to show the lift truck assignment of tasks
and the second one is to count the number of lift trucks used.
These two binary variables are:
X j,i Binary variable taking value 1 if task j is carried

out by lift truck i , and 0 otherwise
Yi Binary variable taking value 1 if lift truck i is used,

and 0 otherwise
Apart from the binary variables, the following continuous

variable is also established.
W Continuous variables for measuring the maximum

workload deviation
The mathematical formulation is as follows:

Minimize Z1 =
m∑

i=1

Yi (1)

Minimize Z2 = W (2)

Subject to:

m∑
i=1

X j,i = 1 ∀ j (3)

X j,i ≤ X j+1,i + X j+1,i+1 ∀ j<n, i<m (4)

X j,m ≤ X j+1,m ∀ j<n (5)

n∑
j=1

X j,i

(
Pj · D · r j

b j

)
≤ C − A ∀i (6)

n∑
j=1

X j,i ≤ n · Yi ∀i (7)

n∑
j=1

X j,l

(
Pj · D · r j

b j

)
−

n∑
j=1

X j,i

(
Pj · D · r j

b j

)

−(C − A)(1 − Yi ) ≤ W ∀i,l �=i (8)

W ≥ 0 (9)

X j,i , Yi ∈ {0, 1} (10)

Equations 1 and 2 present objective functions including
the number of lift trucks used and the maximum workload
difference among the lift trucks used, respectively. Constraint
set 3 assures that each task j is assigned to exactly one lift
truck. Constraint sets 4 and 5 together specify that the dis-
ordering of assignment has to be avoided. Constraint set 6
ensures that lift truck overloading does not occur; that is, the
total time required by a lift truck to carry out the assigned
task does not exceed the total available time. Constraint set
7 is used to indicate if each lift truck i is used or not. Con-
straint set 8 calculates the maximum workload difference of
lift trucks. Constraint sets 9 and 10 define the decision vari-
ables.

Table 1 presents the number of binary variables and con-
straints needed by the model to formulate a problem with n
tasks and m available lift trucks.

The proposed mixed integer linear programming model is
bi-objective; therefore, multi-objective tools can be used. It
is necessary to remind that the real case is going to be solved
in lexicographic manner. After careful review of the model
and the real case, it is found out that we can convert the multi-
objective lexicographic model into a single-objective model
by considering the following objective.

Minimize
m∑

i=1

Yi +
(

1

(C − A)

)
W

where the first term corresponds to minimizing the number
of lift trucks used and the second term refers to minimizing
smoothing rate.

In fact, the model optimizes the objectives sequentially
since the second term never exceeds one. Therefore, the pri-

Table 1 The number of binary variables and constraints

Binary variables Continuous variables Constraints

Volume mn + m 1 2n + m2 + nm
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ority of minimizing the number of lift trucks is always more
than smoothing the workload.

3 The Proposed Heuristic Algorithm

Although the BPP is NP-hard [4], we found that the mathe-
matical model of relatively large instances could be solved to
optimality by common specialized operations research soft-
ware such as LINGO 10. To tackle even larger-sized prob-
lems, an approximation is necessary. We therefore propose
a simple yet effective heuristic algorithm. A quality solution
could be generated through rules used in this algorithm.

The proposed heuristic algorithm first attempts to find the
minimum number of lift trucks, then attempts to maximize
the smoothing rate. To this end, we use the simple first fit algo-
rithm [21] to determine the minimum number of lift trucks.
The algorithm assigns tasks (starting from task 1, task 2 and
so on) to lift truck 1 to extent possible. Then, the maximum

Fig. 2 The example for encoded solution

possible tasks are assigned to lift truck 2. The procedure pro-
ceeds until all tasks are assigned to lift trucks. The number of
lift trucks used is the approximation number of the minimum
possible lift trucks needed to conduct tasks.

Next, the algorithm looks for smoothing the workload of
lift trucks. The initial solution of this phase is the one found
in previous phase. We use the following encoding scheme to
represent a solution to the algorithm. The encoded solution
is a string of lift truck numbers. For example, consider a
problem with ten tasks where at least three lift trucks are
needed to carry them out. Figure 2 presents one possible
solution.

To improve the solution obtained by the first phase, we
propose a local search-based heuristic with following steps:
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Fig. 3 Two new solutions generated by the operator

To better clarify the operator used in Step 4, consider the
solution presented in Fig. 2, and suppose the lift truck with
maximum workload deviation is lift truck 2 and its workload
is greater than the average. Therefore, two new solutions are
generated as shown in Fig. 3. The W of these two solutions
is calculated and the solution with lower W is accepted.

4 Numerical Experiments

This section evaluates the performance of the mixed integer
linear programming model and the proposed local search-
based algorithm. First, we use the data taken from the real
case in Irankhodro Company. Later, we generate a set of
experimental instances to further evaluate the performance.

4.1 The Results on the Case Study: Irankhordo Co.

The case studied in this paper is taken from engine assembly
line of Peugeot 206. In this assembly line, there are 72 tasks
and a maximum of four lift trucks available. The working
time per shift is 480 min while the allowance time is 30 min.
The production rate is 240 per working shift. After obtaining
values of b j , r j and p j , the model is used to solve the real
case to optimality. Tables 2, 3 and 4 show that frequency of
b j and r j for 264 parts, respectively. Cumulative frequency
is the total frequency below the given part batch. The relative
frequency is the proportion of parts belonging to the given
part batch.

We also ran the local search heuristic algorithm to evalu-
ate its performance. The mathematical model and the heuris-
tic algorithm are coded into LINGO 10 and Borland C++,

Table 2 The frequency of b j

Part batch Frequency Cumulative
frequency

Relative
frequency (%)

1–100 2 2 3

101–200 5 7 7

201–300 10 17 14

301–400 8 25 11

400–500 11 36 15

500–600 29 65 40

>600 7 72 10

Total 72 100

Table 3 The frequency of r j

r j Frequency Cumulative
frequency

Relative
frequency (%)

1 53 53 74

2 10 63 14

3 2 65 3

4 7 72 10

Total 264 100

Table 4 The average RPD obtained by the solution methods

Instance Model Algorithm

D n Average
RPD

Time
(s)

Optimality
gap (%)

Objective Time
(s)

200 40 0.0 497 0 6.2 5

70 3.6 5,000 10.2 2.4 4

100 15.3 5,000 22.1 0.0 8

150 – 5,000 – 0.0 15

300 40 0.0 5,000 0 4.6 4

70 10.6 5,000 13.7 1.2 6

100 18.3 5,000 25.4 0.0 9

150 – 5,000 – 0.0 18

400 40 0.0 506 0 3.6 4

70 8.7 2,106 9.6 1.5 9

100 21.9 5,000 29.5 0.0 12

150 – 5,000 – 0.0 17

respectively. The MILP model optimally solves the problem
with computational time of 1,047 s. The optimal solution
shows that three lift trucks can carry out the tasks. Regarding
the second objective, the optimal solution has a very small
maximum workload deviation (2.8 %). The heuristic algo-
rithm finds also the minimum of three lift trucks needed to
do tasks. It also assigns tasks with a very close to optimal
maximum workload deviation (3.4 %), less than 1 % differ-
ence.

4.2 Experimental Instances

The required data for a problem consist of n, m, p j , b j , r j ,D,
C and A. We choose to use

n = {40, 70, 100, 200} and D = {200, 300, 400}.
Parameter m is set to 5Dn

10,000 lift trucks as the upper bound
of lift trucks needed. Parameters p j and r j are generated
from uniform distributions over (5, 20) and (1, 3), respec-
tively. Parameter b j of a task is randomly set to these num-
bers {50, 100, 150, 200}. For parameters C and A, we have
C − A = {400}. Therefore, there are 12 combinations of
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Fig. 4 Average RPD obtained by the algorithms in different sizes of
the number of tasks

n and D. We generate five instances for each combination,
summing up to 60 instances.

To compare the performance of the proposed heuristic and
MILP model, we use relative percentage deviation (RPD)
which is as follows.

RPD = Algx − Min

Min

where Min is the best solution obtained by algorithms in any
of instances, and Algx is the solution obtained by algorithm x .
The MILP model is capable of optimally solving 21 out of 60
instances. In the rest, the heuristics obtain better solutions.
On average, the heuristic gains lower RPD than the MILP
model.

Figure 4 shows the average RPD obtained by the heuris-
tic and MILP model in different sizes of n. Regarding the
computational time, the heuristic is much faster than MILP
model. The average computational time of the heuristic is 9 s
while the MILP model is given a computational time limit of
5,000 s. To statistically compare the methods, we use one-
way analysis of variance (ANOVA) test where the type of
method is the single factor. The results show that there is
a statistically difference between the performance of meth-
ods with p value very close to zero (p value = 0.007). The
MILP model is statistically more effective than the heuristic
in small-sized instances. While in larger sizes, the heuristic
statistically outperforms the MILP model.

5 Conclusion

A real case of BPPs inspired from an Iranian car manufacturer
was studied. The problem was to investigate logistic activities

of its assembly line. There were some workstations in which
parts were assembled to semi-finished products. These parts
first had to be transported to workstations by lift trucks. The
objective was to find the minimum possible lift trucks to
conduct all transportations as well as smoothing the workload
of lift trucks. The problem was formulated through a mixed
integer linear programming model. To solve the problem in
large-sized cases, a local-based heuristic was proposed. In
this algorithm, first the minimum number of lift trucks is
determined, then, the workloads smoothed. The model and
algorithm were evaluated by solving the real data taken from
the company.

As a future research direction, it is interesting to adapt
and develop other novel heuristics for the problem under
consideration. It can be also interesting to consider the case of
bi-objective BPP to simultaneously minimize the minimum
number of bins and workload variance among the bins.
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