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Abstract Rainfall-runoff simulation is one of the key steps
in hydrology. Conceptual models are frequently used in
rainfall-runoff simulation. However, a major difficulty in
practice remains on how to optimize the parameters of the
model. This is often a time-consuming and labor-intensive
task for the modeler when manual calibration is adopted to-
gether with employing the knowledge of the model structure
and parameters. In this study, an automatic calibration tool
was developed to calibrate the ARNO conceptual rainfall-
runoff model using the simple genetic algorithm (SGA). SGA
is a simple, powerful, and popular optimization method,
which explores the search space for the global optimum and
has been successfully employed in many optimizations prob-
lems. The ARNO model was calibrated automatically for
rainfall-runoff simulation of the Pataveh basin, which is a
sub-basin of Karun River basin in Iran. The simulation per-
formance of the model was evaluated on the basis of various
performance criteria. Efficiency coefficient and coefficient of
determination reached values higher than 0.80 during calibra-
tion and validation. The values of the remaining performance
statistics were acceptable. The results show that this model
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Abbreviations
b A parameter representing spatial distribution of the

soil moisture capacity
B Base flow
B–C Blaney and Criddle method
c Exponent used to represent drainage when saturation

is not reached
C A small integer
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CE Coefficient of efficiency
D Drainage
Dmax Maximum drainage that should be expected

when the soil is completely saturated
Dmin A drainage parameter
EOPT An objective function
EQ Percentage error of mean

discharge
EQp Percentage error of mean annual peak

discharges
ESD Percentage error of standard deviation
ESkew Percentage error of skewness
ETa Actual evapotranspiration
ET0 Reference evapotranspiration
ET0H−S Hargreaves and Samani ET0
ET0P−M Penman-Monteith ET0
ETp Potential evapotranspiration
f ′ Scaled fitness function
GA Genetic algorithm
H–S Hargreaves and Samani method
I Percolation
Is Maximum percolation should be expected

when the soil is completely saturated
K Number of calibration years
l Length of a gene
L Chromosome length
m Number of years in period of model

performance evaluation
Me Effective meteorological input
N Population size
n Number of days in period of model

performance evaluation
OBF An objective function
P Precipitation
Pc Crossover probability
Pm Mutation probability
P–M Penman-Monteith method
Qobs Average observed flow over the considered

period
Qobs(t) Observed flow
Qpobs Mean annual observed peak discharges
Qpsim Mean annual simulated peak discharges
Qsim Average simulated flow
Qsim(t) Simulated flow
R Surface runoff
R2 Coefficient of determination
SD (Qobd) Standard deviation of observed runoff
SD (Qsim) Standard deviation of simulated runoff
SGA Simple genetic algorithm
SG Generic pervious surface area at saturation
SI Basin impervious area
Skew (Qobs) Skewness of observed runoff

Skew(Qsim) Skewness of simulated runoff
SP Basin pervious area
ST Basin surface area (excluding the surface

extent of water bodies such as reservoirs or
lakes)

Th Thornthwaite method
Umax Upper limit of the parameter
Umin Lower limit of the parameter
Vobs Observed flow volume
Vsim Simulated flow volume
w Elementary area soil moisture at saturation
W Basin average soil moisture content
Wd Moisture content threshold value in

drainage calculation
Wi Moisture content threshold value below

which the percolation is negligible

wm Maximum possible soil moisture in any
elementary area of the basin

Wm Basin average soil moisture content at
saturation

x Proportion of pervious area at saturation
�t Time step
μOBF Average of the OBF of all the

chromosomes in the population
μOBF(90 %) Average of the OBF values of 90 % of best

chromosomes in the population
π Precision of the parameter in parameter

estimation
σOBF Standard deviation of the OBF of all the

chromosomes in the population
σOBF(90 %) Standard deviation of the OBF values of 90 %

of best chromosomes in the population

1 Introduction

1.1 Calibration of Rainfall-Runoff Models

Rainfall-runoff modeling is one of the key steps in scien-
tific hydrology and environmental management [1]. Many
rainfall-runoff models have been developed by hydrologists
to model the rainfall-runoff process. These models, among
others, are classified as physically based and conceptual [2].
The physically based models are based on scientifically ac-
cepted principles for describing hydrological processes
which control the basin responses. These types of models are
appealing to some extent as they provide a mathematically
idealized representation of the real phenomenon. However,
they require huge basin data, which are usually difficult to
obtain, and high computational needs [3].

The other type of models mentioned above is the concep-
tual ones which consider hydrological processes, perceived
to be of importance, as simplified conceptualizations [3].
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They can provide the reality with reasonable accuracy, re-
quiring input data which are readily available for most appli-
cations. The parameters of these models are conceptual rep-
resentations of abstract basin characteristics, and, in general,
should be obtained through a calibration process. Compared
to physically based models, conceptual models are more fre-
quently used in hydrological applications. However with re-
gard to the calibration process, a major difficulty in practice
is how to optimize the parameters of the model. That is be-
cause most of these models have a large number of parameters
and appropriate parameter set should be found within a large
multidimensional parameter space [4]. Furthermore, the ob-
jective function surface is often non-convex, nonlinear, and
may have numerous local optima [5–7].

The calibration process is performed either manually or
automatically, and uses a computer-based technique. Man-
ual calibration employs a try-and-error process of parameter
adjustments. This is a time-consuming and labour-intensive
task for the modeler unless he has an extensive knowledge re-
garding the model structure and parameters. Therefore, many
modelers resort to automatic calibration.

In automatic calibration technique, a computer-based
search algorithm explores the search space. This is fast and
more efficient for detailed investigation of the search space
for finding the global optimum. Various optimization algo-
rithms have been employed as the basis of automated cali-
bration method.

In general, optimization algorithms can be classified into
local and global optimization methods [8]. The local opti-
mization methods, such as gradient-based optimization algo-
rithms, are efficient for locating the optimum of a uni-modal
function. But they are inappropriate for multi-modal func-
tions, because they may be trapped in a local optimum since
that does not ensure that the global optimum is found [9].
In this respect, the possibility of reaching a global optimum
largely depends on the location of the starting point of the
search [10]. On the other hand, global optimization methods
are especially designed for locating the global optimum.

Research into optimization methods has led to the use
of global search methods such as genetic algorithms (GAs)
[11] and shuffled complex evolution (SCE) algorithm [5].
These methods have been successfully employed in the cali-
bration of conceptual rainfall-runoff models, since the early
1990s [2,5,11–15]. Performances are improved with these
methods because of their superior ability to navigate numer-
ous local optima present in the objective function surface
of the conceptual rainfall-runoff model calibration problem
[4]. Although several global optimization methods have been
proposed in the literature, there is no general agreement as
to which method is the most appropriate [4]. Genetic algo-
rithm is one of the global optimization methods that has been
successfully employed in rainfall-runoff model calibration
[11,13,15–18].

In this study automatic calibration of ARNO conceptual
rainfall-runoff model is developed using simple genetic al-
gorithm (SGA), which is a kind of GAs. GAs are simple to
operate yet powerful, and are not fundamentally limited by
restrictive assumptions about the search space such as conti-
nuity and existence of derivatives [19]. The case study basin
is the Pataveh basin, which is a sub-basin of Karun River
basin in Iran.

1.2 Arno Rainfall-Runoff Model

The ARNO model, which derives its name from its first ap-
plication to the Arno River, is a semi-distributed conceptual
continuous rainfall-runoff model. The soil moisture balance
module of this model is taken originally from the Xinan-
jiang model [20], in which the spatial distribution of the soil
moisture capacity is expressed in the form of a probability
distribution function.

Later, the original Xinanjiang model scheme was modified
by Todin [21], by allowing the soil moisture to be depleted
not only by evapotranspiration, as in the original Xinanjiang
model, but also by drainage into the river network and per-
colation into the water table.

This modified ARNO model has been extensively used
with general circulation models [22] and as an operational
flood forecasting tool on several basins in different parts of
the world [23].

To apply the ARNO model to a basin, as any other con-
ceptual model, its parameters must be estimated. Some of the
parameters can be estimated as a function of physiographic
characteristics of the basin, while others must be estimated
via calibration. In summary the soil moisture balance module
of the ARNO model, as the most important component of the
model, together with its parameters that are subject to cali-
bration are described below [23]. Also, model assumptions
are described in Table 1.

The basin surface area (ST) (excluding the surface extent
of water bodies such as reservoirs or lakes) is divided into
the impervious area (SI) and the pervious area (SP):

ST = SI + SP (1)

Expressions used for continuous updating of the soil moisture
balance are as follows:

SP = ST − SI (2)

By defining SG as the generic pervious surface area at satura-
tion, and the pervious area that receives precipitation (SP =
ST − SI), the proportion of pervious area at saturation (x) is:

x = SG

ST − SI
(3)

Zhao (1977) showed the following relation holds reasonably
well between x and the local proportion of maximum soil
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Table 1 Assumptions
expressed in the soil moisture
balance module of the ARNO
model [23]

No. Assumption

1. The precipitation input to the basin area is considered uniform over the basin area

2. The basin is composed of an infinite number of elementary areas (each with a different soil

moisture capacity and different soil moisture content), for each of which the continuity

of mass is valid over time

3. All the precipitation falling over the basin soil infiltrates unless the soil is either impervious

or it has already reached saturation

4. The proportion of saturated elementary areas is described by a spatial distribution function,

which describes the dynamics of contributing areas for surface runoff generated

5. The total runoff is the spatial integral of the all contributory elementary areas

6. The soil moisture storage is depleted by evapotranspiration as well as lateral sub-surface flow

(drainage) towards the drainage network and the percolation to deeper layers

7. Both drainage and percolation rates are expressed by simple empirical equations

moisture content w/wm, where w is the elementary area soil
moisture at saturation and wm is the maximum possible soil
moisture in any elementary area of the basin [23]:

x = 1 −
(

1 − w

wm

)b

(4)

where b is a parameter representing spatial distribution of the
soil moisture capacity. This is similar to defining the cumu-
lative distribution moisture at saturation, shown the curve in
Fig. 1 [23], which is:

w = wm[1 − (1 − x)1/b] (5)

In the ARNO model, if the precipitation (P) is larger than
the potential evapotranspiration (ETp), the actual evapotran-

Fig. 1 Cumulative distribution for the elementary area soil moisture
at saturation. Runoff R (shaded area) generated by an effective meteo-
rological input Me > 0

spiration (ETa) is assumed to coincide with the ETp (i.e.
ETa = ETp), and therefor, an ‘effective’ meteorological in-
put, Me, defined as the difference between precipitation and
potential evapotranspiration, equals:

Me = P − ETp = P − ETa > 0 (6)

With reference to Fig. 1, the surface runoff R generated by
the entire basin is obtained as the sum of two terms; the first
is the product of the “effective” input and the percentage of
impervious area, and the second one is the average runoff pro-
duced by the pervious area, which is obtained by integrating
the soil moisture capacity curve, which gives [23]:

R = SI

ST
Me + ST − SI

ST

Me+w∫
w

x(ξ)dξ if Me + w < wm

(7-1)

R = SI

ST
Me + ST − SI

ST

⎡
⎣Me −

wm∫
w

[1 − x(ξ)]dξ

⎤
⎦

if Me + w ≥ wm (7-2)

Eqs. 7-1 and 7-2 can be expressed in terms of the basin av-
erage soil moisture content (W ) and that at saturation (Wm),
which after integration becomes [23]:

R = Me + ST − SI

ST

{
(Wm − W ) − Wm

[(
1 − W

Wm

) 1
b+1

− Me

(b + 1)Wm

]b+1
⎫⎬
⎭

for 0 < Me < (b + 1)Wm

(
1 − W

Wm

)b+1

(8-1)
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R = Me + ST − SI

ST
(Wm − W ) for Me ≥ (b + 1)

×Wm

(
1 − W

Wm

)b+1

(8-2)

If the precipitation P is smaller than the potential evapo-
transpiration ETp, the actual evapotranspiration ETa is com-
puted as the precipitation P plus a quantity which depends
upon Me reduced by the average degree of saturation of the
soil [23]:

ETa = P + (ETp − P)
(ST−SI)

ST

(
1+ W

Wm

1
b

)
−

(
1− W

Wm

) 1
b+1

(
1 + 1

b

) −
(

1 − W
Wm

) 1
b+1

(9)

These equations, which represent the average surface runoff
produced in the sub-basin, must be associated with an equa-
tion of state to update the mean water content in the soil. This
equation takes the following form [23]:

W (t + �t) = W (t) + P(t, t + �t) − R(t, t + �t)

−ETa(t, t + �t) − D(t, t + �t) − I (t, t + �t) (10)

where, during time step �t, ETa is the loss through evapo-
transpiration; D is the loss through drainage; I is the per-
colation loss to groundwater; P is the area precipitation; R
is the surface runoff; W(t,+ �t) is the soil moisture content
at the end of the time step; and W (t) is the soil moisture
content at the beginning of the time step. All the above quan-
tities representing averages over the sub-basin are expressed
in millimetres.

The non-linear response of the unsaturated soil to pre-
cipitation, represented by the shape of the distribution curve
given by Eq. 5, is strongly affected by the horizontal drainage
and vertical percolation losses. The drainage loss (D) is an
important quantity to be reproduced in a hydrological model,
because on one hand it affects the soil moisture storage and,
on the other, it controls the hydrograph recession. Experi-
ences derived from applications suggested the use of the fol-

lowing non-linear empirical relationship for D [23]:

D = Dmin
W

Wm
for W < Wd (11-1)

D = Dmin
W

Wm
+ (Dmax − Dmin)

(
W − Wd

Wm − Wd

)c

for W ≥ Wd (11-2)

where c is an exponent of soil moisture variation, Dmax is the
maximum drainage that should be expected when the soil is
completely saturated, Dmin is a drainage parameter, and Wd

is the moisture content threshold value [23].
The percolation loss (I ), which feeds the groundwater and

controls the base flow in the model, varies less significantly
over time compared with other terms. Nevertheless, a non-
linear behaviour is also assumed as:

I = 0 for W < Wi (12-1)

I = Is
W − Wi

Wm − Wi
for W ≥ Wi (12-2)

where Wi represents the moisture content threshold value
below which the percolation is negligible, and Is is a perco-
lation parameter which represents the maximum percolation
that should be expected when the soil is completely saturated.

The total runoff per unit area produced by the precipitation
P is finally expressed by:

Rtot = R + D + B (13)

where B is the base flow generated by the presence of a
groundwater table fed by the percolation, and can b computed
by a groundwater module [23].

A brief description of ARNO parameters for automatic
calibration is given in Table 2.

2 Calibration Methodology

The calibration of a conceptual rainfall-runoff model is to find
a set of model parameters that provides the best fit between

Table 2 Parameters of ARNO
model Notation Definition

Wm (mm) Average volume of soil moisture storage

b A shape factor for the curve of soil moisture vs saturated areas

Dmax (mm per time unit) Maximum drainage that should be expected when the soil is completely

saturated

Dmin A drainage parameter

Wd (mm) Moisture content threshold value in drainage calculation

c Exponent used to represent drainage when saturation is not reached

Is (mm per time unit) Maximum percolation should be expected when the soil is completely saturated

Wi (mm) Moisture content threshold value below which the percolation is negligible
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the observed and the simulated runoff. Performance of the
conceptual rainfall-runoff models highly depends on proper
parameters [15]. The process of parameter estimation will
be essentially an optimization process, in which an objective
function will be optimized and the corresponding parameter
set will be obtained [6]. Since conceptual models may have
numerous local optima on their objective function surface, it
is appropriate to use a global optimization method for their
automatic calibration. In this study, SGA is adopted for de-
veloping the automatic calibration of the ARNO conceptual
rainfall-runoff model.

Genetic algorithms are search procedures based on the
mechanics of natural selection and genetics. They combine
the concept of survival of the fittest with genetic operators
abstracted from nature [19]. GAs work with populations of
individual chromosomes. A chromosome is composed of a
set of coded parameters as a feasible solution to the prob-
lem [24]. An initial population is generated randomly in the
beginning. Then an iterative process is performed until the
termination criteria have been satisfied [25]. After all the in-
dividuals in the population have been evaluated, the genetic
operators are applied to produce a new generation. SGA is
composed of three operators of reproduction, crossover, and
mutation [19]. A flowchart for the SGA procedure is shown
in Fig. 2.

Reproduction is a process in which chromosomes are
copied according to their fitness function values into a mat-
ting pool, a tentative new population, for further genetic oper-
ator action. Copying chromosomes according to their fitness
values means that chromosomes with a higher fitness have a
higher chance of contributing in the next generation. In SGA,

Start

Initialize 
population

Evaluation

Termination

No

Yes

Reproduction

Mutation

Crossover

New Population

Best 
parameters set

End

Fig. 2 Flowchart for SGA

reproduction is implemented in the function selected as a lin-
ear search through a roulette wheel with slots weighted in
proportion to chromosome fitness values [19]. In this study,
the roulette wheel selection was applied for the reproduction
operator.

Crossover is exchanging substrings of two parent chro-
mosomes to generate two offspring chromosomes. The idea
behind the crossover is that by exchanging important bits be-
tween two chromosomes, new chromosomes that preserve
the best material from the parent chromosomes are created
[26]. Simple crossover proceeds with the random selection
of two chromosomes from the mating pool, the random se-
lection of a crossover site, and the exchange of substrings
from the beginning of the chromosome to the crossover site
inclusively with the corresponding subset of the chosen mate
[19].

The mutation is the occasional random alteration of the
value of a chromosome position. Mutation is needed be-
cause, even though reproduction and crossover effectively
search and recombine extant notions, occasionally they may
become overzealous and lose some potentially useful genetic
material. The mutation operator protects against such an ir-
recoverable loss [19].

2.1 Calibration of Arno Model Using SGA

To implement the SGA, the parameters set of the optimiza-
tion problem should be coded as a specified length string,
which is called a chromosome. Also the SGA’s parameters
of population size, crossover probability, and mutation prob-
ability needed to be selected. Considerations have been given
to these parameter values as follows.

To construct a chromosome, each parameter should be
coded as a finite length substring, which is called a gene.
One popular coding method is the binary coding, because it
can preserve more information for the GAs [15]. In binary
coding, the relationship between precision of a parameter and
length of its gene is defined as:

π = Umax − Umin

2l − 1
(14)

where π is the precision of the parameter, Umax is the up-
per limit of the parameter, Umin is the lower limit of the
parameter, and l is the length of the gene that represents
the parameter. Gene length can be modified to satisfy vari-
ous level precisions, but the calibration process will become
inefficient when more bits comprise each gene [26]. The suit-
able precision of each parameter of ARNO model for runoff
simulation in the study basin is estimated using a sensitivity
analysis in various points in the solution space. Genes are
linked together to form a chromosome, which represents a
feasible solution. The search space and construction of the
chromosome are shown in Table 3.
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Table 3 Search space and coding of ARNO model parameters into binary digits

Parameter Wm b Dmax D∗
min W∗

d c Is Wi

Lower limit 50 0.01 0 0 0 1.5 0 0

Upper limit 600 0.5 10 Dmax Wm 3 3 Wm

Length of gene 8 6 7 6 6 5 6 6

Randomized binary digits

for each gene (in

first generation) 01101011 001010 1101011 010011 111101 00011 010111 111001

Total Length of chromosome 50

Randomized binary digits

for a chromosome 01101011001010110101101001111110100011010111111001

∗ Search space for this parameter in SGA, is defined as [0,1], and for evaluation the parameter value is calculated by multiplying the decoded value
(in domain of [0,1]) by considering the upper limit parameter value. For example, if decoded value of Dmin (in domain of [0,1]) is 0.5 and Dmax is
5, then Dmin is 2.5 (=0.5 × 5)

Population size (N ) is defined as the number of chromo-
somes in a population. If the population size is too small,
then the SGA may converge prematurely to a local optimum.
On the other hand, if the population size is too large, then the
algorithm will be too slow. The typical size of the popula-
tion can range from 20 to 1,000 [27,28] and the population
size within a range of 200 to 500, related to the chromosome
length (L), is appropriate for many GA applications [29]. In
this study, a sensitivity analysis was performed to find the
appropriate value of N for calibration of the ARNO model.
In sensitivity analyses, N from 300 to 700 are considered.

Crossover probability (Pc) controls the frequency of the
crossover operation. Pc is the probability that a chromo-
some from the mating pool will be chosen for crossing over
with another selected chromosome. If Pc is too large, the
high quality chromosomes could be prematurely destroyed
and the improvement of the population quality could be in-
fluenced. If Pc is too small, then the exploration rate and
searching efficiency can be very low [30]. The probability of
crossover is usually in the range of 0.5–1.0 [26]. In this study
a sensitivity analysis was performed to find the appropriate
value of Pc. In sensitivity analyses, Pc from 0.5 to 0.9 are
considered.

Mutation probability (Pm) is the probability of a single
bit for mutation in each generation. If Pm is too small, then
new gene segment cannot be induced and the algorithm may
be trapped in a local optimum; if Pm is too big, then a large
number of good chromosomes may be lost and the genetic
evolution degenerates into a random search [30]. Pm is usu-
ally in the range of 0.01–0.1 and guidelines for computing
Pm are: 1/L ≥ Pm ≥ 1/n [26]. In this study a sensitivity
analysis was performed to find the appropriate value of Pm.
In sensitivity analyses, Pm from 0.002 to 0.1 are considered.

When calibration parameters were input and calibration
started, the calibration procedure automatically proceeds un-
til the optimized parameter achieved (according Fig. 1).

2.2 Objective Function

Many objective functions have been proposed and used in the
literature for parameter estimation in rainfall-runoff models.
The choice of an objective function is a subjective decision
which influences parameter estimates and the performance
of the model. One of the commonly adopted objective func-
tions for calibrating a rainfall-runoff model is coefficient of
efficiency (CE) or the Nash–Sutcliffe coefficient [31]. Servat
and Dezetter [32] found CE to be the best objective func-
tion for reflecting the overall fit of a hydrograph. CE can be
defined as normalized measure of the sum of square error:

CE = 1 −
∑n

i=1 (Qobs(t) − Qsim(t))2∑n
i=1 (Qobs(t) − Qobs)2

(15)

where Qobs(t) and Qsim(t) are the average daily observed
and simulated flow, respectively, Qobs is the average observed
flow over the period, and n is number of calibration days.

Loukas et al. [33] employed the following objective func-
tions for calibrating a daily rainfall-runoff model on two
basins in British Columbia.

EOPT = CE −
∣∣∣∣1 − Vsim

Vobs

∣∣∣∣ (16)

where Vsim and Vobs are the simulated and observed flow
volumes, respectively.

In this study, EOPT was first used in model calibration.
Results showed that wet years are simulated well, whereas
dry years simulated poorly.

In CE, the differences between the observed and simu-
lated values are calculated as squared values, so EOPT tends
to simulate wet years better than dry years. But within each
year, because frequency of low flows, in the study basin, is
higher than peak flows, EOPT performs well in the over-
all hydrograph. So, the objective function for the calibration
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procedure was set as:

OBF =
K∑

j=1

EOPT j (17)

where EOPT j is the EOPT in year, j and K is total number
of calibration years.

Since SGA requires non-negative fitness function, the
sigma truncation scaling technique was used to transform
the OBF values into the scaled fitness values [34]:

f ′ = F(OBF − (μOBF − CσOBF)) (18)

where f ′ is the scaled fitness, μOBF and σOBF are the average
and standard deviation of the OBF of all the chromosomes in
the population, respectively, C is a small integer, and function
F is expressed as:

F(x) =
{

x, x > 0
0, otherwise

(19)

This technique Eq. 18 also improves the convergence speed
of the genetic algorithm. Use of F (OBF) as the fitness func-
tion for SGA has two drawbacks. First, the convergence speed
in the early generations is high. This brings about an increas-
ing diversity loss rate in population which may cause prema-
ture convergence. Second, in the late stages the convergence
speed is slow. This brings about an excessive convergence
time. Use of Eq. 18 resolves these problems.

Since populations in SGA is random based, the worst
chromosomes in the population may disturb μOBF and σOBF.
Thus, the fitness function of the calibration procedure is de-
fined as:

f ′ = F(OBF − (μOBF(90 %) − CσOBF(90 %))) (20)

where μOBF(90 %) and σOBF(90 %) are the average and stan-
dard deviation of the OBF values of 90 % of the best chro-
mosomes in the population, respectively.

2.3 Model Performance Criteria

Six performance criteria are adopted to evaluate the simu-
lation performance of the calibrated model. They are: CE,
coefficient of determination (R2), percentage error of mean
discharge (EQ), percentage error of mean annual peak dis-
charges (EQp), 5-percentage error of standard deviation
(ESD), and percentage error of skewness (ESkew). They are
defined as:

CE = 1 −
∑n

t=1 (Qobs(t) − Qsim(t))2∑n
t=1 (Qobs(t) − Qobs)2

(21)

R2 =
(∑n

t=1 (Qobs(t) − Qobs)(Qsim(t) − Qsim)
)2

∑n
t=1 (Qobs(t) − Qobs)2

∑n
t=1 (Qsim(t) − Qsim)2

(22)

EQ = Qsim − Qobs

Qobs
× 100 (23)

EQp = Qpsim − Qpobs

Qpobs
× 100 (24)

ESD = SD(Qsim) − SD(Qobs)

SD(Qobs)
× 100 (25)

ESkew = Skew(Qsim) − Skew(Qobs)

Skew(Qobs)
× 100 (26)

where Qobs(t) and Qsim(t) are, respectively, observed and
simulated runoff, Qobs and Qsim are, respectively, average
observed and simulated runoff, n is the number of data el-
ements, Qpobs and, Qpsim are, respectively, mean annual
observed and simulated peak discharges, m is the number of
years in the considered period, SD(Qobs) and SD(Qsim) are,
respectively, standard deviation of observed and simulated
runoff, and Skew(Qobs) and Skew(Qsim) are, respectively,
skewness of observed and simulated runoff.

3 Application

3.1 Study Area

The study area is Pataveh basin, located in the Karun River
basin in south-west of Iran between latitudes 30◦ and 31◦
N and longitudes 51◦ to 52◦ E (Fig. 3). Area of the basin
is 2,800 km2 and elevation ranges from 1,540 to 4,300 m
(a.m.s.l.).

There is one meteorological station in the basin that mea-
sures daily precipitation, and maximum and minimum tem-
perature. The station is located in Yasuj at an elevation of

Fig. 3 Location of the Pataveh basin and the hydro-meteorological
stations
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1,821 m (a.m.s.l.). Some 29 years (1973–2001) of data are
available. Also, there is a synoptic station in the vicinity of
the basin at 1,831 m (a.m.s.l.) with 17 years (1987–2003)
of record. Furthermore, there are five daily rainfall stations
located in lowlands of the basin. Daily streamflow data are
recorded by Pataveh hydrometric station.

3.2 Data Processing

The results of rainfall-runoff modeling can be more depen-
dent on the quality of the input data than on the model [35].
Nathan and McMahon [36,37] calibrated the SFB model on
168 basins in southeastern mainland Australia. In 37 % of
the situations, calibration results were too poor to be consid-
ered acceptable. They found that the model was robust, and
the poor calibration results were generally associated with
basins in which the quality of input data was poor. Boughton
and Chiew [38] calibrated the AWBM on 331 basins across
Australia. They reported that problems with the data resulted
in the discarding of some data sets. As a result of the data
problems, calibration on 33 % of the basins was not accept-
able. Such studies emphasize that in rainfall-runoff modeling,
careful attention to the quality of input data is required.

In the current study, the reliability of Pataveh stream flow
records was controlled by comparing its standardized records
with the standardized records of one upstream and one down-
stream hydrometric station. Only 9 years (1979, 1981, 1983,
1985, 1994, 1995, 1996, 1998, 2001) of reliable records were

identified. Figure 4 shows 1 year of reliable record and 1 year
of unreliable record.

Many methods have been developed to estimate evap-
otranspiration from different climatic variables. The FAO
Penman–Monteith method is recommended in FAO Irriga-
tion and Drainage Paper 56 for determining reference evapo-
transpiration (ET0). This method closely approximates grass
ET0 and provides consistent ET0 values in all regions and
climates. This method has been recommended for all regions
across Iran [39].

The FAO Penman–Monteith method (P–M) requires ra-
diation, air temperature, air humidity and wind speed data.
For the meteorological station, located near the centre of the
basin, only air temperature is available. Thus, PET for basin
can be estimated using a temperature-based method which
requires local calibration to achieve satisfactory results [40].
The selection and calibration of a temperature-based method
was accomplished in comparison to the FAO P–M developed
for the synoptic station, located in the neighborhood of the
basin. In the synoptic station, all of the required data for FAO
P–M method are available. The synoptic station has similar
climatic and geographic conditions to the meteorological sta-
tion (Table 4).

Three frequently used temperature-based methods were
compared with the FAO P–M method. They were Blaney
and Criddle (B–C) [41], Thornthwaite (Th) [42], and Harg-
reaves and Samani (H–S) [43] methods. As shown in Table
5, the Hargreaves and Samani method has the highest cor-

Fig. 4 Comparison of a year with unreliable record (a) with a year with reliable records (b) in Pataveh station

Table 4 Characteristics of the
meteorological and synoptic
stations (1987–2003)

Elevation Latitude Longitude Average precipitation Average annual
(m) (mm/year) temperature (◦C)

Synoptic station 1,831 30◦, 15′ 51◦, 41′ 845 14.6

Meteorological station 1,821 30◦, 15′ 51◦, 36′ 825 15.2
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Table 5 Comparison of temperature-based methods and P–M method
in the synoptic station (1987–2003)

Method: P–M H–S Th B–C

Average ET (mm/year) 1,460 3,550 836 1,545

R2 with P–M 1 0.96 0.89 0.94

Table 6 Summary of climatic and hydrologic characteristics of the
Pataveh basin over the calibration and validation time periods

Average Max Min

Annual streanflow (cms) 54 86 23

Daily streanflow (cms) 54 821 7

Annual precipitation (mm/year) 943 1,317 517

Daily precipitation (mm/day) 2.58 107 0

Annual temperature (◦C) 14.7 15.7 14

Daily temperature (◦C) 14.7 30.1 –5.3

relation with the FAO P–M method in the synoptic station.
This method is represented by a linear relationship, such as
the one suggested by Allen et al. [40]. The regression rela-
tionship between H–S and P–M methods resulted in:

ET0P−M = 0.3827 × ET0H−S − 0.0535 (27)

where ET0P−M is the Penman-Monteith ET0 (mm/month)
and ET0H−S is the Hargreaves and Samani ET0 (mm/month).
Then the ET0 in the meteorological station was calculated
using the H–S method and converted to equivalent FAO P–
M ET0 using Eq. 27). The potential evapotranspiration from
the basin surface is determined by considering the ET0 and
surface condition of the basin such as ground cover and plant
density [40].
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The rainfall recorded by the meteorological station was
assumed to be representative of the average of the basin since
other rainfall gauges are located in lowlands of the basin.
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Averages and ranges of climatic and hydrologic data of
the Pataveh basin over the calibration and validation time
periods are presented in Table 6.

3.3 Sensitivity Analyses

A series of sensitivity analyses were performed to find ap-
propriate parameters of SGA for calibration of the ARNO
model [26]. According to the proposed range of the SGA
parameters in literature (as mentioned above), Sensitivity to
crossover probability is performed using a population size
and a mutation probability of 500 and 0.05, respectively, and
crossover probability values of 0.5, 0.7, 0.8, and 0.9. Sensi-
tivity to mutation probability is performed using a population
size and a crossover probability of 500 and 0.7, respectively,
and mutation probability values of 0.002, 0.01, 0.05, and 0.1.
Also, sensitivity to population size is performed using a mu-

Table 7 Results of the calibrated model parameters

Parameter Wm b Dmax Dmin Wd c Is Wi

Value 558.13 0.31 9.25 2.42 153.48 2.75 1.9 17.65

tation probability of 0.01 and a crossover probability of 0.7
and population size values of 300, 500, and 700.

4 Results and Discussion

The ARNO model linked to the SGA was applied to the
Pataveh basin. As shown in Fig. 5, 9 years of reliable records
were used for calibration and validation of the model. The
first 5 years were used for calibration and the remaining
4 years were allocated for validation. The whole record in-
cluded both dry and wet years.
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Table 8 Calibration and validation performance of the ARNO model

CE R2 EV (%) EQP (%) ESD (%) Eskew (%)

Calibration 0.80 0.82 0.34 –8.10 6.50 –7.56

Validation 0.82 0.83 –5.38 1.27 4.27 10.70

Sensitivity analyses were performed using 2 years of the
observed data of the Pataveh basin. Figure 6 shows the sen-
sitivity to crossover probability, mutation probability, and
population size. The results demonstrate that in the proposed
range of the SGA parameters, the sensitivity of the maxi-
mum fitness values to the Pc, Pm, and N is low; however,

the best set of parameters appear to be N = 500, Pc = 0.7,
and Pm =0.01.

The parameters of SGA were set as follows: the chro-
mosome length was 50, population size 500, the probability
of crossover 0.7, and the probability of mutation 0.01. The
stopping criterion was set to either exceed the number of
generations of 50 (a maximum number of model evaluations
equal to 25,000), or 10 generations without improvement of
EOPT values.

The genetic algorithm achieved an optimal solution, us-
ing a population size of 500 over 38 generations. Since no
improvement was detected beyond 48 generations, the opti-
mization process was terminated.
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Fig. 9 Comparison of the observed and simulated hydrographs during calibration stage
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The distribution of EOPT values in the first and last gen-
erations are shown in Fig. 7. Figure 8 shows the plots of the
best and average EOPT values in each generation.

The results show that the objective function were rapidly
impring to converge over the first several generations and
were refined over the remaining generations.

The values of calibrated parameters are presented in
Table 7.

The simulation performance of the ARNO model was
evaluated on the basis of six performance criteria as outlined
earlier. Calibration and validation results of ARNO model are
presented in Table 8. CE and R2, as the two most appropri-
ate criteria to evaluate the efficiency of modeling, are higher
than 0.80 during calibration and validation. The values other
performance statistics are also acceptable.

Observed and simulated hydrographs of calibration and
validation stages are presented in Figs. 9 and 10, respec-
tively. The model performance can be also evaluated by a
visual interpretation of the agreement between the observed
and simulated hydrographs. It can be seen in Figs. 9 and
10 that a good agreement between observed and simulated
hydrographs exists.

The accuracy of the daily rainfall-runoff simulation was
also compared with previous works. Zhang and Savenije

[44] applied REWASH model to the Geer River basin in
Belgium to simulate the daily rainfall-runoff process. They
chose a level of 0.6 for CE as the threshold to discriminate be-
havioural and non-behavioural models. The model was cali-
brated and validated using two 2-year data sets. The obtained
CE’s for calibration and validation phases were 0.68 and 0.65,
respectively. Kamali et al. [6] considered a CE value greater
than or equal to 0.7 as acceptable in daily rainfall-runoff mod-
eling of Smokey River basin in Canada. Evans and Schrei-
der [45] used CMD-IHACRES model to simulate the daily
rainfall-runoff of six basins in Australia. They used 4 years
of observed data and achieved CE values between 0.67 and
0.78 during the calibration stage. Loukas et al. [46] applied
the UBC model to simulate rainfall runoff processes of the Il-
lecillewaet River basin in Canada. The model was calibrated
for a period of 20 hydrologic years and the obtained value of
CE was 0.93. Nourani and Mano [47] applied TOPMODEL
to Karun River basin in Iran. They used 2 years of data for
model calibration and arrived at a CE value of 0.79 in daily
time steps.

Based on the reported literature on daily rainfall-runoff
modeling, the performance of the SGA-based automatic cal-
ibration of ARNO model in this study (with CE and R2 higher
than 0.80) is found to be acceptable.
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Fig. 10 Comparison of the observed and simulated hydrographs during the validation stage
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5 Conclusions

In this paper, automatic calibration of ARNO conceptual
rainfall-runoff model has been developed. Genetic algorithm,
a simple and powerful global search method, was adopted as
the basis for automatic calibration. This method is simple
without requiring extensive knowledge regarding the model
structure and parameters.

A combination of the Nash–Sutcliffe coefficient and per-
cent error of total runoff volume was selected as the objective
function. Since SGA required non-negative fitness function
and for control of convergence pressure during the optimiza-
tion process, the sigma truncation scaling technique was used
to transform the objective function into the scaled fitness val-
ues. The objective function can be arbitrarily exchanged by
the user. However, the objective function values should be
transformed by a proper fitness function for SGA.

The ARNO rainfall-runoff model was then automatically
calibrated in the Pataveh basin, located in Karun River basin
in Iran. The genetic algorithm achieved an optimal solution
using a population size of 500 over 38 generations. The simu-
lation performance of the ARNO model was evaluated on the
basis of six performance criteria. The efficiency coefficient
and coefficient of determination, as two most appropriate
criteria to evaluate the accuracy of modeling, reached values
higher than 0.80 during calibration and validation. The val-
ues of the remaining performance statistics, namely error of
mean discharge, error of mean annual peak discharges, error
of standard deviation, and error of skewness were acceptable.
The results showed that SGA-based automatic calibration
was successful.

References

1. Littlewood, I.G.; et al.: Predicting daily streamflow using rainfall
forecasts, a simple loss module and unit hydrographs: two Brazilian
catchments. Environ. Model. Softw. 22(11), 1229–1239 (2007)

2. Vrugt, J.A.; et al.: Application of stochastic parameter optimiza-
tion to the Sacramento soil moisture accounting model. J. Hydrol.
325(1–4), 288–307 (2006)

3. Kokkonen, T.S.; Jakeman, A.J.: A comparison of metric and con-
ceptual approaches in rainfall-runoff modeling and its implications.
Water Resour. Res. 37(11), 2345–2352 (2007)

4. Cooper, V.A.; Nguyen, V.T.V.; Nicell, J.A.: Calibration of concep-
tual rainfall-runoff models using global optimisation methods with
hydrologic process-based parameter constraints. J. Hydrol. 334(3–
4), 455–466 (2007)

5. Duan, Q.Y.; Sorooshian, S.; Gupta, V.: Effective and efficient global
optimization for conceptual rainfall-runoff models. Water Resour.
Res. 28(4), 1015–1031 (1992)

6. Kamali, M.; Ponnambalam, K.; Soulis, E.D.: Computationally ef-
ficient calibration of WATCLASS Hydrologic models using sur-
rogate optimization. Hydrol. Earth Syst. Sci. Discuss. 4(4), 2307–
2321 (2007)

7. Tang, Y.; Reed, P.; Wagener, T.: How effective and efficient are
multiobjective evolutionary algorithms at hydrologic model cali-
bration? Hydrol. Earth Syst. Sci. 10(2), 289–307 (2006)

8. Sorooshian, S.; Gupta, V.K.: Model calibration. Computer Models
of Watershed Hydrology. p. 23–68. Water Resources Publications:
Colorado (1995)

9. Wong, S.C.; Wong, C.K.; Tong, C.O.: A parallelized genetic algo-
rithm for the calibration of Lowry model. Parallel Comput. 27(12),
1523–1536 (2001)

10. Liu, S.M.; et al.: Using genetic algorithms to calibrate a water
quality model. Sci. Total Environ. 374(2–3), 260–272 (2007)

11. Wang, Q.J.: The genetic algorithm and its application to calibrat-
ing conceptual rainfall-runoff models. Water Resour. Res. 27(11),
2467–2471 (1991)

12. Sorooshian, S.; Duan, Q.; Gupta, V.K.: Calibration of rainfall-
runoff models: application of global optimization to the Sacra-
mento soil moisture accounting model. Water Resour. Res. 29(4),
1185–1194 (1993)

13. Cooper, V.A.; Nguyen, V.T.V.; Nicell, J.A.: Evaluation of global
optimization methods for conceptual rainfall-runoff model cali-
bration. Water Sci. Technol. 36(5), 53–60 (1997)

14. Yapo, P.O.; Gupta, H.V.; Sorooshian, S.: Multi-objective global
optimization for hydrologic models. J. Hydrol. 204(1–4), 83–97
(1998)

15. Lin, G.F.; Wang, C.M.: A nonlinear rainfall-runoff model embed-
ded with an automated calibration method. Part 2: The automated
calibration method. J. Hydrol. 341(3–4), 196–206 (2007)

16. Franchini, M.; Galeati, G.: Comparing several genetic algorithm
schemes for the calibration of conceptual rainfall-runoff models.
Hydrol. Sci. J. 42(3), 357–379 (1997)

17. Franchini, M.: Use of a genetic algorithm combined with a local
search method for the automatic calibration of conceptual rainfall-
runoff models. Hydrol. Sci. J. 41(1), 21–39 (1996)

18. Wang, Q.J.: Using genetic algorithms to optimise model parame-
ters. Environ. Model. Softw. 12(1), 27–34 (1997)

19. Goldberg, D.E.: Genetic algorithms in search, optimization, and
machine learning. Reading, Mass.: Addison-Wesley Pub. Co. xiii,
p. 412 (1989)

20. Zhao, R.J.: Flood forecasting method for humid regions of China.
East China College of Hydraulic Engineering, Nanjing (1977)

21. Todini, E.: Il modello afllussi deflussi del fiume Amo. Relazione
Generale dello studio per conto della Regione Toscana, in Tech.
Report. Bologna (1988)

22. Dümenil, L.; Todini, E.: A rainfall-runoff scheme for use in the
Hamburg climate model. McGraw Hil: New York. pp. 462–462
(1992)

23. Todini, E.: The ARNO rainfall-runoff model. J. Hydrol. 175(1–4),
339–382 (1996)

24. Al-Zahrani, M.A.: Moied, K.: Optimizing water quality monitoring
stations using genetic algorithms. Arab. J. Sci. Eng. 28(1B), 57–75
(2003)

25. Durairaj, S.; Devaraj, D.: Reactive power dispatch incorporating
thyristor controlled series capacitors using improved genetic algo-
rithm. Arab. J. Sci. Eng. 34(1B), 173–185 (2009)

26. Jian-Xia, C.; Qiang, H.; Yi-min, W.: Genetic algorithms for opti-
mal reservoir dispatching. Water Resour. Manag. 19(4), 321–331
(2005)

27. Coley, D.A.: An introduction to genetic algorithms for scientists
and engineers. Singapore; River Edge, NJ: World Scientific. xvi,
p. 227 (1999)

28. Katari, V.; et al.: Hybridized improved genetic algorithm with vari-
able length chromosome for image clustering. Int. J. Comput. Sci.
Netw. Secur. 7(11), 121–131 (2007)

29. Goldberg, D.: Sizing populations for serial and parallel genetic
algorithms. In: Proceedings of the 3rd International Conference on
Genetic Algorithms. p. 70 (1989)

30. Cheng, C.T.; et al.: Using genetic algorithm and TOPSIS for Xinan-
jiang model calibration with a single procedure. J. Hydrol. 316(1–
4), 129–140 (2006)

123



Arab J Sci Eng (2014) 39:2535–2549 2549

31. Nash, J.E.; Sutcliffe, J.V.: River flow forecasting through concep-
tual models part I. A discussion of principles. J. Hydrol. 10(3),
282–290 (1970)

32. Servat, E.; Dezetter, A.: Selection of calibration objective functions
in the context of rainfall-runoff modeling in a Sudanese Savannah
area. Hydrol. Sci. J. 36(4), 307–330 (1991)

33. Loukas, A.; Vasiliades, L.; Dalezios, N.R.: Potential climate
change impacts on flood producing mechanisms in southern British
Columbia, Canada using the CGCMA1 simulation results. J. Hy-
drol. 259(1–4), 163–188 (2002)

34. Dumitrescu, D.: Evolutionary computation CRC press interna-
tional series on computational intelligence. CRC Press: Boca Raton
(2000)

35. Boughton, W.: Calibrations of a daily rainfall-runoff model with
poor quality data. Environ. Model. Softw. 21(8), 1114–1128
(2006)

36. Nathan, R.J.; McMahon, T.A.: The SFB model part I. Validation of
fixed model parameters, in Civil Engineering Transactions CE32
(3). Institution of Engineers, Australia. pp. 157–161 (1990)

37. Nathan, R.J.; McMahon, T.A.: The SFB model part II. Operational
considerations in Civil Engineering Transactions CE32 (3). Insti-
tution of Engineers, Australia. pp. 162–166 (1990)

38. Boughton, W.; Chiew, F.: Calibrations of the AWBM for use on un-
gauged catchments, in Technical Report 03/15. CRC for Catchment
Hydrology. Monash University. p. 37 (2003)

39. Kherabi, J.; et al.: Comparative Study of the Penman-Monteith and
FAO 24 Methods in Iran. Iran National Committee on Irrigation
and Drainage (2002)

40. Allen, R.G.; et al.: Crop evapotranspiration guidelines for comput-
ing crop water requirements FAO Irrigation and Drainage Paper
56. Rome (1998)

41. Blaney, H.F.; Criddle, W.D.: Determining water requirements in
irrigated areas from climatological and irrigation data USDA Soil
Conservation Service SCS-TP96. (1950)

42. Thornthwaite, C.W.: An approach toward a rational classification
of climate. Geograph. Rev. 38, 55–94 (1948)

43. Hargreaves, G.H.; Samani, Z.A.: Reference crop evapotranspira-
tion from temperature. Appl. Eng. Agric. 1(2), 96–99 (1985)

44. Zhang, G.P.; Savenije, H.H.G.: Rainfall-runoff modelling in a
catchment with a complex groundwater flow system: application
of the Representative Elementary Watershed (REW) approach. Hy-
drol. Earth Syst. Sci. 9(3), 243–261 (2005)

45. Evans, J.; Schreider, S.: Hydrological impacts of climate change on
inflows to Perth, Australia. Clim. Change 55(3), 361–393 (2002)

46. Loukas, A.; Vasiliades, L.; Dalezios, N.: Climate change implica-
tions on flood response of a mountainous watershed. Water Air Soil
Pollut. Focus 4(4), 331–347 (2004)

47. Nourani, V.; Mano, A.: Semi-distributed flood runoff model at
the subcontinental scale for southwestern Iran. Hydrol. Process.
21(27), 3173–3180 (2007)

123


	Development of an Automatic Calibration Tool Using Genetic Algorithm for the ARNO Conceptual Rainfall-Runoff Model
	Abstract
	1 Introduction
	1.1 Calibration of Rainfall-Runoff Models
	1.2 Arno Rainfall-Runoff Model

	2 Calibration Methodology
	2.1 Calibration of Arno Model Using SGA
	2.2 Objective Function
	2.3 Model Performance Criteria

	3 Application
	3.1 Study Area
	3.2 Data Processing
	3.3 Sensitivity Analyses

	4 Results and Discussion
	5 Conclusions
	References


