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Abstract The steady-state electro-kinetic-driven flow and
heat transfer in circular micro-channels are studied under
hydrodynamic fully developed and thermally developing
conditions. Based on the linearized Poisson–Boltzmann
equation, an exact solution of the electrical potential dis-
tribution is obtained. The analytic solutions of the velocity
and temperature profiles are then obtained, and the effects
of some hydrodynamic and thermal parameters on flow and
heat transfer are investigated. The interesting plug-like veloc-
ity profile produced by external electrical field is not usu-
ally observed in the pressure-driven flows. In this case, the
very large velocity gradient near the wall of the micro-
channel may result in the enhanced temperature close to
the wall (depending on the relative importance of viscous
dissipation compared with the other terms); the tempera-
ture values of other portions of the flow field are increased
slightly. Decreasing both Reynolds and Prandtl numbers
leads to increasing the bulk fluid temperature. Nusselt num-
ber decreases in the thermally developing region.
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List of Symbols

cp Specific heat (J/kg K)
e Electron charge (C)
Ez Dimensionless electrical field strength
Ek Eckert number
Fz Dimensionless electrical force per unit volume
hz Local convection heat transfer coefficient (W/m2 K)
Iν(x) Modified Bessel function of the first kind and

order ν
kB Boltzmann constant (J/K)
kf Fluid thermal conductivity (W/m K)
L Length of channel (m)
M Ratio of electrical to frictional forces
n0 Bulk ion concentration (m−3)
Nu Nusselt number
Pe Peclet number
Pr Prandtl number
q ′′ Dimensionless heat flux
r Dimensionless radial coordinate
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R Radius of the micro-channel (m)
Re Reynolds number
s Ratio of half channel diameter to Debye length
T Dimensionless temperature
Tm(z) Local mean fluid temperature (K)
Ts Constant wall temperature (K)
U Reference velocity (m/s)
Vz Dimensionless axial velocity
z Dimensionless axial coordinate
Z Valence of ionic species

Greek Symbols

ε Electric permittivity of solution (F/m)
κ Debye–Huckel parameter (m−1)
λ Eigenvalue
μ Dynamic viscosity (kg/m s)
ρ Fluid density (kg/m3)
ρe Net volume charge density (C m−3)
ψ Dimensionless electrical potential
ζ Dimensionless zeta potential at the wall

Subscript

m Mean value

Superscript

∗ Dimensional quantities

1 Introduction

A lab-on-a-chip device has a network of micro-channels,
electrodes, sensors and electrical circuits. Electrodes are
placed at strategic locations on a chip. Applying electrical
fields along micro-channels controls the liquid flow and other
operations in the chip. Hence, understanding the electro-
osmotic flow in micro-channels is essential to controlling
the key micro-fluidic processes and designing them system-
atically.

Because all solid–liquid (aqueous solutions) interfaces
carry electrostatic charges, there is an electrical double layer
(EDL) field in the region close to the solid–liquid interface
on the liquid side. In the electro-osmosis phenomenon which
is due to an EDL field, there is the liquid motion caused by
interaction between the EDL at the liquid-channel wall inter-
face with an electrical field applied tangentially to the wall.
Immediately, next to the solid surface, there is a layer of ions
that are strongly attracted to the solid surface and are immo-
bile. This layer is called the compact layer, normally about
several Angstroms thick. Because of the electrostatic attrac-
tion, the counterions concentration near the solid surface is
higher than that in the bulk liquid far away from the solid sur-
face. The coions concentration near the surface, however, is
lower than that in the bulk liquid far away from the solid sur-
face, due to the electrical repulsion. So there is a net charge

in the region close to the surface. From the compact layer
to the uniform bulk liquid, the net charge density gradually
reduces to zero. Ions in this region are affected less by the
electrostatic interaction and are mobile. This region is called
the diffuse layer of the EDL. The thickness of the diffuse
layer is dependent on the bulk ionic concentration and elec-
trical properties of the liquid, usually ranging from several
nanometers for high ionic concentration solutions up to sev-
eral microns for pure water and pure organic liquids. The
boundary between the compact layer and the diffuse layer is
usually referred to as the shear plane. The electrical poten-
tial at the shear plane is called the zeta potential ζ and can
be measured experimentally. In practice, the zeta potential is
used as an approximation to the potential at the solid–liquid
interface. If an electric field is applied along the length of a
channel, an electrical body force is exerted on the ions in the
diffuse layer. In the diffuse layer of the EDL field, the net
charge density ρe is not zero. The net transport of ions is the
excess counterions. If the solid surface is negatively charged,
the counterions are the positive ions. These excess counte-
rions will move under the influence of the applied electrical
field, pulling the liquid with them and resulting in electro-
osmotic flow. The liquid movement is carried through to the
rest of the liquid in the channel by viscous forces.

In most lab-on-a-chip applications, the electro-osmotic
flow is preferred over the pressure-driven flow. One of the
reasons is the plug-like velocity profile of the electro-osmotic
flow. That is, fluid samples can be transported without disper-
sion caused by flow shear. The second reason is that pump-
ing a liquid through a very small channel requires applying
a very large pressure difference depending on the flow rate.
This is often impossible because of the limitations of the
size and mechanical strength of the micro-fluidic devices.
The electro-osmotic flow can generate the required flow rate
even in very small micro-channels without any applied pres-
sure difference across the channel. Additionally, using the
electro-osmosis phenomenon to transport liquids in a com-
plicated micro-channel network does not require any external
pump or moving parts, but it may be controlled by the elec-
trical fields via electrodes. Although high voltages are often
necessary in electro-osmotic flows, the required electrical
power is very small due to the very low current involved.
However, heat generated in the electro-osmotic flow eventu-
ally presents problems to many applications where solutions
of high electrolyte concentrations and long operation time
are required [1].

Over the last two decades, developments in micro-
fabrication technologies have enabled many different types
of micro-fluidic systems. Such systems must be under-
stood from an electro-hydrodynamic as well as electro-
thermal point of views. Many researchers have studied var-
ious features of these phenomena. For example, Anderson
[2] studied the particle movement produced by non-uniform
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zeta potential in an electric field. Arulanandam and Li [3]
studied the liquid movement in a rectangular micro-channel
by electro-osmotic pumping. Erickson and Li [4] studied
electro-osmotic flow caused by alternative current in a rec-
tangular micro-channel.

Wang and Chen [5] investigated electro-osmosis in homo-
geneously charged micro- and nano-scale random porous
media using mesoscopic simulation methods which involve
a random generation-growth method for reproducing three-
dimensional random micro-structures of porous media and a
lattice Poisson–Boltzmann algorithm for solving the strongly
nonlinear governing equations. Dutta and Beskok [6] pre-
sented analytical results for velocity distribution, mass
flow rate, pressure gradient, wall shear stress, and vor-
ticity in mixed electro-osmotic/pressure driven flows for
two-dimensional straight channel geometry. Comprehensive
models for a slit channel have also been presented by Dutta
and Beskok [7] who developed an analytical model for an
applied sinusoidal electric field. Soderman and Jonsson [8]
examined the transient flow field caused by a series of dif-
ferent pulse designs. Exact solutions of AC electro-kinetic-
driven flow inside circular micro-channels were presented by
Moghadam [9] for various periodic functions.

Soong and Wang [10] studied flow and heat transfer
between two parallel plates. Xuan and Li [11] presented a
thermodynamic analysis on energy conversion due to electro-
kinetic flow. Wang and Kang [12] presented a numerical solu-
tion based on coupled lattice Boltzmann methods for electro-
kinetic flows in micro-channels. Tang et al. [13] investigated
the electro-osmotic flow in axisymmetric micro-ducts. They
presented axisymmetric lattice Boltzmann models to solve
the electric potential distribution and the velocity field. Xuan
and Li [14] used a semi-analytical approach to investigate
electro-osmotic flows in micro-channels with arbitrary cross-
sectional geometry and distribution of wall charge. Sadeghi
and Saidi [15] considered the influence of viscous dissipation
on thermal transport characteristics of the fully developed,
combined pressure and electro-osmotically driven flow in
parallel plate micro-channels subject to uniform wall heat
flux. Thermally fully developed, electro-osmotically gener-
ated convective transport has been analyzed by Maynes and
Webb [16] for a parallel plate micro-channel and circular
micro-tube. They presented analytical expressions for the
fully developed, dimensionless temperature profile and cor-
responding Nusselt number for both geometric. The effects of
the EDL near the solid–liquid interface and the flow-induced
electro-kinetic field on the pressure-driven flow and heat
transfer through a rectangular micro-channel were reported
by Yang et al. [17].

To date, however, less attention has been paid to the ther-
mally developing region of the micro-channels. The objec-
tive of this research is to obtain an analytical solution for
hydrodynamically developed and thermally developing flow

in circular micro-channels, in which the effect of viscous dis-
sipation is also included to determine the temperature profile.

2 Problem Formulation

According to the theory of electrostatics, the Poisson equa-
tion describes the relationship between the electrical poten-
tial ψ∗ and the local net charge density per unit volume ρe

at any point in the solution [18]:

∇2ψ∗ = −ρe

ε
(1)

In which, ε is the dielectric constant of the solution.
Assuming the equilibrium Boltzmann distribution equation
is applicable, which implies uniform dielectric constant, the
number concentration of the type-i ion is of the form:

ni = ni0 exp

(
−Zi eψ∗

kBT ∗

)
(2)

where ni0 and Zi are the bulk ionic concentration and the
valence of type-i ions, respectively, e is the charge of a pro-
ton, kB is the Boltzmann constant, and T ∗ is the absolute
temperature.

For a symmetric electrolyte (Z− = Z+ = Z) solution, the
net volume charge densityρe is proportional to the concentra-
tion difference between symmetric cations and anions, via:

ρe = Ze(n+ − n−) = −2Zen0 sinh

(
Zeψ∗

kBT ∗

)
(3)

Substituting Eq. (3) into the Poisson equation leads to the
well-known Poisson–Boltzmann equation:

∇2ψ∗ = 2Zen0

ε
sinh

(
Zeψ∗

kBT ∗

)
(4)

If we consider the flow is steady and fully developed and
there is no pressure gradient in the micro-channel, the gen-
eral equation of motion is given by a balance between the
viscous force in the fluid and the externally imposed electri-
cal field force:

μ∇2V ∗
z = F∗

z (5)

where, F∗
z = ρe E∗

z , E∗
z , μ and V ∗

z are the electrical force
per unit volume of the liquid, the electric field strength, the
fluid viscosity and the fluid axial velocity, respectively. So
the above equation is given as follows:

μ∇2V ∗
z = −2n∞Ze

εε0
sinh

(
Ze

kBT ∗ψ
∗
)

E∗
z (6)

For a thermally developing flow, assuming no axial conduc-
tion, the energy equation includes radial conduction and axial
advection, together with viscous dissipation [19]:

ρ cp V ∗
z
∂T ∗

∂z∗ = kf∇2T ∗ + μ
∗ (7)
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where, kf and 
∗ are the fluid thermal conductivity and the
viscous dissipation term, respectively. Equations (4), (6) and
(7) can be more simplified for the geometry of our problem:

d2ψ∗

dr∗2 + 1

r∗
dψ∗

dr∗ = 2Zen0

ε
sinh

(
Zeψ∗

kBT ∗

)
(8)

μ

(
dV ∗

z

dr∗2 + 1

r∗
dV ∗

z

dr∗

)
= −2n∞Ze

εε0
sinh

(
Ze

kBT ∗ψ
∗
)

E∗
z (9)

ρcp V ∗
z
∂T ∗

∂z∗ = kf

[
1

r∗
∂

∂r∗

(
r∗ ∂T ∗

∂r∗

)]
+ μ

(
dV ∗

z

dr∗

)2

(10)

Equations (8), (9) and (10) are the governing equations of
the electro-kinetic flow and heat transfer in circular micro-
channels, subject to the following boundary conditions:⎧⎨
⎩ r∗ = 0 : ∂ψ

∗

∂r∗ = 0

r∗ = R : ψ∗ = ζ ∗
(11)

⎧⎨
⎩ r∗ = 0 : dV ∗

z

dr∗ = 0

r∗ = R : V ∗
z = 0

(12)

⎧⎨
⎩ r∗ = 0 : ∂T ∗

∂r∗ = 0

r∗ = R : T ∗ = Ts

, z∗ = 0 : T ∗ = Ti (13)

where, R, Ts, Ti and ζ ∗ are the micro-channel radius, surface
temperature, fluid inlet temperature into the channel and zeta
potential value at the surface, respectively.

Now by introducing the following dimensionless vari-
ables:

r = r∗
R , z = z∗

L , ψ = Ze
kBT ψ

∗, Vz = V ∗
z

U

Ez = E∗
z L
ζ ∗ , T = T ∗−Ts

�T where , �T = Ts − T
(14)

into Eqs. (8)–(13), the governing equations and boundary
conditions in non-dimensional form can be achieved. Quan-
tities U and L are the reference velocity and length of the
channel (or distance between electrodes), respectively.

d2ψ

dr2 + 1

r

dψ

dr
= (κR)2 sinhψ (15)

d2Vz

dr2 + 1

r

dVz

dr
= −M Ez sinhψ (16)

Vz
∂T

∂z
= 1

Pe

[
1

r

∂

∂r

(
r
∂T

∂r

)]
+ Ek

Re

[(
dVz

dr

)2
]

(17)

⎧⎨
⎩ r = 0 : ∂ψ

∂r
= 0

r = 1 : ψ = ζ
(18)

⎧⎨
⎩ r = 0 : dVz

dr
= 0

r = 1 : Vz = 0
(19)

⎧⎨
⎩ r = 0 : ∂T

∂r
= 0

r = 1 : T = 0
, z = 0 : T = −1 (20)

where, κ , the Debye–Huckle parameter, is defined as follows:

κ =
(

2Z
2e2n∞

εε0kBT

)1/2

(21)

and 1
/
κ is the characteristic thickness of the EDL. The non-

dimensional parameter κR is a measure of the relative chan-
nel diameter, compared to the EDL thickness. κR is often
referred to as the electro-kinetic diameter. The parameter M
is a new dimensionless group, which is a ratio of the electrical
force to the frictional force per unit volume, given by:

M = 2n∞Z e ζ ∗ R2

μU L ε ε0
(22)

The dimensionless parameters, named Reynolds number,
Prandtl number, Peclet number and Eckert number are also
defined as follows:

Re = ρU (R2
/

L)

μ
, Pr = ν

α
, Pe = Re Pr,

Ek = U 2

cp�T
. (23)

3 Solution Procedure

The solution method presented here is valid for small values
of ψ , for which we have sinhψ ∼= ψ , so in Eqs. (15)–(17),
sinhψ is replaced byψ for the next mathematical operations.
By this approximation, Eq. (15) is a linear homogeneous
ODE, and its solution subject to the boundary conditions
(18) is given as:

ψ(r) = ζ

I0(s)
I0(sr) (24)

where, s = κR is the ratio of half channel diameter to
Debye length (the length scale ratio), and Iν(x) is the modi-
fied Bessel function of the first kind satisfying the following
modified Bessel function [20]:

x2 y′′ + x y′ − (x2 + v2)y = 0 (25)

Equation (16) is a linear non-homogeneous ODE, and its
solution subject to the boundary conditions (19) is now found
as follows:

Vz(r) = M Ez ζ

s2

[
1 − I0(sr)

I0(s)

]
(26a)

V = Vz(r)(
M Ez ζ

s2

) = 1 − I0(sr)

I0(s)
(26b)

The dimensionless velocity profiles for different values of s
in the form of Eq. (26b) can achieve unity in the middle of
the channel.

The energy Eq. (17) is a linear non-homogeneous par-
tial differential equation, in which, the r-dependent viscous
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dissipation term is the non-homogeneity term. To solve this
equation by the method of separation of variables, we have to
get rid of the non-homogeneity term. Since Eq. (17) is linear,
we can solve it by introducing the following superposition:

T (r, z) = θ(r, z)+ φ(r) (27)

Then Eq. (17) can be divided into the following two equa-
tions:

Vz
∂θ

∂z
= 1

Pe

[
1

r

∂

∂r

(
r
∂θ

∂r

)]
(28)

1

Pe

[
1

r

d

dr

(
r

dφ

dr

)]
+ Ek

Re

[(
dVz

dr

)2
]

= 0 (29)

The corresponding boundary equations are as follows:

∂θ

∂r
(0, z) = 0, θ(1, z) = 0, θ(r, 0) = −1 − φ(r) (30)

dφ

dr
(0) = 0, φ(1) = 0 (31)

Solution of (29) subject to (31) is given here by an infinite
series truncated up to order 10:

φ(r)= 1

4

Pe Ek M2 Ez2ζ 2

Re [I0(s)]2

⎧⎪⎨
⎪⎩

1

16
(1−r4)+ 1

144
s2(1−r6)

+ 5

12288
s4(1−r8)

⎫⎪⎬
⎪⎭

+O(r10) (32)

To solve Eq. (28) subject to the boundary conditions (30),
the separation of variables method is employed. If the fol-
lowing product form:

θ(r, z) = A(r)B(z) (33)

is substituted into Eq. (28), the following equality will be
obtained:

1

Vz A

(
d2 A

dr2 + 1

r

dA

dr

)
︸ ︷︷ ︸

function of r

= Pe

B

dB

dz︸ ︷︷ ︸
function of z

≡ constant = −λ (34)

This separation constant is negative, since the boundary con-
ditions in radial direction:

A′(0) = 0, A(1) = 0 (35)

are homogeneous. The ordinary differential equations
resulted from (34) are:

d2 A

dr2 + 1

r

dA

dr
+ λ Vz A = 0 (36)

dB

B
= − λ

Pe
dz (37)

Solution of Eq. (36) subject to the first condition of (35) is
given by an infinite series as follows:

A(r) = c1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 1

4

λM Ez ζ [I0(s)− 1]

s2 I0(s)
r2

+ 1

64

λM Ez ζ

s4 [I0(s)]2

[
λM Ez ζ − 2λM Ez ζ I0(s)
+λM Ez ζ [I0(s)]2 + s4 I0(s)

]
r4

− 1

2304

λM Ez ζ

s6 [I0(s)]3

⎡
⎢⎢⎣

−5λM Ez ζ s4 I0(s)+ 5λM Ez ζ [I0(s)]2 s4

−λ2 M2 Ez2ζ 2 + 3λ2 M2 Ez2ζ 2 I0(s)
−3λ2 M2 Ez2ζ 2 [I0(s)]2

+λ2 M2 Ez2ζ 2 [I0(s)]3 − s8 [I0(s)]2

⎤
⎥⎥⎦ r6

+ 1

147456

λM Ez ζ

s8 [I0(s)]4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

14λ2 M2 Ez2ζ 2s4 I0(s)
−28λ2 M2 Ez2ζ 2 [I0(s)]2 s4

+14λ2 M2 Ez2ζ 2 [I0(s)]3 s4

+19λM Ez ζ s8 [I0(s)]2 + (λM Ez ζ )3

−4(λM Ez ζ )3 I0(s)
+6(λM Ez ζ )3 [I0(s)]2

−4(λM Ez ζ )3 [I0(s)]3

+(λM Ez ζ )3 [I0(s)]4

−10λM Ez ζ [I0(s)]3 s8 + s12 [I0(s)]3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

r8 + O(r10)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(38)

where, c1 is a constant, and the solution is up to order 10 for
more accuracy. Using the second condition of (35), we have
the eigenvalues λn, for n = 1, 2, . . .. Solution of Eq. (37) is:

B(z) = c2 exp

(
− λ

Pe
z

)
(39)

By considering the above functions for the whole range of
eigenvalues, A(r) and B(z) are written in a simple form:

An(r) = c1n fn(r)
Bn(z) = c2n gn(z)

(40)
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Fig. 1 a Dimensionless electrical potential, and b dimensionless velocity distributions for ζ = 0.5 and two different values of s

Fig. 2 Dimensionless temperature profiles along the micro-channel for κR = 79, Ez = 5,000,M = 2.22, Re = 0.1, Ek = 0 and ζ = 0.5 at
a Pr = 10 and b Pr = 5

So according to (33), we have the following expression:

θn(r, z) = An(r) Bn(z) = c1n c2n︸ ︷︷ ︸
cn

fn(r) gn(z) (41)

Constants c1n and c2n can be combined to make a new
unknown constant cn .

Because of linearity of Eq. (28), a linear combination of
its solutions is also a solution of (28). Hence, we can write:

θ(r, z) =
∞∑

n=1

θn(r, z) =
∞∑

n=1

cn fn(r) gn(z) (42)

To determine constant cn , the third condition of (30) will be
applied to the last equation:

− 1 − φ(r) =
∞∑

n=1

cn fn(r) (43)

Then,

cn =
∫ 1

0 (−1 − φ(r))w(r) fn(r)∫ 1
0 w(r) ( fn(r))2

(44)

where, w(r) = r Vz is the weighing factor, which is found
by comparing Eq. (36) with the standard form of Sturm–
Liouville equation given below [21]:
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Fig. 3 Dimensionless temperature profiles along the micro-channel for κR = 79, Ez = 5,000,M = 2.22, Re = 0.1, Ek = 0.001 and ζ = 0.5 at
a Pr = 10 and b Pr = 5

d

dr

(
p(r)

du

dr

)
+ (q(r)+ λw(r))u = 0 (45)

Therefore, the temperature profile T (r, z) in the thermally
developing flow inside a circular micro-channel will be
obtained by considering Eqs. (27), (32) and (42). Eigenval-
ues and some repetitive calculations are made by software
Maple.

Once the dimensionless temperature distribution T (r, z)
is determined, the local Nusselt number can be obtained as
the following dimensionless temperature gradient evaluated
at the inner surface of the channel:

Nuz =
[
∂T (r, z)

∂ r

]
r=1

= Ts − Tm(z)

�T

(
hz R

kf

)
(46)

where, Tm(z) is the mean fluid temperature.

4 Results

The non-dimensional EDL potential, velocity and tempera-
ture profiles, as well as the developing Nusselt number are
represented for various conditions. A uniform zeta poten-
tial of 12.5 mV is selected for the wall surface (within
the bounds imposed by the Debye–Huckel linearization),
and a double layer thickness of 4 × 106 m−1 is used in
a 40 µ m channel (the channel length is chosen 20 mm).
Also, a potential difference of 1 kV/cm is applied along
the length of the channel. We consider a CaCl2 aqueous
solution at a concentration of 10−6 M, ε = 80, ρ =
1,300 kg/m3 , cp = 2,500 J/kg K, α = 1.5 × 10−7 m2/s
and μ = 10−3 kg/m s. In the electro-osmotic flow inside
the micro-channel, the Reynolds number is usually less
than one; so we select two different Reynolds numbers

that are much less than unity. To illustrate the essen-
tial effects of the viscous dissipation on the temperature
profile, a relatively large Eckert number has been used
(Ek = 0.001).

The dimensionless electrical potential and velocity dis-
tributions are shown in Fig. 1 for ζ = 0.5 and two various
values of s. The potential field drops off sharply very close to
the wall. The region where the net charge density is not zero
is limited to a small region close to the channel surface. As
illustrated in Fig. 1a, increasing the length scale ratio leads
to decreasing the EDL thickness, that is, the EDL poten-
tial field falls off to zero more rapidly with distance. As the
length scale ratio increases, the velocity field exhibits a pro-
file more similar to plug flow, as shown in Fig. 1b. Generally,
in the electro-osmotic flow, the velocity increases rapidly
from zero at the wall (shear plane) to a maximum velocity
near the wall.

The non-dimensional temperature profiles along the
micro-channel are shown in Fig. 2, for κR = 79, Ez =
5,000, M = 2.22, Re = 0.1, Ek = 0 and two various values
of Pr. It can be seen that the bulk fluid temperature is gradu-
ally increased along the length of the channel. Also, decreas-
ing the Prandtl number results in increasing the dimension-
less temperature distribution. This is because diffusion is the
prominent mechanism in this type of flow, and therefore the
smaller the Prandtl number, the higher the ratio of the thermal
diffusion to the thermal advection.

Effect of Eckert number is represented in Fig. 3. Because
of the very large velocity and EDL potential gradients close
to the channel wall, the contributions of viscous dissipation
and electrical field on the temperature distribution near the
surface are significant. Hence, the effect of the heat generated
by the friction of the fluid shear layers close to the wall is
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Fig. 4 Dimensionless temperature profiles along the micro-channel for κR = 79, ζ = 0.5, Ez = 5,000,M = 2.22 and Re = 0.2 at a Pr =
10, Ek = 0, b Pr = 5, Ek = 0, c Pr = 10, Ek = 0.001 and d Pr = 5, Ek = 0.001

to enhance the near-wall temperature distribution. This heat
generation also raises the temperature values of the other
portions of the flow field slightly.

The dimensionless temperature profiles for κR = 79,
Ez = 5,000, M = 2.22, Re = 0.2, and two different val-
ues of Pr and Ek are shown in Fig. 4, that can be com-
pared with Figs. 2 and 3. The Reynolds number defined in
Eq. (23) is proportional to the ratio of the cross-sectional area
to length of channel. The increased Reynolds number means
the increased ratio of the cross-sectional area to the length
of the channel. Compared with Figs. 2, 3, and 4 reveals that
the thermal influence of the wall into the flow field will be
decreased by increasing the Reynolds number.

Variations of Nusselt number along the micro-channel are
represented in Fig. 5, for different values of Prandtl number

and Reynolds number. The Nusselt number falls down along
the channel in the thermally developing region. This standard
trend of Nusselt number also corresponds with the definition
presented in Eq. (46).

Figure 6 shows the dimensionless radial heat flux near
the wall for κR = 79, ζ = 0.5, Ez = 5,000, M = 2.22,
Re = 0.1, Pr = 5 and two different values of z. The dimen-
sionless radial heat flux is calculated by −∂T (r, z)/∂r . The
absolute value of radial heat flux decreases along the micro-
channel, since the bulk temperature gradually approaches the
constant surface temperature. As defined here, the constant
surface temperature is higher than the bulk fluid temperature,
hence, without considering the viscous heating, the radial
heat flux vector is toward the channel centerline (i.e., its sign
is negative). But the enhanced temperature near the wall due
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Fig. 5 Variations of Nusselt number along the micro-channel for κR = 79, ζ = 0.5, Ez = 5,000,M = 2.22, and Ek = 0 at a Re = 0.1 and
different values of Pr, and b Pr = 5 and different values of Re

Fig. 6 Dimensionless radial heat flux near the wall for κR = 79, ζ = 0.5, Ez = 5,000,M = 2.22, Re = 0.1, and Pr = 5 at a z = 0.1 and
b z = 0.3

to the viscous dissipation leads to a radial heat flux with a
positive sign near the wall.

5 Conclusion

In the present study, an analytical analysis based on the lin-
earized Poisson–Boltzmann equation has been developed for
liquid flow and associated heat transfer in a circular micro-
channel at symmetric electrostatic, kinematic, and thermal
boundary conditions.

The unique plug-like velocity profile can be attributed to
the fact that the externally imposed electrical field is driving

the flow. This situation may be seldom seen in the pressure-
driven flows. In the mobile part of the EDL region very
close to the wall, the larger electrical field force exerts a
greater driving force on the fluid because of presence of the
net charge in the EDL region. The surface electric condi-
tion of zeta potential influences the electric potential distri-
bution directly and alters flowing potential as well as the
liquid hydrodynamic and thermal characteristics. Effects of
Reynolds and Prandtl numbers, as well as the viscous dis-
sipation, on the flow field thermal characteristics are repre-
sented and discussed. An interesting phenomenon that can be
seen clearly near the channel wall is the increased tempera-
ture due to the very large velocity gradient close to the wall
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surface, which acts like a heat generation source. Decreas-
ing the Nusselt number in the thermally developing region is
also represented. The positive radial heat flux near the chan-
nel wall may be observed due to the relatively large viscous
heating.
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