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Abstract The flexible job shop scheduling problem (FJSP)
is to assign each operation to an appropriate machine and
to sequence the operations on the machines. The paper
describes the development and the application of the artificial
immune system (AIS) and the particle swarm optimization
(PSO) for solving the flexible job shop scheduling problem
with sequence-dependent setup times (SDST-FJSP). A series
of the experiments have been designed using the analysis of
variance to recognize best settings of parameters. Finally, 30
examples of the different sizes in the SDST-FJSP with the
objective of minimizing makespan and mean tardiness have
been used to verify the performance of the proposed algo-
rithms, and to compare them with the existing meta-heuristic
algorithms in the literature, such as the genetic algorithm
(GA), the parallel variable neighborhood search (PVNS),
and the variable neighborhood search (VNS). The obtained
results show that the proposed PSO outperforms the GA and
the PVNS approaches. It is found that the average best-so-
far solutions obtained from the proposed AIS are better than
those produced by the GA, the PVNS, the VNS, and the PSO
algorithms for all the examples.
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1 Introduction

The job shop scheduling problem (JSP) plays a key role in
the manufacturing system, and also it has been considered
by prior researchers. As an extension of the classical JSP,
the flexible job shop scheduling problem (FJSP) is to assign
each operation to an appropriate machine and to sequence
the operations on the machines [1,2].

Considering the assumption of sequence-dependent setup
times (SDST) in the real world scheduling settings, the setup
operations must be performed after completing the process
of one job and before beginning the process of the next job
[3–6], and also the sequence of the jobs significantly affects
the setup times [7].

The flexible job shop scheduling problem with sequence-
dependent setup times (SDST-FJSP) belongs to the class of
the NP-hard problems [1,8], i.e., the amount of required
computation increases exponentially with the problem size.
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The meta-heuristic algorithms are capable of obtaining
optimal or near optimal solutions for this type of prob-
lems in an acceptable computational time. With due atten-
tion to the literature review related to the application
of the meta-heuristic algorithms in the SDST-FJSP, it
is understandable that few studies have addressed the
SDST-FJSP. Imanipour [9] modeled the SDST-FJSP as
the nonlinear mixed integer programming and used the
tabu search to minimize the makespan. Saidi-Mehrabad
and Fattahi [10] also developed the tabu search for solv-
ing the SDST-FJSP to minimize the makespan and com-
pared their results with the results of the LINGO soft-
ware. Bagheri and Zandieh [1] applied the variable neigh-
borhood search (VNS) algorithm based on an integrated
approach for solving the SDST-FJSP. These authors adjusted
the parallel variable neighborhood search (PVNS) algo-
rithm of Yazdani et al. [11] and the genetic algorithm (GA)
of Pezzella et al. [12] to the SDST-FJSP as the previ-
ous meta-heuristic algorithms used in the FJSP literature.
Finally, Bagheri and Zandieh [1] verified the efficacy of
the VNS algorithm in comparison with the two mentioned
algorithms.

Among the different stochastic search methods, the parti-
cle swarm optimization (PSO) and the artificial immune sys-
tems (AIS) have been successfully used to solve the complex
combinatorial optimization problems [13,14]. However, no
research has been reported that has used these algorithms to
solve the SDST-FJSP; as a result, the present paper develops
both the AIS and PSO for solving the SDST-FJSP. In order
to demonstrate the effectiveness of the proposed algorithms,
it has been used on 30 examples to compare with the VNS,
the PVNS and the GA algorithms.

The remainder of this paper has been organized as fol-
lows: the SDST-FJSP is presented in Sect. 2. The procedures
of the AIS and the PSO are described in Sects. 3 and 4, respec-
tively. Section 5 considers the design of experiment (DOE) to
investigate the proper settings of the AIS parameters. In order
to verify the efficiency of the proposed algorithms, Sect. 6
illustrates the comparative studies with the other approaches.
Finally, the conclusion is drawn in Sect. 7.

2 The SDST-FJSP

In the flexible job shop scheduling problem with sequence-
dependent setup times (SDST-FJSP), each job is pro-
duced by a predetermined sequence of the operations one
after another. This problem, which has been developed by
Bagheri and Zandieh [1], works as assigning each opera-
tion to an available machine and sequencing the assigned
operations on all the machines. The assumptions and the
objective functions in this problem are summarized as
below:

2.1 Assumptions

1. Jobs are independent of each other.
2. The precedence constraints must be considered among the

operations of the same job.
3. Each operation must be completed without interruption.
4. At a given time, a machine can only execute one operation.
5. Machines are independent of each other.
6. Setup times are dependent on the sequence of jobs.
7. A dummy job without the setup and processing times

is performed before actual starting process of operations
executed on each machine.

8. The processing and setup times are deterministic and pre-
selected.

9. All jobs and machines are available at time 0.

2.2 Objective Functions

Production scheduling can be characterized by the objective
functions of minimizing makespan, mean tardiness, maxi-
mum lateness, maximum machine workload, and total work-
load. Among them, the makespan criterion has been studied
more by prior researchers [1]. The makespan (Cmax), denot-
ing the period required to complete all jobs [15], can be cal-
culated using Eq. (1):

F1 = Cmax = Max{C1, C2, . . . , Cn} (1)

where Ci is the completion time of job i and n is the total
number of the jobs.

The mean tardiness for all jobs is shown as follows [1]:

F2 =
∑n

i=1 Max {Ci − di , 0}
n

(2)

where di is the due date of job i .
In this study, the objective function (Z ) achieves min-

imization of makespan and mean tardiness, which can be
formulated as follows:

Minimize Z = α × F1 + (1 − α) × F2, 0 ≤ α ≤ 1 (3)

where α is the relative importance of makespan and mean
tardiness.

3 AIS Procedures for the SDST-FJSP

The immune system uses two types of response mechanisms,
including the innate (non-specific) and the acquired (spe-
cific) [16,17], to protect body from foreign pathogens [18].
The innate immune response is obtained through the evolu-
tion from generation to generation, and the acquired immune
response is learned through its own encounters with the anti-
gens [19].

The artificial immune system (AIS) [20] was invented
by Farmer et al. [13] as a new computational intelligence
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Fig. 1 Pseudo-code of the
proposed AIS

technique [21]. The AIS has been developed to give the
defensive properties within a computing context [22], and
has been studied widely in the fields of the artificial intel-
ligence due to its deep inspiration to real world sciences
and engineering problems [8,19,23]. The AIS models can be
listed as follows [24]: The clonal selection [25], the immune
networks [13], the danger theory [26], the negative selec-
tion [27], the bone marrow, and also the somatic hyper-
mutation. Among these models, the clonal selection together
with the affinity maturation processes [28] has been applied to
explain how the immune system responds to the pathogens,
and how it improves its capability of killing the invaders
[29–31].

The pseudo-code of the proposed AIS with the clonal
selection and the affinity maturation processes for the SDST-
FJSP are outlined in Fig. 1. The main processes of the
AIS (see Fig. 2) are described in the following subsec-
tions:

3.1 Problem Encoding

A solution in the FJSP can be expressed by the assignment
of operations to machines, and the sequence of the assigned
operations on machines [1]. In the present paper, a linear
encoding known as the task sequencing list [1,32] has been
used to represent the antibody (solution). The encoded sub-
antibody has been shown by the triple (i, j, k), where i ,
j and k are the number of the job, the operation and the
machine, respectively. The length of an antibody is equal to
the total number of the operations for all jobs. The left-to-
right ordering of the sub-antibodies indicates the sequence of
the operations on the machines. Figure 3 shows a typical anti-
body representation for an example with four jobs and three
machines.

3.2 Population Initialization

The proposed AIS produces the encoded sub-antibodies
with the random assignment of the operations to the appro-
priate machines. The created sub-antibodies are arranged

Fig. 2 Proposed AIS procedures for solving the SDST-FJSP

according to the precedence constraints (assumption #2
in the Sect. 2.1) to generate the initial population of the
antibodies.
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Fig. 3 Antibody representation

Fig. 4 Pseudo-code of the
proposed PSO

3.3 Fitness Evaluation

With the clonal selection, each antibody (solution) has an
affinity value (fitness) [33]. The affinity value of the anti-
bodies is determined by the bi-criteria performance measure,
including minimization of makespan and mean tardiness [see
Eq. (3)].

3.4 Two-Phased Mutation Process

As one of the affinity maturation processes, the mutation is
a critical process of the AIS and is applied to determine the
quantity of exploration within the search space [33]. The
two-phased mutation process is an inverse mutation operator
followed by a pair-wise interchange mutation operator and
is used to generate a clone (new offspring) from an antibody
[34]. The number of clones is determined by the number
of antibodies (NA) and the affinity value of the antibody
[33].

The inverse mutation operator is implemented once, to
each antibody in the population [24]. After random selec-
tion of two sub-antibodies, a clone is obtained by inverse
replacement of the sequence of the sub-antibodies between
the two selected sub-antibodies. The mutated clone replaces
the original antibody if it presents a better performance.
Otherwise, the pair-wise interchange mutation operator is
applied to produce a clone with a better affinity value by inter-
changing the two selected sub-antibodies. The two-phased
mutation process is repeated until all the antibodies are
mutated.

3.5 Receptor Editing Process

As another process of the affinity maturation processes, the
receptor editing with the antibody elimination percentage
(%B) permits exploring more promising regions of the search

Fig. 5 Proposed PSO procedures for solving the SDST-FJSP

space [24]. A fraction of the antibodies (worst %B of the
whole population) are eliminated and replaced by the same
number of randomly created new antibodies.
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3.6 Stopping Criterion

The stopping criterion of the algorithm is determined by a
specified CPU time limit. The algorithm steps are repeated
until this criterion is satisfied.

4 PSO Procedures for the SDST-FJSP

The swarm intelligence is based upon a simulation of the
social behavior such as bird flocking to a promising region
for food [35,36]. The application of the swarm intelligence in
the optimization was first designed by Eberhart and Kennedy
[37] under the name of the PSO [38–40]. The PSO is compu-
tationally flexible, efficient, robust and adaptive [41,42], and
has great capability of escaping local optimum solution [43–
45]. Like the evolutionary algorithms, the PSO conducts the
searching process using a swarm (population) of particles
(individuals) [46–48]. During exploration for the optimum
solution, each particle moves to the next position by con-
ducting a velocity in the direction of its own best previous
position (local best) and the best position discovered by the
whole particles (global best) [33,49,50].

The N-dimensional position and velocity vectors for
the pth particle in the t th iteration can be described
as X p(t) = x p1(t), x p2(t), . . . , x pN (t) and Vp(t) =
vp1(t), vp2(t), . . . , vpN (t), respectively [48,51]. The fol-
lowing equations can represent the updating rules of a swarm
of the particles [52]:

Vp(t) = w(t) × Vp(t − 1) + c1 × r1 × (X L
p − X p(t − 1))

+c2×r2×(X G −X p(t−1)) (4)

X p(t) = Vp(t) + X p(t − 1) (5)

Table 1 Experimental factors and levels considered

Factors Levels Value

Number of the antibodies (NA) 4 100, 500, 1,000, 1,500

Antibody elimination
percentage (%B)

7 5, 10, 25, 40, 50, 70, 85

Fig. 6 Proposed AIS with the different values of the NA and the %B

where ‘p = 1, 2, . . . , M’ is the particle number; t is the
iteration number; X L

p = {x L
p1, x L

p2, . . . , x L
pN } and X G =

{xG
1 , xG

2 ; . . . ; xG
N } are the local best of the pth particle and the

global best, respectively; c1 and c2 are the positive constants
known as the learning factors; r1 and r2 are two random num-
bers uniformly distributed in the interval [0, 1] [48]; w(t) is
the inertia weight used to control the impact of the previous
velocities on the current velocity [53].

The pseudo-code of the proposed PSO for the SDST-FJSP
is outlined in Fig. 4. The PSO consists of five main processes
(see Fig. 5): (1) problem encoding, (2) population initializa-
tion, (3) fitness evaluation, (4) updating velocity and position,
and (5) stopping criterion. The four procedures of the PSO
are similar to the AIS procedures (see Sects. 3.1, 3.2, 3.3, and
3.6). The extra process is described in the following section.

4.1 Updating Velocity and Position

In each iteration, every particle updates its current veloc-
ity and position in the search space using the values of
the local and global best [33]. In the proposed PSO, this

Table 2 Analysis of variance
(ANOVA) on the experimental
results

Source Sum of squares Degree of freedom Mean square F P value

Number of the
antibodies (NA)

36.729 4–1 = 3 12.243 25.69 0.000

Antibody elimination
percentage (%B)

51.603 7–1 = 6 8.6005 18.05 0.000

Error 662.498 1,390 0.4766

Total 750.83 4×7×50 – 1 = 1,399
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Table 3 The characteristic of classes

Class Number Number of Number of Number of Processing Sequence- Dummy
number of jobs operations of available times dependent jobs

(n) for each machines machines setup times
job (ni ) (m) for each

operation

1 10 5 5 [U (1,6)] U (20,100) U (20,60) U (20,40)

2 15 5 8 [U (1,9)] U (20,100) U (20,60) U (20,40)

3 10 10 5 [U (1,6)] U (20,100) U (20,60) U (20,40)

4 15 10 10 [U (1,11)] U (20,100) U (20,60) U (20,40)

5 20 10 8 [U (1,9)] U (20,100) U (20,60) U (20,40)

6 20 15 10 [U (1,11)] U (20,100) U (20,60) U (20,40)

U (a, b): Uniform distribution between (a, b), [x]: The greatest integer which is less than the real number x

Table 4 Average relative percentage deviation (RPD) of the algorithms
for α = 0.25

Class
number

Example
number

GA-
2008

PVNS-
2009

VNS-
2011

Proposed
PSO

Proposed
AIS

1 1 23.58 23.98 10.43 15.46 7.35

2 25.89 25.85 9.44 13.4 6.63

3 10.48 18.44 4.78 6.17 2.54

4 30.84 21.32 3.44 5.29 1.03

5 34.38 23.5 11.84 16.12 8.26

2 6 23.05 20.46 7.44 6.35 3.13

7 31.84 23.95 10.34 12.17 5.21

8 18.57 20.85 5.3 6.64 1.03

9 19.43 17.84 5.95 7.93 2.47

10 22.75 20.53 4.16 5.98 1.54

3 11 18.44 32.87 10.75 8.43 5.45

12 36.95 25.85 11.44 7.35 6.29

13 18.23 19.74 8.49 4.73 3.02

14 24.78 24.59 6.93 3.05 2.34

15 22.76 26.83 8.23 6.15 3.38

4 16 15.84 14.4 5.85 5.27 0.64

17 14.3 18.56 4.98 2.06 1.55

18 11.4 14.38 3.49 2.64 1.1

19 15.75 22.05 10.87 6.53 4.74

20 17.85 20.44 6.92 4.12 2.87

5 21 26.96 29.84 12.74 8.34 5.55

22 25.95 31.84 10.72 7.34 2.07

23 22.96 36.84 11.3 7.82 4.15

24 26.87 31.75 12.85 6.19 3.35

25 21.87 28.54 9.43 8.32 4.79

6 26 21.67 22.54 13.65 17.36 9.33

27 19.4 23.59 12.86 14.44 7.43

28 20.82 22.98 11.6 15.63 6.25

29 18.41 24.62 13.21 14.87 9.42

30 21.97 20.56 10.93 12.65 7.9

Table 5 Average relative percentage deviation (RPD) of the algorithms
for α = 0.5

Class
number

Example
number

GA-
2008

PVNS-
2009

VNS-
2011

Proposed
PSO

Proposed
AIS

1 1 13.85 11.74 4.75 6.56 2.85

2 15.96 13.08 3.09 4.34 2.14

3 17.5 12.46 4.95 5.29 1.44

4 16.94 11.74 4.19 6.22 2.76

5 18.43 12.84 5.86 7.5 3.85

2 6 17.02 14.89 5.38 7.24 4.19

7 13.3 12.94 5.22 6.34 3.87

8 14.74 13.38 7.84 9.85 3.56

9 17.54 11.64 5.84 7.14 2.13

10 13.29 12.28 7.85 7.98 4.76

3 11 13.89 8.83 5.63 3.46 1.26

12 16.84 12.43 6.28 4.88 3.94

13 12.27 10.46 5.73 3.67 1.85

14 15.13 17.42 7.37 4.18 3.39

15 14.58 11.53 8.14 6.95 2.84

4 16 11.73 12.53 5.93 3.57 2.33

17 11.3 8.63 5.83 4.84 3.74

18 9.73 13.64 6.31 3.85 3.46

19 10.63 14.26 5.63 4.53 1.84

20 9.31 11.46 7.54 4.14 1.65

5 21 17.37 10.83 7.83 6.94 3.94

22 15.83 9.62 6.32 4.82 3.82

23 16.93 9.63 7.63 5.15 1.74

24 21.94 12.94 10.38 8.29 2.93

25 17.3 11.43 8.63 6.66 4.94

6 26 16.93 14.87 10.83 12.94 8.73

27 24.03 17.83 9.75 15.83 3.8

28 19.74 13.24 7.71 9.81 3.35

29 18.54 14.76 9.7 12.44 5.83

30 22.38 15.54 9.83 13.84 4.22
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updating is done with the aid of swap operator [54] and
insert operator [55]. The difference between these opera-
tors is that the insert operator removes a node from its orig-
inal location and inserts it into another location, whereas
the swap operator exchanges two nodes in the different
locations.

5 Design of Experiment

The aim of this experiment was to investigate the appro-
priate settings of the proposed AIS parameters, including
the number of antibodies (NA) and the antibody elimina-
tion percentage (%B), for the SDST-FJSP with 10 jobs, 5
operations for each job, and 5 machines. The full factorial
DOE [56] and range of the values are shown in Table 1.
The computational runs are replicated 50 times with random
numbers. The results of the analysis of variance (ANOVA)
are presented in Table 2. It can be discovered that both the
NA and %B are statistically significant under the confidence
level of 0.95. The AIS has been tested on the different val-
ues of these two parameters in Fig. 6. It can be seen that the
best settings of the NA and %B are 1,000 and 25, respec-
tively.

6 Comparison of the Results

Six classes of the examples have been used to demonstrate
effectiveness and competitiveness of the proposed AIS and
PSO algorithms for solving the SDST-FJSP, and to com-
pare with the other existing algorithms, including (1) VNS-
2011: the variable neighborhood search approach presented
by Bagheri and Zandieh [1]; (2) PVNS-2009: the parallel
variable neighborhood search presented by Yazdani et al.
[11], and adjusted by Bagheri and Zandieh [1]; and (3) GA-
2008: the genetic algorithm presented by Pezzella et al. [12],
and adjusted by Bagheri and Zandieh [1]. The characteristic
of each class with different numbers of the jobs, the oper-
ations and the machines is shown in each row of Table 3.
The first four rows of this table are studied by Bagheri and
Zandieh [1], while the fifth and sixth rows of this table have
been proposed in the present study. The five examples have
been generated for each class, in addition to the 30 exam-
ples.

The proposed AIS and PSO algorithms have been coded
in MATLAB programming language. All the examples have
been run on a 2.4-GHz Pentium IV PC with 4 GB of RAM.
The settings of the AIS parameters have been stated in the
previous section. Similar to the population size in the VNS-
2011 algorithm, the number of particles (M) also in the PSO
is set to be 1,000. The inertia weight (w(t)) and the learning
factors (c1 and c2) are set to be 1 and 2, respectively. Like the

Table 6 Average relative percentage deviation (RPD) of the algorithms
for α = 0.75

Class
number

Example
number

GA-
2008

PVNS-
2009

VNS-
2011

Proposed
PSO

Proposed
AIS

1 1 11.64 8.83 2.43 4.83 3.24

2 12.74 10.53 3.87 5.91 2.65

3 14.52 11.86 6.73 7.31 4.96

4 11.84 8.23 5.84 6.26 2.54

5 15.75 9.63 3.84 5.19 1.74

2 6 11.73 9.94 4.83 6.98 2.45

7 12.84 11.52 6.73 7.3 4.75

8 15.13 14.64 5.73 10.3 3.65

9 15.49 14.73 3.21 5.93 3.53

10 14.3 12.43 4.82 5.09 2.5

3 11 9.73 15.3 6.72 2.65 1.86

12 11.37 17.73 7.12 4.85 3.13

13 8.3 9.18 4.37 3.17 0.87

14 16.93 15.93 6.93 5.65 2.01

15 10.74 17.84 5.93 4.52 2.75

4 16 17.63 11.84 6.94 4.91 2.35

17 21.39 17.94 11.93 7.84 5.43

18 17.26 9.74 6.1 5.43 3.19

19 16.43 11.3 7.38 3.14 2.68

20 16.38 11.84 6.01 6.88 3.45

5 21 19.16 16.84 7.85 6.83 3.41

22 20.53 17.73 8.4 5.31 4.83

23 17.74 15.83 8.83 6.93 3.95

24 16.37 16.3 9.3 7.28 2.48

25 18.84 17.36 7.94 6.23 4.16

6 26 19.36 14.83 6.33 8.83 2.84

27 21.73 12.93 4.9 9.37 3.92

28 24.85 17.83 7.94 10.84 6.93

29 18.51 9.93 5.26 7.93 5.11

30 23.85 15.94 6.17 9.3 4.83

work presented by Bagheri and Zandieh [1], in the current
research, a CPU time limit (i.e., n × ni × m×0.1 s) has been
considered as the stopping criterion for testing all examples
with all algorithms. And also, ten replications have been per-
formed for each example to achieve more reliable results. In
order to compare the performance of the algorithms in the
three values 0.25, 0.5 and 0.75 of α, the relative percent-
age deviation (RPD) in each example has been formulated as
follows [57]:

RPD = Zalg − Zbest

Zbest
× 100 (6)

where Zalg is the objective function (Z ) obtained for each
replication of the given algorithm and Zbest is the objective
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Fig. 7 Average RPD of the
algorithms in the three values
0.25, 0.5 and 0.75 of α

function (Z ) of the best solution obtained among the ten
replications of all algorithms.

Table 4 shows the average RPD of the GA-2008, the
PVNS-2009, the VNS-2011, the PSO, and the AIS algo-
rithms for the ten replications of each example for α = 0.25.
The results for α = 0.5 and 0.75 are shown in Tables 5 and
6, respectively. As can be seen, the proposed AIS performs
better than the other algorithms for all values of α. Only in
the problems #1 and #9 for α = 0.75 (see Table 6), the VNS-
2011 algorithm has acquired the better results in comparison
with the AIS.

To study the effect of the problem size on the performance
of algorithms, the average RPD in the six classes of the exam-
ples for α = 0.25, 0.5 and 0.75 is plotted in Fig. 7. The results

obtained in all classes and all values of α show that the pro-
posed AIS works better than the other algorithms, while the
proposed PSO performs better than the GA-2008 and the
PVNS-2009 algorithms. For the classes #3, #4, and #5, the
PSO does better than the VNS-2011.

The convergence behavior of all algorithms for the classes
#5 and #6 (large-sized problems) is shown in Figs. 8 and 9,
respectively. From these figures, it can be concluded that the
initial solution of the proposed AIS is better than the other
algorithms. Also, the proposed AIS hastens the convergence
and improves the final solution.

Figure 10 presents the variance of the RPD for all algo-
rithms and all examples in α = 0.25, 0.5, and 0.75. The
results show that the proposed AIS is obviously better
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Fig. 8 Convergence curve of the algorithms for the class #5 in the three values 0.25, 0.5 and 0.75 of α

than the four other algorithms in terms of the scheduling
stability.

7 Conclusion

The present paper describes the successful development of
the artificial immune system (AIS) and the particle swarm
optimization (PSO) for solving the SDST-FJSP by minimiz-
ing the objective function of makespan and mean tardiness.

In order to verify the efficacy of the proposed algorithms
with the parameters obtained in the design of experiment,
30 examples with different numbers of jobs, operations and
machines have been used to compare with the genetic algo-
rithm (GA) of Pezzella et al. [12], the parallel variable neigh-
borhood search (PVNS) of Yazdani et al. [11], and the vari-
able neighborhood search (VNS) of Bagheri and Zandieh [1].
The results show that while the proposed PSO works better
than both GA and PVNS approaches, the proposed AIS per-
forms the best.
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Fig. 9 Convergence curve of the algorithms for the class #6 in the three values 0.25, 0.5 and 0.75 of α

Fig. 10 Variance of the RPD of
the algorithms
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