
Arab J Sci Eng (2013) 38:2233–2244
DOI 10.1007/s13369-013-0611-4

RESEARCH ARTICLE - SYSTEMS ENGINEERING

Scheduling a Bi-Objective Hybrid Flow Shop
with Sequence-Dependent Family Setup
Times Using Metaheuristics

M. Fadaei · M. Zandieh

Received: 13 January 2011 / Accepted: 6 October 2011 / Published online: 4 April 2013
© King Fahd University of Petroleum and Minerals 2013

Abstract This paper deals with the problem of hybrid flow
shop scheduling. In this investigation, we considered group
scheduling within the area of sequence-dependent family
setup times and two objectives of minimizing makespan and
total tardiness are taken into consideration simultaneously.
Due to the computational complexity in solving these set
of problems with multiple objectives, metaheuristics has a
high priority, because these algorithms are capable of solv-
ing combinatorial problems in a reasonable time. This study
focuses on three multi-objective algorithms, multi-objec-
tive genetic algorithm, sub-population genetic algorithm-II
and non-dominated sorting genetic algorithm-II, to solve the
mentioned problem. In order to investigate the effectiveness
and efficiency of applying the noted metaheuristics for such
an NP-hard problem, we evaluate non-dominated solution
sets obtained via each algorithm through some evaluation
metrics.

Keywords Multi-objective optimization ·
Hybrid flow shop · Multi-objective evolutionary algorithms ·
Sequence-dependent family setup times · Group scheduling ·
Makespan · Total tardiness

M. Fadaei
Department of Industrial Engineering, Mazandaran University
of Science and Technology, Babol, Iran

M. Zandieh (B)
Department of Industrial Management, Management and Accounting
Faculty, Shahid Beheshti University, G. C., Tehran, Iran
e-mail: m_zandieh@sbu.ac.ir

1 Introduction

There is a variety of manufacturing environment species in
industries, and “hybrid flow shop” (HFS) is a type of them.
There has been lots of research articles on HFS scheduling
problems, but most of them employed only one objective. It
is apparent that the majority of real-world industrial systems
are expected to optimize more than one objective. Hence, it is
explicitly needed to consider more objectives simultaneously
in solving scheduling problems.

The HFS scheduling problem is a broadened form of the
conventional flow shop model. Flow shops are formed by
a set of n jobs which must be processed on m successive
stages, and all the jobs should be processed through all the
stages in the same order. An HFS comprised of more than
one stage, in which, at least one stage has got two or more
parallel machines. Reduction in completion time is the main
reason for installing multiple machines in one/some stage(s).

123

2234 Arab J Sci Eng (2013) 38:2233–2244

Most of the researches on HFS scheduling problem has
done on two-stage HFS [1–4] and there have been few papers
containing more than two stages. Based on the complexity of
HFS scheduling problems, the current algorithms for solving
HFS can be divided into two categories: exact methods and
heuristic algorithms. Branch and bound approach is a kind of
exact methods which has widely employed to optimize HFS
scheduling problems [5–7], but because of huge amount of
computational applications, this method cannot be applica-
ble to a wide variety of real-world systems, so practitioners
have tried to extend heuristic algorithms.

Botta-Genoulaz [8] proposed six new heuristics to sched-
ule a k-stage HFS with the objective of minimizing maximum
lateness. An artificial immune system was introduced as a
new approach to solve HFS scheduling problem by Engin and
Doyen [9], they considered makespan minimization as the
objective of their research. Janiak et al. [10] studied an HFS
scheduling problem considering criterion of three parts: the
total weighted earliness, the total weighted tardiness and the
total weighted waiting time. They proposed three construc-
tive algorithms and developed three metaheuristics to solve
the problem. Gupta et al. [11] proposed a heuristic construc-
tive algorithm for an HFS scheduling problem considering
a criteria based on due dates. Allaoui and Artiba [12] dealt
with five objectives separately for an HFS. Jungwattanakit
et al. [13] formulated an integer program and proposed some
constructive heuristics for a bi-objective flexible flow shop
scheduling problem with unrelated parallel machines. The
study considered positively weighted convex sum of make-
span and the number of tardy jobs as two different objectives.

One way to increase the productivity of manufacturing
systems is to use of group technology and ‘cellular manu-
facturing’. By the advent of manufacturing cell scheduling
problems (MCSPs), there have done some studies on MCSPs
[14]. In cellular manufacturing, jobs (parts) and machines are
grouped based on their similarities, for instance, jobs which
need to be processed on the same machine can be gathered
in one group, it causes to have a ‘part family’ which included
jobs with the same setup times. Therefore, the machine that
is going to process these jobs needs to be prepared once and
then it can process all the jobs of this family, so it results
in decreasing of setup time as well as completion time. To
simplify scheduling problems, setup times have been rarely
considered, while the most real-world manufacturing envi-
ronments have separated setup time and processing time.
Ham et al. [15] proposed a polynomial-time algorithm to
solve the problem of two-machine group scheduling with
sequence-independent setups, with the objective of minimiz-
ing makespan.

Gupta and Tunc [2] proposed four new heuristic algo-
rithms to minimize completion time for an HFS. They
considered setup times and removal times separated from
processing times.

Kurz and Askin [16] used random keys genetic algorithm
(RKGA) to minimize makespan for a sequence-dependent
setup time flexible flowline. Zandieh et al. [17] proposed
an immune algorithm to solve the sequence-dependent setup
time HFS, which resulted to a more efficiency in comparing
with RKGA proposed by Kurz and Askin [16].

There are two stages in custom group scheduling prob-
lems. At first, the sequence of jobs belonging to each family
must be identified and then the sequence of families must be
determined, which commonly known as major setups. Since,
in grouping the jobs, resembling between jobs must be con-
sidered, so the required setup time to switch from one job to
another one, of the same family, for processing on a machine
is very low, and can be ignored. On the other hand, because of
the dissimilarity of jobs in different families, required setup
time for changing families on a stage is noticeable and should
be accounted separately from processing time. In this study,
we consider an HFS with SDFST which results in a set of
more complicated problems. Even considering two machines
for a flow-line with SDFSTs causes to encounter with NP-
hard problems [18]. Genetic algorithms [19], tabu searches
[20], and hybrid metaheuristics [21] are some metaheuristics
which are used for solving MCSPs with SDFSTs.

Considering multiple conflicting objectives causes to
encounter with more complicated problems and due to the
difficulties there are few studies in literature for this class
of problems. To schedule multi-objective problems we deal
with the concept of Pareto-set. Among the techniques of
generating Pareto-sets, evolutionary algorithms are more
efficient because of using a population of solutions [22].
Because of the complexity of these class of optimization
problems, multi-objective evolutionary algorithms (MOEAs)
are developed to solve them. The first implementation of
MOEAs was vector evaluation genetic algorithm (VEGA),
which was extended by Schaffer [23]. After that research-
ers developed many MOEAs such as strength Pareto evolu-
tionary algorithm (SPEA), sub-population genetic algorithm
(SPGA), proposed non-dominated sorting genetic algorithm
(NSGA), NSGA-II and so on. Murata et al. [24] introduced
multi-objective genetic algorithm (MOGA) assigning vari-
able weights to objective functions, they employed MOGA
to the flow shop scheduling problem. Zitzler et al. [25,26]
introduced SPEA and SPEA-II. Chang et al. [27] proposed
two-phase SPGA for a parallel machine scheduling problem.
Recently, Chang and Chen [28] developed a sub-population
genetic algorithm-II (SPGA-II) for multi-objective combi-
natorial problems. Deb et al. [29] proposed non-dominated
sorting genetic algorithm II (NSGA-II).

As reviewed above, there has been almost no study on HFS
considering SDFST and minimizing makespan and total tar-
diness simultaneously.

In this paper, we consider a HFS scheduling problem with
sequence-dependent family setup time and considering two

123

Arab J Sci Eng (2013) 38:2233–2244 2235

objectives: makespan and total tardiness. We adapted three
MOEAs to solve this problem.

The remainder of the paper is structured as follows: Sect. 2
gives the problem description. Section 3 introduces three
adapted MOEAs for this study and describes the charac-
teristics of these evolutionary algorithms (EAs). Parameters
tuning, evaluation metrics and the experimental results are
explained in Sect. 4. Finally, Sect. 5 presents the conclusions
of the paper and further research directions.

2 Problem Definition and Notations

This study is fond of scheduling the problem of HFS. The
HFS scheduling problem with the following assumptions is
considered in this study:

• All n jobs are available at the beginning of scheduling.
• Preemption is not allowed.
• There is no breakdown for machines and all the machines

are always available.
• Parallel machines in each stage are identical.
• Infinite buffers are installed between stages.
• Traveling time between stages is zero.
• Each job can be processed on one machine at a time.
• A machine cannot process more than one job at the same

time.
• Families (groups) have setup times which are sequence-

dependent.

It should be noted that in this study we have just family
setups and there is no separate setup time for jobs. Since the
part setups are negligible so it is assumed that setup time of
each job has been considered with the processing time of that
job.

We considered the following definitions too:

• n j = total number of jobs;
• ng = number of groups;
• ns = number of stages;
• C j = the completion time of j th job.
• d j = due date for job j ;
• prs

j = processing time for job jat stage s;
• t s

i j = sequence-dependent setup time for switching from
group i to group jat stage s;

• ms = the vector contains number of machines for stage s.

2.1 Two Objectives Employed in this Study

In this study, we investigate minimizing two objectives:
makespan and total tardiness, which can be briefly described
as follows:

Makespan (Cmax): the required time to fulfill processing
all jobs;
Total tardiness (TT): the sum of tardiness of all jobs(∑n

j=1 Tj

)

where Tj is equal to max{C j − d j , 0} and d j is the due date
of j th job.

To prevail over trap of dealing with objective values of dif-
ferent units, we normalize the value of each objective func-
tion by the following equations:

To prevail over the trap of dealing with different measure-
ment sizes of objective values, we normalize the value of
each objective function by the following equations:

f1(x) = Cmax(x) − best(Cmax)

worst(Cmax) − best(Cmax)
and

f2(x) = TT(x) − best(TT)

worst(TT) − best(TT)

where for solution x, Cmax(x) and TT(x) denote the value of
two objectives: makespan and total tardiness, respectively,
best(Cmax) and worst(Cmax) indicate the best and worst
obtained value for objective function Cmax, best(TT) and
worst(TT) indicate the best and worst obtained value for total
tardiness, and fi (x) is the normalized value of i th objective
function for solution x .

2.2 Pareto-Optimal Solutions

Single objective optimization acquires one single solution as
final optimum solution. Whereas multi-objective optimiza-
tion is accustomed to deal with a set of best solutions, which
none of these solutions are dominated by another one. This
set of non-dominated solutions, which commonly known as
Pareto-optimal solutions, is proposed by Tamaki et al. [30].

If x is a solution for a multi-objective problem and there is
no solution y which dominates x , thus x is a Pareto-optimal
solution. In order to clarify that Pareto-optimal solutions are
non-dominated, assume that S is a Pareto-optimal set for a
bi-objective minimization problem and x ∈ S. In addition y
is a feasible solution for this problem, and not a member of
Pareto-optimal set, so solution x dominates solution y.

Totally, it can be said that solution x dominates solution
y if:

fi (x) ≤ fi (y),∀i ∈ {1, 2} and fi (x) < fi (y), ∃i ∈ {1, 2}

3 Multi-Objective Evolutionary Algorithms

Hybrid flow shop cannot be solved with exact algorithms in
a reasonable time because it is an NP-hard problem. Fur-
thermore with considering multiple objectives, the problem
becomes more complicated. As discussed above, employing

123

2236 Arab J Sci Eng (2013) 38:2233–2244

MOEAs is effective for solving this class of problems. In the
following, we describe three MOEAs which are employed in
this study.

3.1 Multi-Objective Genetic Algorithm

Murata et al. [24] proposed the MOGA with the aim of
searching Pareto-optimal solutions for bi-objective and tri-
objective scheduling problem. Thereafter, some develop-
ments have been implemented on this new multi-objective
algorithm.

3.1.1 Weighting Method

Murata et al. [24] calculated sum of weighted objective val-
ues for each solution and used it for evaluating that solution.
In this way, they changed a multiple objective problem into
a single objective problem as follows:

f (x) =
n∑

i=1

wi fi (x)

where fi (x) is the value of i th objective function for solu-
tion x , and wi is the weight assigned to i th objective function.
A magnificent characteristic of MOGA is using of variable
weights which are assigned to different objectives. These
weights should satisfy the following relationships:

wi ≥ 0, i = 1, . . . , n
n∑

i=1

wi = 1

Using variable weights leads to switch searching area into
different directions. There are several weighting approaches.
For instance, ‘constant weight’ method is a kind of weight-
ing methods, in which each objective is assigned a constant
weight value, but the shortcoming of this method is that these
constant weights must be determined at first. One way for
weighting is using of random numbers. For instance, we can
use the following equation to make weights:

wi = ui∑n
i=1 ui

, i = 1, 2, . . . , n

ui is a random number in the interval (0, 1), and wi indicates
the weight corresponding to i th objective. This method is
applied in this survey.

3.1.2 Solution Representation

Bean [31] proposed RKGA. The major difference between
RKGA and conventional genetic algorithm is in the solution
representation. Solution representation in RKGA is based on
an encoding method employing random numbers. Norman
and Bean [32] suggested a new solution representation for an

Machine J1 J2 J3 J4

G1 2.28 0.28 0.76 0.18 -
G2 1.84 0.86 0.19 - -
G3 1.35 0.45 0.86 0.34 0.09
G4 3.19 0.72 0.39 0.12 -
G5 2.48 0.67 0.94 0.14 -

Fig. 1 Solution representation

identical multiple-machine problem. Their offered solution
representation is described in the following. We employ this
approach to assign and determine the sequence of groups and
jobs assigned to each group at the first stage. For each group
we generate a random number in the interval (1, m1 + 1)

where the value of m1 is the number of machines for the
first stage. The integer part of created real number shows
the machine number to which the group is assigned and the
fractional part is used for sorting groups assigned to each
machine. For identifying the sequence of jobs related to each
group, we create a random number in the interval (0, 1) for
each job, the sequence of processing jobs is based on increas-
ing the created numbers. In other words, the job related to
the smallest number is processed first and so on.

Assume there are five groups and number of jobs of group
1 to group 5 are 3, 2, 4, 3 and 3, respectively, and it is
supposed that we have three identical machines at the first
stage. An example of encoding above problem can be seen in
Fig. 1.

According to the solution representation in Fig. 1, the
sequence of jobs and groups on machines of first stage is
concluded as follows:

Machine 1: G3 (J4, J3, J1, J2), G2 (J2, J1)

Machine 2: G1(J3, J1, J2), G5(J3, J1, J2)

Machine 3: G4(J3, J2, J1).

3.1.3 The Step-by-Step MOGA

In the following, explanation of MOGA employed in this
study is given:
3.1.3.1. Initialization. First, we determine the value of algo-
rithm parameters such as: population size (N), selection
strategy, rate of crossover (rc), rate of mutation (rm) and
stopping criteria. Then a random population of N chromo-
some is generated. To represent solutions, we employ random
number approach described in Sect. 3.1.2.
3.1.3.2. Evaluation. Thereafter the value of each objective
function is calculated for each solution. As stated in Sect. 2.1,
to avoid trapping of different units for different objectives,
the normalized objective functions are applied. As it was
explained, we consider the aggregate of weighted objective
functions for evaluation. We employ random numbers for
weighting as described in Sect. 3.1.1. Afterwards we can
evaluate solution x as follows:

123

Arab J Sci Eng (2013) 38:2233–2244 2237

3.11 0.48 0.71 0.24 - 2.18 0.18 0.76 0.31 -

2.14 0.36 0.28 - - 3.52 0.34 0.19 - -

2.35 0.92 0.34 0.82 0.34 1.96 0.89 0.64 0.74 0.85

1.94 0.85 0.84 0.27 - 1.12 0.75 0.85 0.39 -

1.25 0.31 0.47 0.81 - 2.54 0.29 0.34 0.28 -

Parent 1 Parent 2

0.18 0.69 0.27 0.93 - 3.11 0.48 0.71 0.31 -

0.96 0.73 0.26 - - 3.52 0.34 0.28 - -

0.36 0.29 0.84 0.64 0.39 2.35 0.92 0.64 0.82 0.34

0.75 0.39 0.59 0.47 - 1.12 0.85 0.84 0.27 -
0.45 0.85 0.43 0.71 - 1.25 0.29 0.47 0.28 -

Random numbers offspring

Fig. 2 Crossover example

f (x) = w1 · f1(x) + w2 · f2(x)

where f (x) is the fitness function for solution x, f1(x) and
f2(x) are normalized makespan and normalized total tardi-
ness, respectively.
3.1.3.3. Elitism. We apply elitism for reproduction. In this
way, the solutions with best fitness function values are cop-
ied to the next generation.
3.1.3.4. Selection strategy. we use roulette wheel selection
proposed by Goldberg [33] as selection strategy for MOGA
employed in this study.
3.1.3.5. Crossover scheme. After selecting two parents by
the use of selection strategy, crossover operator makes new
offsprings by exchanging corresponding parts of parents. We
apply crossover with the probability of rc. we set the chromo-
some with better fitness function value as parent 1, and the
other one is parent 2. Random numbers in the interval (0, 1)

is generated for each gene. For a specific gene, if this created
number is <0.7, the related value of parent 1 is used for that
gene of offspring, otherwise the corresponding measure of
parent 2 is copied for offspring (see Fig. 2).
3.1.3.6. Mutation scheme. We apply mutation operator with
the probability of rm; at first we choose two groups randomly.
The corresponding values of these two groups are swapped,
then for each group, two jobs are selected randomly, and the
related values of them are swapped.

3.1.3.7. Updating Pareto-archive. A Pareto-optimal archive
is identified. We calculate the Pareto-optimal solutions for
this generation and update the Pareto-archive.
3.1.3.8. Stopping criterion. Finally, we check whether the
stopping criterion is met or not. There are alternative options
for stopping criteria, but we set a specific number of iteration
as the termination of algorithm.

The pseudo-code of MOGA is explained in Fig. 3.

3.2 Non-Dominated Sorting Genetic Algorithm-II

Sirnivas and Deb [34] proposed NSGA, which is a class of
MOEAs. Because of weaknesses of this approach such as
high computational complexity, lack of elitism and need for
specifying the sharing parameter, Deb et al. [29] modified the
NSGA approach and proposed NSGA-II. The new proposed
EA eliminated the criticisms of the former NSGA, to some
extent.

In using NSGA-II, we encounter with two other proce-
dures too, ‘crowding distance assignment’ and ‘fast non-
dominated sorting algorithm’. First, we explain these two
algorithms and then we describe the basic structure of
NSGA-II.

3.2.1 Fast Non-Dominated Sorting

A noticeable subject in dealing with a population of solutions
in NSGA-II approach is to identify the different non-domi-
nated fronts. To divide a population of solutions into different
non-dominated levels, we employ the approach of fast non-
dominated sorting.

To move step-by-step, the first front should be clarified at
first, then the second front and so on. For separating the first
front of solutions from a population comprising of N differ-
ent solutions, each solution should be compared with all of
the other solutions to determine whether it is non-dominated
or not.

After examining all solutions, the first front will be iden-
tified. The solutions of the first front should be eliminated
temporarily from the population of solutions and above pro-
cedure will be repeated for the remainder of solutions to find

Fig. 3 The pseudo-code of
MOGA

Step 1: Encode solutions by employing random numbers
Step 2: Initialize a random population of N chromosomes.

Step 3: Calculate the value of makespan and total tardiness and normalize their values for each
solution.

Step 5: Evaluate fitness function for each solution

Step 6: Calculate Pareto-optimal solutions of this iteration and update the Pareto-archive
Step 7: Apply reproduction using elitist strategy.
Step 8: Apply roulette wheel selection strategy.
Step 9: Apply crossover operator based on random numbers with the probability of rc.

Step 10: Apply mutation operator based on random numbers with the probability of rm.
Step 11: If the stopping criteria is met, it is the termination of algorithm, otherwise go to Step 3.

123

2238 Arab J Sci Eng (2013) 38:2233–2244

Fig. 4 Fast non-dominated
sorting (POP)

Step 1: Let fr=1 (Set front counter equal to 1)
Step 2: Calculate makespan and total tardiness of jobs for each x∈ POP.
Step 3: For each solution x belonging to POP:

3-1: Find nx (the number of solutions which solution x is dominated by them)
3-2: Find Sx (set of all solutions which are dominated by solution x)
3-3: If solution x is not dominated by any other solution (nx=0), assign it to first non-dominated front
(front 1)

Step 4: Eliminate solutions belonging front fr from POP.
Step 5: Set fr=fr+1, start identifying solutions of next front.
Step 6: For each solution x belonging to last determined front (front (fr-1)):

6-1: For each y belonging to Sx, set ny=ny-1 and if ny=0, y belongs to frtth front.
Step 7: If all solutions are assigned to fronts go to Step 8, otherwise go to Step 4
Step 8: Termination of algorithm

Fig. 5 Crowding distance (S) Step 1: Set k=1 (k is objective counter)
Step 2: Calculate kth objective function for each solution
Step 3: Sort S in an ascending order according to the value of kth objective function.
Step 4: For the first and last solution of sorted set, distance values are equal to infinite, and for the others, use

the normalized difference in the function values of two adjacent solutions as crowding distance.
Step 5: If k equals to 2 (the number of objectives in this study) go to Step 6, otherwise set k=k+1 and go to

Step 2.
Step 6: The value of crowding distance for each solution is the summation of crowding distance of that

specific solution for different objectives

the next front. This approach will continue till assigning all
the solutions to different fronts.

It is assumed that nx shows the number of solutions, where
solution x is dominated by them, and all the solutions which
are dominated by solution x are saved in Sx . nx and Sx should
be calculated for all solutions. It can be easily seen that each
solution x with nx = 0 belongs to the first non-dominated
front because no other solution dominates it. Now, the first
front solutions should be eliminated from the population and
identifying the second front should be started. Since for every
solution x belonging to the first front we have set Sx , for each
member y of set Sx we set ny = ny − 1, because the solu-
tion x should be discounted. Now each solution with ny = 0
belongs to the second front, and the second front is identified
too. The above process should be repeated for the solutions
belonging to the second non-dominated front. This procedure
continues until determining all fronts.

The procedure of fast non-dominated sorting for popula-
tion POP is briefly described in Fig. 4.

3.2.2 Crowding Distance

At first, we describe the crowded-comparison operator which
is used for doing selection process in NSGA-II. Assume that
we deal with two solutions, solution x and solution y. solu-
tion x is preferred if Solution x and solution y are positioned
into different fronts and solution x belongs to the front with
lower front number, or, Solution x and solution y belong to
the same front but solution x has a higher crowding distance.

The crowded-comparison operator ‘≺’ can be briefly
described as follows:

x ≺ yif : rank(x) ≺ rank(y), or, rank(x) = rank(y)

and distance(x) � distance(y).

It means that between two solutions of the same level, the
solution that is placed in an area which is less crowded is
preferable to the other solution.

Crowding distance of solution x gives us an estimation of
the density of solutions which are located around the specific
solution x . To calculate the crowding distance for all solu-
tions of a non-dominated set, we do following procedure for
each objective function separately: at first all solutions of the
non-dominated set should be sorted in an intensifying order
according to specific objective, thereafter we assign an infi-
nite value to the solutions with smallest and largest function
measures which are known as boundary solutions. The other
solutions which are located between boundary solutions are
assigned a distance value equal to the absolute normalized
difference in the function values of two adjacent solutions
[29]. The above process will be repeated for all objectives,
and sum of crowding distance of different objective functions
for each solution is used as final crowding distance of that
solution.

The brief description of crowding distance algorithm for
set S can be seen in Fig. 5.

3.2.3 Main Procedure of NSGA-II

By the help of two algorithms illustrated above, detailed pro-
cedure of NSGA-II for a bi-objective HFS with SDFST is
presented in this section. At first, we generate random pop-
ulation P1 of N chromosomes. Random number approach

123

Arab J Sci Eng (2013) 38:2233–2244 2239

which is described in Sect. 3.1.2. is employed for solution
representation. All the solutions should be ranked with the
help of fast non-dominated sorting algorithm. Each solution
is assigned a fitness value according to its non-domination
level. We use the following equation as fitness function for
the solution x :

fit(x) = 1

level(x)

It means that the fitness value for the solutions which are
in the first non-dominated level is equal to 1, fitness value for
solutions of second level is 0.5 and so on.

We use binary tournament selection, crossover and muta-
tion operator for creating the offspring population Q1. The
crossover operator is done as described in Sect. 3.1.3.5, in
addition for applying mutation operator we follow to the let-
ter as explained in Sect. 3.1.3.6.

Combination of the parent population P1 and the offspring
population Q1 results a new population R1 with 2N chromo-
somes. Mixing parent population and offspring population
continues for all the iterations.

In i th iteration, we have set Ri which is obtained by combi-
nation of Qi and Pi . we identify the ranking of all solutions of
Ri . Then all solutions of Ri are assigned to non-domination
levels. Thereafter the new population Pi+1 should be made
for next iteration. For making Pi+1 initially we use the first
non-domination level (level 1) because solutions belonging
to this level are the best individuals. It should be considered
that we need N chromosomes to construct the population
Pi+1, so if the number of solutions assigned to level‘1’ is
less than N , we need to employ solutions of level‘2’, if sum
of individuals assigned to level‘1’ and level ‘2’ is less than
N , solutions of third level should be applied and so on. Sup-
pose that level‘m’ is the last non-domination set that we can
use for making Pi+1, we define variable S as an entity which
satisfies following relations:

S = |level‘1’| + · · · + |level‘m − 1’| and

S + |level‘m’| > N

We use crowding distance assignment and crowded-compar-
ison operator to sort the solutions of level‘m’ in descend-
ing order, afterwards we use number of N − S of the best
solutions of level‘m’ to form all N needed chromosomes
of Pi+1. Now we have new population Pi+1 with N solu-
tions which are the best solutions of the last generation.
Again we use a binary tournament selection, crossover and
mutation operator on population Pi+1 to create population
Qi+1.

The above procedure continues until the stopping crite-
rion is satisfied. A specific number of iterations determined as
stopping criterion in this study. Figure 6 presents the Pseudo-
code of NSGA-II.

3.3 Sub-Population Genetic Algorithm II

Chang et al. [27] proposed two-phase SPGA. The basic idea
of SPGA is to divide the original population into some sub-
populations. Afterwards we assign different weights into
these sub-populations. All solutions of one sub-population
make use of the same weight assigned to that specific sub-
population. The main reason why we assign different weights
into different sub-population is to expand the search area
in different directions as well as result a better conver-
gence. SPGA-II proposed by Chang and Chen [28] is the
developed SPGA. Some characteristics differentiate SPGA-
II from SPGA: SPGA-II employs a global Pareto-archive
which immediately after finding a new Pareto-set should be
updated. In addition SPGA-II applies a two phase approach,
and the best solutions of first phase participate in generating
initial solutions of second phase.

SPGA-II is implemented as follows: initially we gener-
ate a population containing N chromosomes. Such as two
other MOEAs explained previously in this paper, we apply
random number approach, described in Sect. 3.1.2. for solu-
tion representation. All solutions of this population should
be split into several sub-populations. Afterwards the value
of objective functions should be calculated for all individu-
als. As explained in Sect. 2.1 for avoiding the difficulties of
dealing with different units for value of objective functions
we employ the normalized objective functions. Thereafter,
we assign weights to each objective, these weights are dif-
ferent for each sub-population. We compute the fitness value
by the use of determined weights and normalized objective
functions of each solution. Since this study considers two
objectives the fitness function value for the solution x is cal-
culated as follows:

fit(x) = wt · f1(x) + (1 − wt) · f2(x)

where f1(x) and f2(x) are, respectively, normalized value of
makespan and total tardiness which are the objective func-
tions of this study, these normalized values are obtained as
explained in Sect. 2.1 wt is the identified weight for the sub-
population t which contains solution x . The value of wt is
acquired by:

wt =
∣∣∣∣sin

(
2π t

C

)∣∣∣∣

where C is determined equal to 40 and t is the number of
sub-population containing the solution x .

In SPGA-II approach, the first phase execute the sub-
populations with some weight vectors near to boundaries.
For instance, if we construct 20 sub-population, the sub-
population 1–5 and 16–20 are implemented in first phase
and the other intermediate sub-populations are fulfilled in
phase 2.

123

2240 Arab J Sci Eng (2013) 38:2233–2244

Fig. 6 The pseudo-code of
NSGA-II

Step 1: Encode solutions by employing random numbers.
Step 2: Let I=1 (set iteration counter equal to 1)
Step 3: Create random population PI of N chromosomes.
Step 4: Rank solutions of PI by the help of ‘fast non-dominated sorting’ and considering minimization of

two objectives.
Step 5: Calculate fitness value of each solution.
Step 6: Create offspring population QI of N chromosomes:

6-1: Use binary tournament selection.
6-2: Do the crossover based on random numbers with the probability of rc.
6-3: Do the mutation based on random numbers with the probability of rm.

Step 7: Make new population RI by combining parent population PI and offspring population QI, i.e.

III QPR ∪= .
Step 8: If it is the maximum number of iteration (which is the stopping criteria in this study) go to Step 11.

Otherwise set I=I+1.
Step 9: By the use of new population RI, create population PI with N chromosomes based on crowded-

comparison operator.
Step 10: Go to Step 4.
Step 11: Rank solutions of population RI by applying ‘fast non-dominated sorting algorithm’ and set the

first non-dominated level as the final Pareto-set.
Step 12: Termination of algorithm.

Fig. 7 The pseudo-code of
SPGA-II

Step 1: Encode solution by employing random numbers
Step 2: Generate a new population of N chromosomes.
Step 3: Decompose the original population into several sub-populations.
Step 4: Assign different weights to each objective for each sub-population
Step 5: Start phase 1.
Step 6: Apply SPGA for each sub-population of this phase:

6-1: Calculate value of two objective functions: makespan and total tardiness, and normalize their
value.
6-2: Evaluate fitness value for each solution.
6-3: Find Pareto-set of each sub-population and update the global Pareto-archive
6-4: Apply binary tournament selection, reproduction, crossover and mutation operator
6-5: Replace the current sub-population by acquired solutions

Step 7: If it is the end of phase 1 go to Step 10.
Step 8: If it is the end of phase 2 go to Step 12.
Step 9: Go to Step 6.

Step 10: Start phase 2; Generate initial solutions for sub-populations of second phase by applying tournament
selection for current solutions.

Step 11: Go to Step 6.
Step 12: Termination of algorithm.

After calculating fitness value, we determine the non-
domination Pareto-set of each sub-population and update the
global Pareto-archive. Then we apply binary tournament as
selection strategy. for generating new solutions to replace the
current sub-population with them we use reproduction, cross-
over and mutation operators, as described in Sects. 3.1.3.4–
3.1.3.6, respectively.

After implementing phase 1, we should generate initial
solutions for sub-populations of second phase. We apply
tournament selection for current solutions to create sub-pop-
ulations of phase 2. This way accelerates the convergence
process.

The above procedure continues for second phase till meet-
ing the stopping criteria.

In this study, we determine specific number of iterations
as stopping criterion for each phase of SPGA-II.

The illustrated pseudo-code of SPGA-II can be seen in
Fig. 7.

4 Experimental Results

In this section, we evaluate three MOEAs employed in this
study and compare Pareto-optimal sets obtained by each
algorithm. In order to code these algorithms for the con-
sidered problem, we used MATLAB 7.6 and run coded algo-
rithms on a PC under Windows XP with an Intel core 2 Due,
2 GHz processor and using 2 GB of RAM.

4.1 Data Generation

Two different problem sizes are ranged: small and large.
For each size of problem, we set required data consisting
of total number of jobs (n j), number of groups (ng), number
of stages (ns), number of machines for stage s (ms), range of
processing times for each job, and range of sequence-depen-
dent setup times for each group. In this study, it is assumed
that number of jobs for all groups are identical, for example

123

Arab J Sci Eng (2013) 38:2233–2244 2241

Table 1 Factors and their levels

Factor Level

Small Large

Number of stages (ns) 3–4–5 6–7–8

Number of groups (ng) 4–5–7 8–11–12

Number of jobs (n j) 12–15–49 64–110–144

Processing times (Prs
i) U (5, 75) U (5, 75)

U (5, 100) U (5, 150)

U (5, 150) U (5, 300)

U (5, 200) U (5, 400)

U (5, 250) U (5, 450)

Setup times (t s
i j) U (5, 25) U (5, 25)

U (5, 50) U (5, 100)

U (5, 75) U (5, 150)

U (5, 100) U (5, 200)

U (5, 150) U (5, 250)

Maximum number of machines 3 4

in each stage

in a small group with 12 jobs and 4 groups, each group have
3 jobs. Number of stages alters in the interval [3,5,6,8] for
small and large problems, respectively. Number of groups is
equal to 4, 5 and 7 for small problems and 8, 11 and 12 for
large problems. Number of jobs is determined 12, 15, and 49
for small problems, and 64, 110 and 144 for large problems.
We determine an entity which indicates the maximum num-
ber of machines for parallel stages, this measure is 3 and 4
for small and large problem, respectively, and by considering
this measure as the higher bound we create a random vector
of number of machines for each stage.

Processing times and setup times are uniformly distributed
as shown in Table 1.

As stated above, each factor of problem data can take
different levels. The factors and their levels are shown in
Table 1.

We made ten instances of small and large problem size
instances by combination of these factors. Each instance is
run ten times to have more reliable data.

Due date of each job is an important subject which should
be determined to compute due date for each job, at first
we calculate sum of processing time of that job on all
stages:

Pri =
ns∑

s=1

Prs
i ∀i = 1, . . . , n j

where Pri is the total processing time of job i on all. There-
after, we calculate the mean of setup times for all possible
subsequent of groups at each stage and aggregate them:

Tj =
ns∑

s=1

∑ng
i=1,i 	= j t s

i j

ng − 1
, j = 1, 2, . . . , ng

where Tj is the average of setup times for group j . We set
setup time for each job equals to setup time of the group
which job is assigned to.

sti = Tj , ∀i ∈ j th group

where sti is the setup time for job i .
The due date for each job is generated as follows:

di = (1 + random × 2) × ns × (sti + Pri)

(ng × min(ms))
,

∀i = 1, 2, . . . , n j

where di is the due date for job i , random is a random number
over interval (0, 1).

4.2 Evaluation Metrics

The quality of non-dominated solutions obtained by each
algorithm should be evaluated to study the performance of
these algorithms. For this reason, we consider four metrics
as follows:

(1) Mean ideal distance (MID): we set (0, 0) as ideal point
and calculate the distance between Pareto-solution and this
ideal point. The average of these distance is called MID. The
lower value of MID, the better non-dominated set we have.

The value of MID can be computed as follows:

MID =
∑n

i=1 ci

n

where n is the number of non-dominated solutions, ci is the
distance between i th non-dominated solution and ideal point
and this measure is acquired by the following equation:

ci =
√

f 2
1i + f 2

2i

where f1i and f2i are, respectively, the value of first and
second objective function for i th non-dominated solution.

(2) Spread of non-dominated solution (SNS): this metric
indicates the measure of diversity of Pareto-solutions, and
more diversity of solutions is desirable. The value of SNS is
measured as follows:

SNS =
√∑n

i=1 (MID − ci)2

n − 1

(3) Number of Pareto-solutions (NPS): the number of
solutions in a non-dominated set is shown by this metric.

(4) Computational time to obtain the Pareto-optimal set
via each algorithm.

4.3 Parameter Setting

The value of different parameters is one of the factors which
influence the performance of each algorithm. Assigning a

123

2242 Arab J Sci Eng (2013) 38:2233–2244

Table 2 The suggested
parameters for MOGA,
SPGA-II, and NSGA-II

Algorithm Problem
size

Population
size

Maximum number
of iteration

Crossover
rate (rc)

Mutation
rate (rm)

Number of
sub-population

MOGA Small 80 300 0.8 0.1 –

Large 250 400 0.8 0.1 –

SPGA-II Small 80 300 0.8 0.1 10

Large 250 400 0.85 0.05 20

NSGA-II Small 80 300 0.8 0.2 –

Large 250 400 0.9 0.1 –

suitable value for each parameter leads to achieve better out-
comes. Moreover, various combinations of parameters may
result in different sets of non-dominated solutions with dif-
ferent efficiency and effectiveness. For tuning three MOEAs
proposed in this paper, we conduct extensive experiments
with alternative sets of parameters to determine more effec-
tive values. To evaluate parameters measures, we applied two
problems with different sizes of small and large (as explained
in Sect. 4.1) for implementing an empirical study to identify
the best level of each parameter.

Considering three different algorithms causes to have dif-
ferent factors for each of them. Various alternatives sets of
parameter examined and based on the examined parame-
ters, the suggested parameters values corresponding to three
proposed algorithms for each size of problem are shown in
Table 2.

It should be noted that population size, maximum number
of iteration, Crossover rate (rc), and mutation rate (rm) are
joint factors for all three algorithms, but number of sub-pop-
ulation is just related to SPGA-II.

4.4 Computational Results

In this section, we present a comprehensive experimental
comparison of three MOEAs proposed in this study. For
this sake, four evaluation metrics described in Sect. 4.1
are implemented for each non-dominated set correspond-
ing to every test problem obtained by each employed
algorithm. More precisely, we conducted an analysis of
variance (ANOVA) technique to analyze the implemented
experiments.

For each algorithm, we run each test problem ten times and
four performance metrics are computed for each of them. The
averages of these experiments are shown in Table 3.

As it can be observed, three metrics (MID, NPS and com-
putational time) have better values for NSGA-II in comparing
with two other algorithms.

Non-dominated solutions for a single run by MOGA,
SPGA-II, and NSGA-II are presented in Figs. 8 and 9 for
problems of small and large size, respectively.

It can be seen, NSGA-II outperforms the other two
employed MOEAs in lower computational time. Tables 4
and 5 show the results of ANOVA technique which has car-
ried out for computational time of each algorithm for small
and large problems, respectively.

5 Conclusions and Future Studies

This paper deals with three MOEAs which are adapted to
solve a bi-objective HFS scheduling problem with sequence-
dependent family setup times. In this study, minimization
of makespan and total tardiness of jobs are two conflicting
objectives considered simultaneously. Taking into account
two objectives results in dealing with a class of much more
complex problems, where exact methods are unable to solve
them in a reasonable time, for this reason, MOEAs are
employed. MOGA, SPGA-II, and NSGA-II are three EAs
applied in this investigation. Two different problem sizes of
small and large are constructed and required data are set for
each size of problem. Ten test problems of small and large
sizes are made. We run the three noted algorithms for these
test problems to achieve the Pareto solutions for each of them
and calculate minimization of makespan and total tardiness
for jobs. Thereafter, some evaluation metrics (MID, SNS,
NPS, and CPU time) are employed to evaluate the Pareto
solutions obtained by each algorithm. We run each test prob-
lem ten times for each algorithm and four performance met-
rics are computed for each of them.

Three metrics of MID, NPS and CPU time show better
function of NSGA-II in comparison with two other algo-
rithms for both sizes of small and large, and what distincts
NSGA-II from MOGA and SPGA-II is CPU time, because
NSGA-II performs in less computational time in comparing
with two other algorithms which are used in this investiga-

123

Arab J Sci Eng (2013) 38:2233–2244 2243

Ta
bl

e
3

E
va

lu
at

io
n

of
no

n-
do

m
in

at
ed

so
lu

tio
ns

ob
ta

in
ed

by
ea

ch
al

go
ri

th
m

Pr
ob

le
m

Si
ze

M
ID

SN
S

N
PS

C
om

pu
ta

tio
na

lt
im

e

M
O

G
A

SP
G

A
-I

I
N

SG
A

-I
I

M
O

G
A

SP
G

A
-I

I
N

SG
A

-I
I

M
O

G
A

SP
G

A
-I

I
N

SG
A

-I
I

M
O

G
A

SP
G

A
-I

I
N

SG
A

-I
I

1
Sm

al
l

1,
23

9.
8

1,
22

7.
5

1,
22

4.
6

62
.2

5
61

.3
58

.8
5

5.
8

8
7.

8
13

5.
83

25
.7

6
13

.8
3

2
1,

52
3.

7
1,

49
8.

8
1,

49
2.

2
47

.0
9

59
.7

3
52

.1
1

1.
8

3
3

13
4.

64
10

.2
2

5.
67

3
3,

54
7.

9
3,

55
8.

3
1,

49
2.

2
43

.6
9

66
.9

9
69

.9
9

2.
2

4
3.

8
13

4.
67

14
.9

1
4

4
11

,3
91

.6
11

,3
83

.4
11

,3
47

.7
19

8.
57

21
9.

05
20

6.
19

6
7

6.
2

1,
15

0.
59

65
5.

29
23

0.
50

5
11

,4
59

.9
11

,3
85

.6
11

,3
83

.9
26

5.
35

20
5.

84
20

0.
41

6.
4

7.
6

8.
4

1,
12

1.
45

87
4.

76
30

0.
55

6
L

ar
ge

16
,7

82
.7

16
,7

64
.2

16
,6

32
.7

16
1.

58
29

4.
05

22
7.

39
2.

8
2.

6
2.

8
1,

07
9.

16
85

8.
69

48
1.

67

7
18

,9
96

.4
18

,9
52

.9
18

,9
20

.4
20

6.
07

49
.9

1
52

.4
8

2.
4

3.
8

3.
2

1,
16

7.
75

71
7.

3
26

0.
33

8
13

,1
45

.2
13

,0
79

.4
13

,0
30

.4
1.

41
66

.7
5

49
.1

2
2

3.
2

5.
6

4,
64

5.
51

3,
71

6.
51

1,
44

5.
1

9
26

,5
05

.1
26

,5
56

.6
26

,4
69

.3
12

8.
99

13
3.

6
14

2.
4

5.
8

7.
4

9.
4

4,
61

0.
88

4,
07

5.
17

2,
37

2.
2

10
32

,6
71

32
,6

73
32

,5
71

.1
12

7.
7

14
2.

5
17

0.
77

2.
8

5.
2

4.
6

6,
97

7.
83

5,
69

0.
12

2,
03

1.
59

A
ve

ra
ge

13
,7

26
.3

13
,7

08
.0

3
13

,4
56

.4
5

12
4.

27
12

9.
97

2
12

2.
97

1
3.

8
5.

18
5.

48
2,

11
5.

83
1,

66
3.

87
71

4.
54

5100

5500

5900

6300

6700

7891 7912 7922 7979 8058 8198 8240

Makespan

T
T

nsgaII

spgaII

moga

Fig. 8 Non-dominated solutions for small problem

18900

19300

19700

20100

20500

22912 22952 23012 23080 23137 23160 23209 23265

Makespan

T
T

nsgaII

spgaII

moga

Fig. 9 Non-dominated solutions for large problem

tion. Also the result of ANOVA technique which has carried
out for each metrics show NSGA-II outperforms the other
two MOEAs implemented in this investigation.

Table 4 Analysis of variance for computation time (for small problem)

Source DF SS MS F P

Factor 2 2,253,615 1,126,807 7.88 0.001

Error 79 10,296,990 143,014

Total 74 12,550,605

123

2244 Arab J Sci Eng (2013) 38:2233–2244

Table 5 Analysis of variance for computation time (for large problem)

Source DF SS MS F P

Factor 2 74,928,593 37,464,296 10.91 0.000

Error 72 247,215,246 3,433,545

Total 74 322,143,839

For future researches, developing more effective metaheu-
ristics, for solving this class of problems, is recommended.
Moreover, the proposed metaheuristics can be extended for
this problem with considering other objectives or constraints.

References

1. Gupta, J.N.D.; Tunc, E.A.: Schedules for a two-stage hybrid flow-
shop with parallel machines at the second stage. Int. J. Prod. Res.
29, 1489–1502 (1991)

2. Gupta, J.N.D.; Tunc, E.A.: Scheduling a two-stage hybrid flow-
shop with separable setup and removal times. Eur. J. Oper. Res. 77,
415–428 (1994)

3. Gupta, J.N.D.; Hariri, A.M.A.; Potss, C.N.: Scheduling a two-stage
hybrid flow shop with parallel machines at first stage. Ann. Oper.
Res. 69, 171–191 (1997)

4. Gupta, J.N.D.; Tunc, E.A.: Minimizing tardy jobs in a two-stage
hybrid flow shop. Int. J. Prod. Res. 36(9), 2397–2417 (1998)

5. Brah, S.A.; Hunsucker, J.L.: Branch and bound algorithm for the
flow shop with multiple processors. Eur. J. Oper. Res. 51, 88–99
(1991)

6. Portmann, M.C.; Vignier, A.; Dardilhac, D.; Dezalay, D.: Branch
and bound crossed with GA to solve hybrid flowshops. Eur. J. Oper.
Res. 107(2), 389–400 (1998)

7. Moursli, O.; Pochet, Y.: A branch-and-bound algorithm for the
hybrid flowshop. Int. J. Prod. Econ. 64, 113–125 (2000)

8. Botta-Genoulaz, V.: Hybrid flow shop scheduling with precedence
constraints and time lags to minimize maximum lateness. Int. J.
Prod. Econ. 64, 101–111 (2000)

9. Engin, O.; Doyen, A.: A new approach to solve hybrid flow shop
scheduling problem by artificial immune system. Future Gen. Com-
put. Syst. 20, 1083–1095 (2004)

10. Janiak, A.; Kozan, E.; Lichtensein, M.; Oguz, C.: Metaheuristics
approaches to the hybrid flow shop scheduling problem with a cost-
related criterion. Int. J. Prod. Econ. 105(2), 407–424 (2007)

11. Gupta, J.N.D.; Kruger, K.; Lauff, V.; Warner, F.; Sotskov, Y.N.:
Heuristics for hybrid flow shop with controllable processing times
and assignable due dates. Comput. Oper. Res. 29(10), 1417–1439
(2002)

12. Allaoui, H.; Artiba, A.: Integrating simulation and optimization to
schedule a hybrid flow shop with maintenance constraints. Comput.
Ind. Eng. 47, 431–450 (2004)

13. Jungwattanakit, J.; Reodecha, M.; Chaovalitwongse, P.; Werner,
F.: An evaluation of sequencing heuristics for flexible flowshop
scheduling problem with unrelated parallel machines and dual cri-
teria. Otto-von-Guericke-Universitat Magdeburg, Preprint 28/05,
pp. 1–23 (2005)

14. Mitrofanov, S.P.: The Scientific Principles of Group Technology.
National Lending Library, Boston Spa(1966)

15. Ham, I.; Hitmoi, K.; Yoshida, T.: Group technology: applications
to production management. Hinghama: Kluwer (1985)

16. Kurz, M.E.; Askin, R.G.: Scheduling flexible flow lines with
sequence-dependent setup times. Eur. J. Oper. Res. 159, 66–82
(2004)

17. Zandieh, M.; Fatemi Ghomi, S.M.T.; Moattar Husseini, S.M.: An
immune algorithm approach to hybrid flowshops scheduling with
sequence-dependent setup times. Appl. Math. Comput. 180, 111–
127 (2006)

18. Hendizadeh, S.H.; Faramarzi, H.; Mansouri, S.A.; Gupta, J.N.D.;
Elmekkawy, T.Y.: Meta-heuristics for scheduling a flowline man-
ufacturing cell with sequence dependent family setup times. Int. J.
Prod. Econ. 111, 593–605 (2008)

19. Franca, P.M.; Gupta, J.N.D.; Mendes, A.S.; Moscato, P.; Veltink,
K.: Evolutionary algorithm for scheduling a flowshop manufactur-
ing cell with sequence dependent family setups. Comput. Ind. Eng.
48, 491–506 (2005)

20. Logendran, R.; Salmasi, N.; Sriskandarajah, C.: Two-machine
group scheduling problems in discrete parts manufacturing with
sequence-dependent setups. Comput. Oper. Res. 33, 158–180
(2006)

21. Zolfaghari, S.; Liang, M.: Jointly solving the group scheduling and
machining speed selection problems: a hybrid tabu search and sim-
ulated annealing approach. Int. J. Prod. Res. 37, 2377–2397 (1999)

22. Mukerjee, A.; Biswas, R.; Deb, K.; Mathur, A.P.: Multi-objective
evolutionary algorithm for the risk-return trade-off in bank loan
management. Int. Trans. Oper. Res. 9(5), 583–597 (2002)

23. Schaffer, J.D.: Multiple objective optimization with vector evalu-
ated genetic algorithms. In: Proceedings of the First International
Conference on Genetic Algorithms and Their Applications, pp.
93–100. Carnegie-Mellon University, Pittsburg (1985)

24. Murata, T.; Ishibuchi, H.; Tanaka, H.: Multi-objective genetic algo-
rithm and its application to flow shop scheduling. Comput. Ind.
Eng. 30(4), 957–968 (1996)

25. Zitzler, E.; Thiele, L.: Multiobjective evolutionary algorithms: a
comparative case study and the strength Pareto approach. IEEE
Trans. Evol. Comput. 3(4), 257–271 (1999)

26. Zitzler, E.; Laumanns, M.; Thiele, L.: Spea2: improving the
strength Pareto evolutionary algorithm. Technical Report 103,
Computer Engineering and Network Laboratory (TIK), Swiss Fed-
eral Institute of Technology (ETH) Zurich, Switzerland (2001)

27. Chang, P.C.; Chen, S.H.; Lin, K.L.: Two-phase sub population
genetic algorithm for parallel machine scheduling problem. Expert
Syst. Appl. 29(3), 705–712 (2005)

28. Chang, P.C.; Chen, S.H.: The development of a sub-population
genetic algorithm-II (SPGA-II) for multi-objective combinatorial
problems. Appl. Soft Comput. 9(1), 173–181 (2009)

29. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.: A fast and elit-
ist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 6(2), 182–197 (2002)

30. Tamaki, H.; Kita, H.; Kobayashi, S.: Multi-objective optimization
by genetic algorithms: a review. In: Proceedings of the 1996 IEEE
International Conference on Evolutionary Computation, pp. 517–
522. IEEE Service Center, Piscataway (1996)

31. Bean, J.C.: Genetic algorithms and random keys for sequencing
and optimization. ORSA J. Comput. 6(2), 154–160 (1994)

32. Norman, B.A.; Bean, J.C.A.: A genetic algorithm methodology
for complex scheduling problems. Nav. Res. Logist. 46, 199–211
(1999)

33. Goldberg, E.D.: Genetic Algorithms in Search, Optimization and
Machine Learning. Addison Wesley, Reading (1989)

34. Sirnivas, N.; Deb, K.: Multi-objective function optimization using
non-dominated sorting genetic algorithms. Evol. Comput. 2(3),
221–248 (1995)

123

	Scheduling a Bi-Objective Hybrid Flow Shop with Sequence-Dependent Family Setup Times Using Metaheuristics
	Abstract
	1 Introduction
	2 Problem Definition and Notations
	2.1 Two Objectives Employed in this Study
	2.2 Pareto-Optimal Solutions

	3 Multi-Objective Evolutionary Algorithms
	3.1 Multi-Objective Genetic Algorithm
	3.1.1 Weighting Method
	3.1.2 Solution Representation
	3.1.3 The Step-by-Step MOGA

	3.2 Non-Dominated Sorting Genetic Algorithm-II
	3.2.1 Fast Non-Dominated Sorting
	3.2.2 Crowding Distance
	3.2.3 Main Procedure of NSGA-II

	3.3 Sub-Population Genetic Algorithm II

	4 Experimental Results
	4.1 Data Generation
	4.2 Evaluation Metrics
	4.3 Parameter Setting
	4.4 Computational Results

	5 Conclusions and Future Studies
	References

