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Abstract This paper investigates three-party password
authenticated key exchange protocols using elliptic curve
cryptosystem (ECC). We first show that the direct elliptic
curve analog of Chien’s protocol proposed most recently
is vulnerable to off-line dictionary attack. Thereafter, we
present an enhanced protocol based on ECC. Our proposal
can defeat password-guessing attacks and the stolen-verifier
attacks. And yet, it is also efficient. Furthermore, we can pro-
vide the rigorous proof of the security for it. Therefore, the
protocol is quite popular in low resource environments.
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1 Introduction

The password-based authenticated key exchange (PAKE) is
a protocol which allows two communicating parties to prove
to each other that they know the passwords (i.e., password-
based authentication), and to generate a fresh symmetric key
securely such that it is known only to the two parties (i.e.,
key exchange). The intrinsic problem with password-based
protocols is that the memorable password, associated with
each user, has low entropy, so that it is not easy to protect the
password information against dictionary attacks—the noto-
rious password-guessing attacks by which attackers could
search the relatively small space of human-memorable pass-
words. To address this problem, numerous schemes have
been designed to be secure even when the secret key is a
password during the last decades.

In practices, most of these proposed PAKE protocols are
presented in the context that the two involved entities are
client and server, respectively, e.g. [1–9], which are simply
called 2PAKE protocols. However, there is a common prob-
lem in these 2PAKE protocols. That is, two communication
parties need to previously share a password for the mutual
authentication and a session key exchange. To apply 2PAKE
protocols to a large scale peer-to-peer system, each pair of
communication parties in a group needs to pre-share a pass-
word. This restriction causes that each user has to remem-
ber a large number of passwords for communicating with a
group of users. To solve this problem, various three-party
password-based authenticated key exchange (3PAKE) pro-
tocols were proposed [10–20] during the last few years, in
which a trusted server exists to mediate between two commu-
nication parties to allow mutual authentication and each user
only shares one password with the server. However, some
of them (e.g. [10–12,14]) were already broken according to
the results in [21–24], respectively. Moreover, most of them
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are for only RSA (e.g. [16]) or Discrete Logarithm (DL) (e.g.
[10–14,17–19]), and only a few concrete Elliptic Curve (EC)-
based 3PAKE protocols (e.g. [15,20]) have been proposed
in the literature. In a low resource environment, the natural
choice cryptographic protocols would be an EC implemen-
tation. This is due to the low computation and storage costs
of EC-based protocols. It seems that most authors have pre-
sumed that the adaption of DL-based protocols to the EC
environment is straightforward.

In this paper, we show that the direct EC analog of the
DL-based protocol proposed most recently either by Huang
[14] or Chang et al. [18] or Chien [19] or Liang et al. [30] is
completely insecure. And the EC-based scheme in [15] is not
efficient, because it involves costly Weil Pairing computation.
We first provide an attack to illustrate that the direct EC ana-
log of the protocol in [19] cannot resist the off-line password
guessing attack. And the same attack can not only be appli-
cable to the EC analog of the DL-based protocols in [14,18],
but also the scheme based on ECC proposed by Lou and
Huang [20] most recently. Thereafter, we present an enhanced
3PAKE protocol using ECC. Our proposal can defeat pass-
word-guessing attacks and the stolen-verifier attacks. And
yet, it is also efficient. And yet, it is efficient. Furthermore,
we can provide the rigorous proof of the security for it. There-
fore, the protocol is quite popular in low resource environ-
ments because of the remarkable efficiency.

The remainder of this paper is organized as follows.
Section 2 briefly reviews Chien’s three-party password-
based authenticated protocol and then reveals its weakness.
Section 3 presents an enhanced 3PAKE protocol along with
some important remarks. Section 4 provides the rigorous
proof of the security for our protocol. Finally, conclusion
is presented in Sect. 5.

2 Review of Chien’s Protocol

This section describes the direct EC analog of the DL-based
3PAKE protocol proposed by Chien [19] and then shows it
is susceptible to an off-line password guessing attack. There
is no difference with the original version of the protocol in
[19] except that the operation of the represented group is not
denoted multiplicatively but additively. The original version
of the DL-based protocol is referred to [19].

2.1 Notations

The notations used in their scheme are described as the
following:

• A, B : the two clients want to establish authenticated
session keys.

• S : a trusted server.

• pwA(pwB) : the password of user A (resp. B).
• E : An elliptic curve defined over a finite field Fq(q is a

large prime number (q ≈ 2160)) [25,26];
• P : A point in E with large order n, where n is a large

prime;
• G : the cyclic addition group generated by P;
• k P : the point multiplication defined as k P =

P + P + · · · + P
︸ ︷︷ ︸

ktimes

, where k is an integer in Zn .

• h, ht : two secure one way hash functions h, ht :{0, 1}∗ →
{0, 1}l , where l is system security parameter.

In an elliptic curve cryptosystem (ECC), the elliptic curve
equation is usually defined as the form of E : y2 = x3 +
ax2 + bx + c(modq) over a prime finite field Fq , where
a, b, c ∈ Fq , q > 3, and 27c2+4a3c+4b3−a2b2−8abc �=
0(modq) [25]. We look at the points on E with coordinates
in Fq . Then, the points on E together with the extra point
living “at infinity” O, which we denote by Eq = {(x, y) :
x, y ∈ Fa satisfy y2 = x3 + ax2 + bx + c(modq)} ∪ {O}},
obey the elliptic curve addition algorithm and thus form an
additive group. In general, the group G is a subgroup of Eq .
In view of shortness, we omit the details and refer to [25,26].

2.2 Protocol Description

There are three entities involved in the protocol: the authenti-
cation server S, and two users A (initiator) and B (responder).
A and B authenticate each other with S’s help, then A and
B can share a common session key skAB . Each user A(B)

has a password pwA (resp. pwB) and the server only stores
its verifier VA = h(A ‖ S ‖ pwA)P (resp. VB = h(B ‖
S ‖ pwB)P) in its database. As illustrated on Fig. 1, “sid”
denotes the session identifier used to uniquely identify a ses-
sion from other sessions. The details will be described in the
following steps. Here, we just follows the description in [19].

• Step 1. A → S : sid, A, B A sends the request including
the two parties’ (A and B) identities to S.

• Step 2. S → A : sid, A, B, S1, S2, S3 S chooses three
random numbers z1, z2 and z3, then computes S1 =
z3VA ⊕ z1 P, S2 = z3VB ⊕ z2 P and S3 = z3 P , and sends
the values to A.

• Step 3. A → B : sid, A, B, X, M1, S2, S3 Upon receiv-
ing S3, A, uses pwA to compute h(A ‖ S ‖ pwA)S3 =
z3VA and then derive z1 P = S1⊕z3VA, chooses a random
integer xA, and computes one-time strong key K AS =
h(xAz1 P) and X = xA P . It sends A, B, X, M1 = h(sid ‖
A ‖ B ‖ X ‖ S1 ‖ K AS), S2, S3 to B.

• Step 4. B → S : sid, A, B, X, Y, M1, M2, MB A B
uses pwB to compute h(B ‖ S ‖ pwB)S3 = z3VB and
derive z2 P = S3 ⊕ z3VB , randomly choose an integer
yB , computes K BS = h(yB z2 P), K AB = yB X, Y =
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Fig. 1 Chien’s protocol [19]

yB P, skAB = h(A ‖ B ‖ X ‖ Y ‖ K AB), s k′′
AB = ht

(A ‖ B ‖ X ‖ Y ‖ K AB), MB A =h(sid ‖ A ‖ B ‖ s k′′
AB)

and M2 = h(sid ‖ A ‖ B ‖ Y ‖ S2 ‖ K BS). It sends the
data in step 4 to S. skAB is the final session key.

• Step 5. S → A : sid, A, B, Y, MB A, M3, M4 S authen-
ticates A and B by performing the following operations:
(1) computes K AS = h(z1 X) = h(z1xA P) and K BS =
h(z2Y ) = h(z2 yB P); (2) uses its local values to verify
whether M1, M2 are valid. If the verification succeeds, S
computes M3 = h(sid ‖ A ‖ B ‖ X ‖ Y ‖ K AS) and
M4 = h(sid ‖ A ‖ B ‖ X ‖ Y ‖ K BS), and sends them
to A.

• Step 6. A → B : sid, A, B, M4, MAB Upon receiv-
ing the data, A first computes K AB = xAY, skAB =
h(A ‖ B ‖ X ‖ Y ‖ K AB) and s k′′

AB = ht (A ‖ B ‖ X ‖
Y ‖ K AB), and then uses its local values to verify M3

and verifies whether B’s confirmation message MB A is
valid. If the verification succeeds, it computes MAB =

h(h(s k′′
AB) ‖ sid ‖ A ‖ B ‖ X ‖ Y ) and sends the data

in step 6 to B.

Finally, B uses its local values to verify M4 and verifies
whether A’s confirmation message MAB is valid. If all the
verifications succeed, it accept the session key skAB .

Please note that the server in Chien’s scheme only stores
the user’s verifier V rather than the user’s bare password pw

to reduce the security breach once the server is compromised.
If a server directly stores users’ passwords in its plaintext for-
mat, then an attacker who has stolen the password file can
directly impersonate the clients. In verifier-based schemes
just like Chien’s protocol, an attacker, even assuming he has
stolen the verifiers but has not yet cracked the corresponding
passwords, cannot directly use the verifiers to impersonate
the clients. This arrangement would make the attacker more
time-consuming to crack the passwords to impersonate the
clients and thus give the server’s administrator time to react
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appropriately and to inform its users. However, we should
point out that if one client’s verifier is stolen, the attacker can
still directly use this verifier to impersonate the server to this
client in Chien’s scheme.

2.3 Weaknesses of Chien’s Protocol

Unfortunately, Chien’s scheme [19] described above is com-
pletely insecure. In this section, we will show that it is vul-
nerable to off-line password-guessing attacks. Similar attack
was first presented in [6].

Off-line password guessing attack succeeds when there
is information in communications, which can be used to
verify the correctness of the guessed passwords. In Chien’s
scheme, since all transcripts are transmitted over an open
network, a benign (passive) adversary can easily obtain
the valid message transcript of S3, S1 = z3VA ⊕ z1 P =
h(A ‖ S ‖ pwA)S3 ⊕ z1 P , as well as the the identity A.
The adversary can guess a password pw∗

A from the dic-
tionary D and derive the corresponding point (x∗, y∗) =
z1 P ⊕h(A ‖ S ‖ pwA)S3 ⊕h(A ‖ S ‖ pw∗

A)S3, then verify

it by checking (y∗)2 ?= (x∗)3 + a(x∗)2 + bx∗ + c(modq),
where x∗ and y∗ are the x-coordinate and y-coordinate of
this derived point. Clearly, if pw∗

A is not correct, the com-
putation S1 ⊕ h(A ‖ S ‖ pw∗

A)S3 should result in a random
pair (x∗, y∗). In other words, x∗, y∗ are two independent
random numbers according to the property of h(). Even if
x∗, y∗ ∈ Fq , the probability that the point (x∗, y∗) lies on
E is no larger than 2

q . Typically |D| is much less than q.
Therefore, the adversary should be able to identify the cor-
rect password pwA given one valid message transcript of
{S1, S3} using such a dictionary attack, with a probability
of (1 − 2

q )|D|−1 ≈ 1 − 2(|D|−1)
q ≈ 1. Please note that the

attack is a brute-force method in essence, i.e. the attacker
tries offline all possible passwords in a given small set of
values. Even though such attacks are not very effective in
the case of high-entropy keys, they can be very damaging
when the secret key is a password since the attacker has a
non-negligible chance of winning [9].

Please note that the same attack can also be applicable
to the EC analog of the DL-based protocols in [14,18] and
the scheme based on ECC proposed by Lou and Huang [20]
most recently. And the EC analog of the DL-based protocols
in [30] was not secure according to the result in [31].

3 Enhanced Protocol

In this section, we present an enhanced protocol to rem-
edy the security loopholes existing in Chien’s protocol [19].
Moreover, we will make some important discussions about
our improved protocol at the end of this section.

First, we define some notations used in our scheme. Let
H : {0, 1}� → {0, 1}l be a secure hash function, where l is a
security parameter. And let Ek(·)/Dk(·) be a secure symmet-
ric encryption/decryption algorithm [e.g., AES (Advanced
Encryption Standard)], where k denotes the symmetric key.
In our protocol, we assume that the two users (or clients) A
and B willing to establish a common secret session key has
passwords pwA, pwB , respectively, and the server S only
stores its verifier VA = EH(s‖A)(G(A ‖ S ‖ pwA)) (resp.
VB = EH(s‖B)(G(B ‖ S ‖ pwB))) in its database, where
G : {0, 1}� → G is a secure full-domain hash function
(roughly, a surjective hash function) and s is a secret key
of S. We also assume that S has a private/public key pair:
(s, Q) with Q = s P . The public parameters (H,G, G, Q)

have been fixed in advance and are known to all parties in
the network. The simplified description of the new proto-
col is given in Fig. 2, where PWA = G(A ‖ S ‖ pwA) and
PWB = G(B ‖ S ‖ pwB). Our protocol is based on 2PAKE
in [3]. The details will be described in the following steps.

• Step 1. User A chooses two random numbers rA, wA ∈
Z∗

n and computes RA = rA P + PWA, TA = rA Q, and
WA = wA P , where PWA = G(A‖S‖pwA). Then, it
computes τA,S = H(A‖B‖S‖RA‖WA‖PWA‖TA) and
sends (A, RA, WA, τA,S) to user B.

• Step 2. Upon receiving (A, RA, WA, τA,S), User B also
selects two random numbers rB, wB ∈ Z∗

n and computes
RB = rB P + PWB, TB = rB Q, and WB = wB P .
Then it compute τB,S =H(B‖S‖A‖RB‖WB‖PWB‖TB).
Besides, it computes K = wB WA, and uses this
value to compute the common session key SK =
H(A‖B‖WA‖WB‖K ) and SB = H(SK‖B). And it then
forwards (A, RA, WA, τA,S, B, RB , WB , τB,S, SB) to S.

• Step 3. Upon receiving (A, RA, WA, τA,S, B, RB , WB,

τB,S, SB), the S first computes PWA = DH(s‖A)(VA),

PWB = DH(s‖B)(VB), TA = s(RA − PWA), and TB =
s(RB − PWB) and then uses them to check τA,S and
τB,S , respectively, in a straight way. S detects failure of
a malicious trial and thus terminates if either of them
is valid or moves to the next phase otherwise. Finally,
S computes τS,A = H(S‖A‖B‖RA‖WB‖PWA‖TA) and
τS,B = H(S‖B‖A‖RB‖WA‖PWB‖TB) and then sends
(τS,A, τS,B , SB) to user A.

• Step 4. After receiving (τS,A, τS,B , SB), user A first
checks the validity of τS,A using TA. If that value is
invalid, A detects failure of a malicious trial and thus
terminates the protocol. Otherwise, it computes K =
wAWB , and uses this value to obtain the common key
SK = H(A‖B‖WA‖WB‖K ). Then, A also checks
whether SB = H(SK‖B) holds or not. If it does not hold,
A terminates the protocol. Otherwise, A is convinced that
SK is a valid session key and accepts it. Then, A com-
putes SA = H(SK‖A) and sends (τS,B, SA) to user B.
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Fig. 2 Our enhanced protocol

• Step 5. Upon receiving (τS,B, SA), B first checks the
validity of τS,B using TB . If that value is invalid, B detects
failure of a malicious trial and thus terminates the pro-
tocol. Otherwise, it verifies whether SA = H(SK‖A)

holds or not. If it does not hold, B terminates the protocol.
Otherwise, SK is a valid session key. Both the users A and
B can use this session key SK for secure communication.
Here, SK is only used for one session.

Note that, in our protocol, one principal will invalidate or
block the use of a password whenever a certain number of
failed attempts occurs.

Rationale for the Scheme. You may wonder why we choose
to compute another pair of (WA, WB) on the user’s side and
derive the session key from them rather than just follows the
technique that is used in Huang’s scheme or Lou’s scheme
to randomize the pair of (rA P, rB P) on the server side and
then derive the session key from them directly. In the latter
case, the computational cost for the server will become high
and it is likely to be bottleneck in the whole system, since

the server is aimed at establishing sessions with many cli-
ents. In our protocol, we try to reduce the cost for the serve
to improve the overall performance. That is, the server can
offer its services to a large number of users. The gain in
efficiency, however, comes at the cost of more computations
at the user side. Besides, it also allows to achieve provable
security under some simple assumptions (to be introduced in
next section).

One can remark that the server in our our scheme also
stores the user’s verifier V rather than the user’s effective
password PW . Even when the adversary has acquire V stored
in S. However, without knowing S’s secret key s, she can-
not impersonate the clients to pass the authentication, as
PW is hidden in V using S’s secret key s and, thus, the
corresponding password PW cannot be revealed. Therefore,
the proposed scheme can resist against the stolen-verifier
attacks. This is a quite attractive feature because numerous
customers’ secrets are stored in the server’s databases and the
server is always the targets of attackers. In addition, if one
client’s verifier is stolen, the attacker cannot use this verifier
to impersonate the server to this client in our scheme.
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Finally, it is worth noticing that ⊕ is not used now, i.e.
RA = rA P+G(A ‖ S ‖ pwA) (RB =rB P+G(B‖S‖pwB)).
As a result, the attacker cannot distinguish feasible and
infeasible passwords by testing for subgroup membership
any more because the computation RA − G(A‖S‖pw∗

A) for
any guessed password pw∗

A will always be in G. There-
fore, the enhanced protocol can resist against the off-line
password guessing attack described in the previous section.
In addition, one can easily note that the authenticators (i.e.
τA,S, τB,S, τS,A, τS,B) and the session key (i.e. SK ) are com-
puted via the hash function H. The modification is related to
our technique of security proof so that we can provide a rig-
orous proof of security for our protocol. In next section, we
will show that it indeed achieves provable security in random
oracle model(ideal hash function).

Comparisons with the Related Works. Our protocol is rea-
sonably efficient. The efficiency is measured by the following
two aspects:

• Communication Cost: the number of steps during the
execution of protocol.

• Computation Cost: the computation complexity of a
participant.

In what concerns Computation Cost, we only count the
number of point multiplication, which entails the highest
computational complexity, and neglect the computational
complexity of all other operations such as Hash computa-
tion and the symmetric encryption/decryption, which can be
done efficiently. The details of comparisons between our pro-
tocol and the previously proposed efficient schemes so far as
I know are shown in Table 1.

As shown in Table 1, in one run of the enhanced protocol,
each user performs four exponentiations and the S performs
two exponentiations. The computational cost for S of our
protocol is comparable to that of Huang’s protocol, which is
more efficient than other previous schemes [18–20]. There-
fore, the server can offer its services to a large number of
users. Although our protocol on the user side is not better
than Huang’s protocol, it is still as efficient as Chien’s scheme

[19]. As for communication cost, our scheme just requires
four communication steps, which is more efficient than all
the other schemes. Moreover, our scheme can resist against
password-guessing attacks (we will prove it in next section)
and the stolen-verifier attacks, while all previous schemes
listed in Table 1 are broken by us. Given the better security
guarantees, the performance of our scheme may be consid-
ered quite reasonable.

4 Security Proof for Our Protocol

In this section, we show that our protocol is secure in the
random-oracle model (an idealized view of hash functions),
starting with the formal security models and some algorithm
assumption that will be used in our proof.

4.1 Security Model for Three-Party Password-Based Key
Exchange

In this section, we introduce the formal security models
which will be used in next section when we show that our pro-
tocol is secure in the random-oracle model. The model builds
upon the previous one presented in [11]. In our model, we
add one more oracle—Corrupt oracle so that the adversary
capabilities in a real attack can be modelled better. Due to
the omission of the Corrupt query in their model, the pro-
tocol proposed by Abdalla and Pointcheval [11] was found
insecure in [22] even if it was provably secure in their model.
Here, we follow the description in [11].

We first introduce some definitions as follows:

Protocol Participants. Each participant in a 3-party pass-
word-based key exchange is either a client (User) U ∈ U
or a trusted server S ∈ S. Each of them may have sev-
eral instances called oracles involved in distinct, possibly
concurrent, executions of the protocol. We denote U (resp.
S) instances by Ui (resp. S j ).

Long-lived Keys. Each participant U ∈ U holds a pass-
word pwU . Each server S ∈ S holds a vector pwS =

Table 1 Comparisons with related works

Schemes Computation cost Communication steps Security properties

User Server Password-guessing attack Stolen-verifier attack

Huang’s scheme [14]a 2 2 5 Insecure Insecure

Lou’s scheme [20] 3 4 5 Insecure Insecure

Chang’s scheme [18]a 3 4 6 Insecure Insecure

Chien’s scheme [19]a 4 7 6 Insecure Partial

Our scheme 4 2 4 Secure Secure

a For giving a fair comparison, we assume that the scheme is transferred into EC analogue version
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〈pwS[U ]〉U∈U with an entry for each client, where pwS[U ]
is the transformed password, following the definition in [1].

Partner. An instance is said to be partner of another instance
if it has accepted with the same session identifier SID as
the latter’s, where SID is defined as the concatenation of all
messages an instance has sent and received.

The interaction between an adversary A and the protocol
participants occurs only via oracle queries, which model the
adversary capabilities in a real attack (see literature for more
details [1,3].) The types of oracles available to the adversary
are as follows:

• Execute(Ui1
1 , S j , Ui2

2 ) : This query models passive
attacks in which the attacker eavesdrops on honest execu-
tions among the client instances Ui1

1 and Ui2
2 and trusted

server instance S j . The output of this query consists
of the messages that were exchanged during the honest
execution of the protocol.

• SendClient (Ui , m) : This query models an active attack,
in which the adversary may intercept a message and then
modify it, create a new one, or simply forward it to the
intended client. The output of this query is the message
that client instance Ui would generate upon receipt of
message m.

• Send Server(S j , m) : This query models an active attack
against a server. It outputs the message that server
instance S j would generate upon receipt of message m.

• Reveal(Ui ) : This query models the misuse of the ses-
sion key by instance Ui (known-key attacks). If a session
key is not defined for instance Ui or if a T est query (to be
introduced later) was asked to either Ui or to its partner,
then return ⊥. Otherwise, return the session key held by
the instance Ui .

• Corrupt (U ) : This query returns to the adversary the
long-lived key pwU for participant U . As in [1], we
assume the weak corruption model in which the inter-
nal states of all instances of that user are not returned to
the adversary.

To define a notion of security for the key exchange proto-
col, we consider a game in which the protocol P is executed
in the presence of the adversary A. In this game, we first draw
a password pw from a dictionary D, provide coin tosses and
oracles to A, and then run the adversary, letting it ask any
number of queries as described above, in any order.

Forward Security. To model the forward secrecy (FS) of
the session key, we consider a game Game f s(A,P), in
which one additional oracle is available to the adversary:
the T est (Ui ): oracle.

• T est (Ui ) : This query tries to capture the adversary’s
ability to tell apart a real session key from a random one.

In order to answer it, we first flip a (private) coin b and then
forward to the adversary either the session key sk held by
Ui (i.e., the value that a query Reveal(Ui ) would output)
if b = 1 or a random key of the same size if b = 0.

The T est-oracle can be queried at most once by the adver-
sary A and is only available to A if the attacked instance Ui

is FS-Fresh, which is defined to avoid cases in which adver-
sary can trivially break the security of the scheme. In this
setting, we say that a session key sk is FS-Fresh if all of
the following hold: (1) the instance holding sk has accepted,
(2) no Corrupt-query has been asked to the related clients
since the beginning of the game; and (3) no Reveal-query
has been asked to the instance holding sk or to its partner.
In other words, the adversary can only ask T est-queries to
instances which had accepted before the Corrupt query on
the related clients is asked. Let Succ denote the event in
which the adversary successfully guesses the hidden bit b
used by T est oracle. The FS-advantage of an adversary A is
then defined as Adv

f s
PD(A) = 2Pr [Succ] − 1, when pass-

words are drawn from a dictionary D. The protocol P is said
to be (t, ε)-FS-secure if A’s advantage is smaller than ε for
any adversary A running with time t . The definition of time-
complexity that we use henceforth is the usual one, which
includes the maximum of all execution times in the games
defining the security plus the code size [27].

In password-based scenarios, ε is usually required to be
O(nactive/|D|)+ε(l) for any probabilistic, polynomial time
(PPT) adversary A, where |D| is the size of the dictionary
D, nactive, is the number of active attempts and ε(l) is a
negligible function depending on the security parameter l.
Roughly, a secure password-based protocol guarantees that
an exhaustive on-line attack is the “best” possible strategy for
an attacker, while off-line dictionary attacks are infeasible.

4.2 Diffie–Hellman Assumptions

In this subsection, we recall the EC computational Diffie–
Hellman (ECCDH) assumption and EC decision Diffie–Hell-
man (ECDDH) assumption, upon which the security of our
protocol is based.

In the ECCDH assumption, given X = x · P and Y =
y · P , where x and y are drawn randomly from Z∗

q , it is
computationally infeasible to compute xy · P (denoted by
ECC DH(X, Y )). In ECDDH assumption, given X = x · P,

Y = y · P , and Z = z · P , where x, y, and z are drawn
randomly from Z∗

q , it is computationally infeasible to decide
whether xy · P = Z or not.

4.3 Security Proof

As the following theorem states, our 3PAKE is a forward-
secure password-based key exchange protocol in random
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oracle model. The specification of this protocol is found on
Fig. 2.

Let D be a uniformly distributed dictionary of size |D|.
Let P describe the 3-party password-based authenticated key
exchange protocol associated with these primitives as defined
in Fig. 2. Then, Adv

f s
P,D(A) is less than O(qs/|D|) + ε(l)

as long as the hash function closely behaves like a random
oracle and that the ECCDH and ECDDH assumptions hold in
G, where qs denotes the number of Send-queries (including
SendClient-queries and Send Server -queries).

Proof For an easier analysis, we first exclude some
unlikely events in the game: i.e., collisions on the partial
transcripts ((RA, WA), (RB, WB)) or on hash values. We can
safely do so because the probability that such events appear
is negligible.

According to the definition of forward security, we just
need to consider these sessions accepted before the adversary
makes Corrupt query on A or B. At this moment, these
sessions in the game can be split into two disjoint sub-cases:

• Case A: the item (RA, WA, τA,S) (or (RB, WB , τB,S))

is newly produced by the adversary A and is sent to S
by A via Send Server -query and, i.e. A does not replay
to S via Send Server -query such an item that were ever
generated previously by A (resp. B). If A has guessed
pwA (resp. pwB) when she sends RA (resp. RB) to the
server, she may generate the valid authenticator τA,S

(resp. τB,S). But the probability is less than qs
|D| . On

the other hand, if the adversary has not guessed pwA/B

when she sends RA/B , she will not be able to know
such r ′

A/B ∈ Zn that t ′A/B P = RA/B − PWA/B , where

PWA/B = G(A
/

B ‖S‖ pwA/B) is computed via the ran-
dom oracle G and its discrete logarithm with P as the base
is unknown at all. Otherwise, we can use the classical ora-
cle replay technique in [28] to construct an adversary to
solve the discrete logarithm problem based on A. It is
contradict to hardness of the discrete logarithm problem.
With no knowledge of r ′

A/B or s, she cannot compute
TA/B = ECC DH(r ′

A/B P, s P) based on the ECCDH
assumption. As a result, she cannot query H to com-
pute τA/B,S . Thus, we have: Pr [Adv

f s
P,D(A)|CaseA] ≤

qs
|D| + ε(l) based on the ECCDH assumption.

• Case B: the item (WB, τS,A) (or (WA, τS,B)) is sent
to A (resp. B) by A via SendClient-query. In order
to make A (resp. B) accept the session, the adver-
sary has to send a correct τS,A/B along with WB/A.
Please note that the adversary has no idea of rA/B and
s since RA/B is generated by A/B and Q is the pub-
lic key of S. With no knowledge of rA/B or s, she
cannot compute TA/B = ECC DH(rA/B P, s P) based

on the ECCDH assumption. As a result, she can nei-
ther query H on (S‖A‖B‖RA‖WB‖PWA‖TA) (resp.
(S‖B‖A‖RB‖WA‖PWB‖TB)) to compute τS,A/B nor
validate any possible values of pwA/B according to the

received value τA/B,S . Thus, we have: Pr [Adv
f s
P,D(A|

CaseB)] ≤ ε(l) based on the ECCDH assumption and
the ECDDH assumption.

• Case C: Both (WB, τS,A) and (WA, τS,B)) have been
generated by S and (Z A, WA) (resp. (Z B, WB)) is not
newly generated by the adversary, i.e. it is generated
by A (resp. B)(including the item generated previously
by the user is relayed to S by the adversary). In this
case, the adversary has no idea of wA/B since WA/B is
generated by A/B. With no knowledge of wA/B , she can-
not compute ECC DH(wA P, wA P) to derive the ses-
sion key SK based on the ECCDH assumption. This is
also the case even when later the adversary has compro-
mised the user’s passwords via Corrupt-query. Although
the adversary may get the session keys in some execu-
tions via Reveal-query, it will not give any informa-
tion about the targeted session key for T est-query to
the adversary because WA and WB are chosen indepen-
dently by the A and B, respectively. Furthermore, even
if a session of this type is not an targeted session for
T est-query, the adversary cannot validate any possible
values of pwA/B through the received messages (includ-
ing τA/B,S, τS,A/B , SA/B) and the session keys returned
via Reveal-query based on the ECCDH assumption since
s is unknown to A either unless the adversary has com-
promised the user’s passwords via Corrupt-query later.
Thus, we have: Pr [Adv

f s
P,D(A)|CaseC] ≤ ε(l) based

on the ECCDH assumption.

As a consequence, one gets the announced result:

Adv
f s
P,D(A) ≤ O(

qs

|D| ) + ε(l).

According to Theorem 1, our protocol can prevent off-line
dictionary attacks and guarantee the forward privacy of ses-
sion keys. Finally, we should note that, since mutual authenti-
cation between server and two clients is provided, each party
in our scheme can naturally detect failure of a malicious trial.
In other words, our scheme can resist = 1 undetectable online
dictionary attack [29].

5 Conclusion

In this paper, we have demonstrated that EC analog of Chien’s
3PAKE protocol is still vulnerable to offline dictionary
attacks. Thereafter, we have proposed an efficient pro-
tocol that can defeat password-guessing attacks and the
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stolen-verifier attacks. Furthermore, we have provided the
rigorous proof of the security for it.
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