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Abstract This paper investigates the application of the
model predictive control (MPC) approach to control the
speed of a permanent magnet synchronous motor (PMSM)
drive system. The MPC is used to calculate the optimal
control actions including system constraints. To alleviate
computational effort and to reduce numerical problems,
particularly in large prediction horizon, an exponentially
weighted functional model predictive control (FMPC) is
employed. In order to validate the effectiveness of the pro-
posed FMPC scheme, the performance of the proposed
controller is compared with a classical PI controller through
simulation studies. Obtained results show that accurate track-
ing performance of the PMSM has been achieved.
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1 Introduction

Permanent magnet synchronous motors fed by PWM invert-
ers are widely used for industrial applications, especially
servo drive applications, in which constant torque operation
is desired. In traction and spindle drives, on the other hand,
constant power operation is desired [1]. The inherent advan-
tages of these machines are lightweight, small size, simple
mechanical construction, easy maintenance, good reliabil-
ity, and high efficiency. Generally, the applications of the
PMSM drive system include two major areas: the adjust-
able-speed drive system and the position control system. The
adjustable-speed drive system has two control-loops: the cur-
rent-loop and the speed loop. To improve the performance of
the PMSM drive system, a lot of research has been done.
In general, the research has focused on improvement of the
performance related to current-loop, speed loop, and/or posi-
tion loop.
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The PMSM drive system has been controlled using a
PI controller due to its simplicity. The PI controller, how-
ever, cannot provide good performance in both transient and
load disturbance conditions. Several researchers have investi-
gated the speed controller design of adjustable speed PMSM
systems to improve their transient responses, load distur-
bance rejection capability, tracking ability, and robustness
[2–11].

The MPC controller generally requires a significant
computational effort. As the performance of the available
computing hardware has rapidly increased and new faster
algorithms have been developed, it is now possible to imple-
ment MPC to command fast systems with shorter time steps,
as electrical drives. Electric drives are of particular interest
for the application of MPC for at least two reasons:

1. They fit in the class of systems for which a quite good
linear model can be obtained both by analytical means
and by identification techniques.

2. Bounds on drive variables play a key role in the dynamics
of the system; indeed, two main approaches are available
to deal with system constraints: anti-windup techniques
widely used in the classical PI controllers, and MPC. The
presence of the constraint is one of the main reasons why,
for example, state space controllers have limited appli-
cation in electrical drives.

In spite of these advantages, MPC applications to electri-
cal drives are still largely unexplored and only few research
laboratories are involved in them. For example, Generalized
predictive control (GPC)—a special case of MPC—has been
applied to induction motors for only current regulation [12]
and later for speed and current control [13]. In [14], the more
general MPC solution has been adopted for the design of the
current controller in the same drive.

In this paper, a centralized MPC with large prediction
horizon for PMSM speed control is presented. The proposed
centralized scheme improves the control performance in a
coordinated manner.

Another challenge of centralized MPC for PMSM is its
large computational effort needed. To overcome this draw-
back, a functional MPC with orthonormal basis Laguerre
function [15] is presented. The presented functional MPC
reduces computational effort significantly, which makes it
more appropriate for practical implementation. In addition,
an exponential data weighting is used to reduce numeri-
cal issue in MPC with large prediction horizon [16]. To
verify the effectiveness of the proposed scheme, time-
based simulations are carried out. The results obtained
proved that the functional MPC is able to control success-
fully the PMSM system in the transient and steady state
cases.

2 Dynamic Model of PMSM

The dynamic model of the PMSM can be described in the
d–q rotor frame as follows [17]:
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where R is the stator resistance, id the d-axis current, iq the
q-axis current, L the stator inductance, d/dt the differential
operator, P the pole numbers, ωr the mechanical rotor speed,
λm the flux linkage generated from the permanent magnet
material, Te the electromagnetic torque and θr is the rotor
position.

In addition, stator inductance in d- and q-axis are assumed
to be equal (Ld = Lq ).

3 Linearised Model

The basic principle in controlling the PMSM is based on field
orientation. This is obtained by letting the permanent magnet
flux linkage be aligned with the d-axis, and the stator current
vector is kept along the q-axis direction. This means that the
value of id is kept zero in order to achieve the field orienta-
tion condition. Since the permanent magnet flux is constant,
therefore the electromagnetic torque is linearly proportional
to the q-axis current, which is determined by closed loop
control. As a result, maximum torque per ampere can be
obtained from the machine in addition to the achievement of
high dynamic performance. So, the electromagnetic torque
can be written as follows:

Te = 3

2

P

2
λmiq = kt iq .

Applying the field orientation concept (the electromagnetic
torque is linearly proportional with iq ) in Eqs. (1–4), the lin-
earised model of the PMSM can be described in a state space
form as:

ẋ = Ax + Bu + Ed

y = Cx + Du
(5)
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4 Functional Model Predictive Control

4.1 Model Predictive Control

Model predictive control uses an explicit model of system to
predict future trajectory of system states and outputs. This
prediction capability allows solving optimal control prob-
lem online, where prediction error (i.e. containing difference
between the predicted output and reference output) and con-
trol input action are minimized over a future horizon, possibly
subject to constraints on the manipulated inputs, states and
outputs. The optimization yields an optimal control sequence
as input and only the first input from the sequence is used
as the input to the system. At the next sampling interval, the
horizon is shifted and the whole optimization procedure is
repeated. The main reason for using this procedure, which
is called receding horizon control (RHC), is that it allows
compensating for future disturbance and modeling error.

The basic structure of model predictive control is depicted
in Fig. 1. An explicit model of the system is used to predict
output response of the future chain ŷ. Based on the predicted
system output and current system output, the error is calcu-
lated. The errors, then, are fed to the optimizer. In the opti-
mizer, the future optimal control sequence, �u, is calculated
based on the objective function and system constraints.

In this paper, the state space model of the system is used
in the model predictive control. The general discrete form of
the state space model used in model predictive control is of
the form:

x(k + 1) = Ax(k) + Bu(k) + Ed(k) + Fw(k)

y(k) = Cx(k)
(6)

where k is the sampling instant, x is the state vector, u is the
input vector, d represents system disturbance and w repre-
sents system noise model. A, B, C, E and F are coefficients
of system state space model and reflect the PMSM model
in (5).

The final aim of model predictive control is to provide
zero output error with minimal control effort.

Therefore, the cost function J that reflects the control
objectives is as follows:

J (n) =
Np∑

k=1

μk(y′(n + k) − yref(n + k))2

+
Nc∑

k=1

vk�u(n + k)2 (7)

where μk and vk , respectively, are the weighting factors for
the prediction error and control energy, y′(n + k) is the kth
step output prediction, yref(n + k) is the kth step reference
trajectory and �u(n + k) is the kth step control action.

Where the first term reflects the future output error and
second term reflects the consideration given to the control
effort. The predicted output vector has dimension of 1 × Np

where Np is the prediction horizon. �u is control action vec-
tor with dimension of 1×Nc that Nc is control horizon. In the
model predictive control, the control horizon, Nc, is always
smaller than or equal to prediction horizon (Np). μk and vk

are reflecting the weights on the predicted error of predicted
outputs and change in the control action.

The constraints of model predictive control include con-
straints of magnitude and change of input, state and output
variables that can be defined in the following form.

Fig. 1 Basic structure of model
predictive control
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umin ≤ u(n + k) ≤ umax, �umin ≤ �u(n + k) ≤ �umax

xmin ≤ x(n + k) ≤ xmax, �xmin ≤ �x(n + k) ≤ �xmax

ymin ≤ y(n + k) ≤ ymax, �ymin ≤ �y(n + k) ≤ �ymax.

(8)

Solving the objective function (7) with system constraint (8)
gives the optimal input control sequence.

4.2 Laguerre-Based Model Predictive Control

In the classical model predictive control, the future control
signal is modeled as a vector of forward shift operator with
length of Nc.

�U = [�u(n), . . . ,�u(n + k), . . . ,�u(n + Nc − 1)] (9)

where Nc unknown control variables are achieved in the opti-
mization procedure. However, large prediction horizon is
needed to achieve high closed loop performance that would
require large computational burden. Therefore, MPC may
not be fast enough to be used as a real time optimal control
for such case.

A solution to this drawback is the use of functional MPC.
In the functional MPC, future input is assumed a linear com-
bination of a few simple base functions. In principle, these
could be any appropriate functions. However, in practice, a
polynomial basis is usually used [18]. This approximation
of input trajectory can be more accurate by proper selection
of base function. Using functional MPC, the term used in
the optimization procedure can be reduced to a fraction of
that required by classical MPC. Therefore, the computational
load will be reduced largely.

In this paper, orthonormal basis Laguerre function is
used for modeling input trajectory. Laguerre polynomial is
one of the most popular orthonormal base functions, which
has extensive applications in system identification [15]. The
z-transform of mth Laguerre function is given by:

�m =
√

1 − a2

z − a

[
1 − az

z − a

]m−1

(10)

where 0 ≤ a ≤ 1 is the pole of Laguerre polynomial and
is called scaling factor in the literature. The control input
sequence can be described by the following Laguerre func-
tions:

�u(n + k) ≈
N∑

m=1

cmlm(k) (11)

where lm is the z-transform’s inverse of �m in the discrete
domain. The coefficient cm is unknown and it should be
obtained during optimization procedure. The parameters a
and N are tuning parameters and should be adjusted by the
user. Usually the value of N is selected smaller than 10,
which is enough for most practical applications. Generally,

choosing larger value for N increases the accuracy of input
sequence estimation.

4.3 Exponentially Weighted Model Predictive Control

Closed loop performance of MPC depends on the magnitude
of prediction horizon Np. Generally, by increasing the magni-
tude of prediction horizon, the closed loop performance will
be improved. However, practically, numerical issue, particu-
larly in the process with high sampling rate, limits selection
of large prediction horizon. One approach to overcome this
drawback is to use exponential data weighting in model pre-
dictive control [16].

4.4 Design of the Proposed Functional Model Predictive
Control

In this section, the Laguerre-based model predictive con-
trol and exponentially weighted model predictive control
are combined in order to alleviate computational effort and
reduce numerical problems. At first, a discrete model predic-
tive control with exponential data weighting is designed. The
input, state and output vectors are changed in the following
way:

�Û T = [α−0�u(n), . . . , α−(Nc−1)�u(n + Nc − 1)]
X̂T = [α−1x(n + 1), . . . , α−Np x(n + Np)]
Ŷ T = [α−1 y(n + 1), . . . , α−Np x(n + Np)]

(12)

where α is tuning parameter in exponential data weighting
and is larger than 1. The state space representation of system
with transformed variable is:

x̂(n + 1) = Âx̂(n) + B̂�û(n)

ŷ(n) = Ĉ x̂(n)
(13)

where Â = A/α, B̂ = B/α, Ĉ = C/α.
The optimal control trajectory with transformed variables

can be achieved by solving the new objective function and
constraints.

Ĵ (n) =
Np∑

k=1

μk(ŷ(n + k) − yref(n + k))

+
Nc∑

k=1

vk�û(n + k)2 (14)

α−kumin ≤ û(n + k) ≤ α−kumax,

α−k�umin ≤ �û(n + k) ≤ α−k�umax

α−k xmin ≤ x̂(n + k) ≤ α−k xmax,
(15)

α−k�xmin ≤ �x̂(n + k) ≤ α−k�xmax

α−k ymin ≤ ŷ(n + k) ≤ α−k ymax,

α−k�ymin ≤ �ŷ(n + k) ≤ α−k�ymax.
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By choosing a > 1, the condition number of Hessian matrix
will be reduced significantly, especially for large values of
prediction horizon (Np). This leads to a more reliable numer-
ical approach.

After solving new objective function with new variables,
the calculated input trajectory should be transformed into
standard variable with the following equation.

�U T = [ao�û(k), . . . , a(Nc−1)�û(k + Nc − 1)]. (16)

The Laguerre-based model predictive control and exponen-
tially weighted model predictive control can be combined
using the following systematic procedure:

• The proper tuning parameter α is chosen.
• The system parameters (A, B, C) and the system vari-

ables (U, X, Y ) are transformed using Eqs. (13) and (14).
• The objective function with its constraints is created

based on Eqs. (15) and (16).
• Objective function is optimized based on Laguerre poly-

nomial and then unknown Laguerre coefficients are cal-
culated.

• The input chain is calculated from Eq. (11).
• The calculated weighted input chain is transformed into

unweighted input chain using Eq. (16) and it is applied
on the plant.

5 System Configuration

The block diagram of the field-oriented PMSM with the pro-
posed FMPC is shown in Fig. 2. All the commanded values
are superscripted with asterisk in the diagram. The proposed
system control consists of three loops. The first loop for the

speed, based on FMPC and the others for the d-q currents,
and based PI controllers. Simulations are carried out to com-
pare the performance of designed speed controller by FMPC
with conventional PI controller. The input and the output of
the FMPC are considered as speed error and reference q-axis
current, respectively. The control parameters are assumed as
follows:

Input weight matrix: μ = 0.15 × INc×Nc

Output weight matrix: v = 1 × INp×Np

The constraints are chosen such that, the d-and q-axis sta-
tor voltages are normalized to be between 0 and 1, where 0
corresponds to zero and 1 corresponds to maximum stator
voltage. Thus,

umin = 0 ≤
[

vd

vq

]
≤ 1 = umax.

The constraints imposed on the control signal are hard,
whereas the constraints on the states are soft, i.e., small
violations can be accepted. The constraints on the states are
chosen to guarantee signals stay at physically reasonable val-
ues as follows:

xmin =
(

0
0

)
≤

( |iq |
|ωr|

)
≤

(
22

430

)
= xmax.

The speed error is fed to the speed controller (FMPC) in
order to generate the torque current command i∗q . The flux
current command i∗d is set to zero to satisfy the field orienta-
tion condition. The reference currents i∗q and i∗d are compared
with their respective actual currents. The resulted errors are
used to generate the voltage commands (v∗

d and v∗
q) which

are converted to three phase reference values (v∗
a , v∗

b and v∗
c )

in the stator frame. These voltage signals are compared with

Fig. 2 Block diagram of the proposed PMSM speed control system
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triangular carrier signal and the output logic is used to control
the PWM inverter.

The entire system has been simulated on the digital com-
puter using the Matlab/Simulink/Powerlib software package.
The motor used in the simulation procedure has the following
specifications [19]:

PMSM 1.5 kw, 240 V, 2-pole,
4,250 rpm

Stator resistance 1.6 �.
Stator inductances L = 6.37 mH.
Permanent magnet flux 0.19 Wb.
Moment of inertia 0.0001854 kg m2

Friction coefficient 5.396e−005 N m s/rad

6 Simulation Results

Computer simulations have been carried out in order to val-
idate the effectiveness of the proposed scheme. The simu-
lation tests are carried out using Matlab/Simulink software
package, wherever the state space model of the perma-
nent magnet synchronous motor is programmed with the
functional model predictive algorithms in MATLAB work-
space.

The MPC control algorithm depends on the solution of
a constrained optimization problem. Most designers choose
Np (prediction horizon) and Nc (control horizon) in a way
such that the controller performance is insensitive to small
adjustments in these horizons. Here are typical rules of thumb
for obtaining a stable process:

1. Choose the control interval such that the plant’s open-
loop settling time is approximately 20–30 sampling peri-
ods (i.e., the sampling period is approximately one fifth
of the dominant time constant).

2. Choose prediction horizon to be the number of sampling
periods used in step 1.

3. Use a relatively small control horizon, e.g., 3–5.

Selection of suitable values of a and N will increase the sys-
tem output predicted values accuracy and help to improve
the system performance with small control effort. The tun-
ing parameter α is chosen in order to decrease the numerical
problems and decrease the simulation time and hence make
the system more suitable for implementation. Therefore, the
system state space with transformed values Â, B̂, Ĉ and D̂
are obtained using the system state space model A, B, C
and D and tuning parameter α, where, Â = A/α, B̂ =
B/α, Ĉ = C/α and D̂ = D/α. Then, the control objec-
tives are achieved by solving the new cost function Ĵ and
new constraints.

In the proposed system under study, the parameters of the
FMPC are adjusted to be a = 0.38, N = 6, α = 1.04, Np =
200 and Nc = 5. The system performance with the pro-
posed FMPC controller is compared with the corresponding
one using the conventional PI controller. The gains of the
PI controller are adjusted as: proportional gain Kp = 6 and
integral gain Ki = 2.5. The following simulation tests are
carried out to show the validity of the proposed FMPC con-
troller.

6.1 High Speed Case

It is assumed that the machine follows a certain speed tra-
jectory starting from 400 rad/s, stepped to 300 rad/s at time
t = 0.03 s, then returned to 400 rad/s at t = 0.05 s. The
load torque is kept constant at the value 3 N m during the
simulation period. Figures. 3, 4, 5, 6 and 7 show the dynamic
responses of the speed, torque, rotor position and stator cur-
rents of the PMSM system based on both FMPC and PI
controllers. It has been shown that the proposed system has
better transient response. This is clear in Figs. 3 and 4, where
the system with PI controller oscillates many times before
the steady state values are attained. In contrast, the system
with the proposed controller has attained the steady state
value very quickly, which can be shown in Figs. 3, 4, 5, 6,
7, 8 and 9, where overshoot and settling time of system are
reduced when FMPC controller is used. The settling time of
PI controller is 18 ms, where in the case of FMPC the settling
time equal 5 ms as shown in Fig. 3. In addition, Fig. 5 illus-
trates that the PI controller produces large phase difference
in the rotor position response which adversely affects the
axes transformation and the flux orientation, thereby reduc-
ing the system performance. On the other hand, the FMPC
tracks well the rotor position reference and the field orienta-
tion condition is satisfied.

Figures 6 and 7 show the stator current response based on
FMPC and PI controllers. It is obvious that with the FMPC
controller, the stator current has less ripple content and over
shoot than using PI controller.

6.2 Low Speed Case

The performance of the PMSM scheme with the proposed
FMPC controller is investigated at low speed (10 rad/s).
The load torque is assumed to be stepped from 2 to 5 N m
at time t = 0.035 s. Figures 8 and 9 show the system
responses using the FMPC and PI controllers. It is clear that
the system has poor transient response using PI controller
especially at starting and at the instant of load change. In
addition, more ripples are noticed in the torque response.
These drawbacks are nearly eliminated using the FMPC
controller.

Also in the FMPC, the unknown variables are 16 times less
than the classical MPC. At each time interval, the calculation
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Fig. 3 Speed response of the PMSM system based on FMPC and PI
controllers
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Fig. 4 Torque response of the PMSM system based on FMPC and PI
controllers
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Fig. 5 Rotor position response of the PMSM system based on FMPC
and PI controllers
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Fig. 6 Stator current response of the PMSM system based on the
FMPC controller

Fig. 7 Stator current response of the PMSM system based on PI con-
troller
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Fig. 8 Low speed response at variable load based on proposed FMPC
and PI controllers
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Fig. 9 Torque response based on FMPC and PI controllers at low speed

time needed for classical MPC is 4.6 ms, whereas this time
is reduced to 0.48 ms in the FMPC. This is a great computa-
tional advantage of using functional MPC.

7 Conclusions

In this paper, a centralized functional model predictive con-
troller is proposed to control the speed and torque of the
permanent magnet synchronous motor drive system. The
proposed predictive controller uses orthonormal Laguerre
functions to describe control input trajectory that reduces
real time computation largely. In addition, exponential data
weighing is used to decrease numerical issue, particularly
with large prediction horizon. Constraints are imposed on
both the q-axis current and the motor speed.

Computer simulations have been carried out in order to
evaluate the effectiveness of the proposed controller. The

results proved that the proposed system has accurate track-
ing performance at low speeds as well as high speeds. In
addition, small ripple contents are noticed in the torque and
stator current waveforms. Moreover, the proposed controller
has significantly better performance relative to PI controller
especially at starting and load change conditions. The main
reasons of this superiority are centralized structure of the pro-
posed controller, which reduces negative interaction between
local control actions, proper constraints that improve opti-
mal calculation of control trajectory, and finally, using
large prediction horizon which gives a performance close
to global.
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