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Abstract The Penman–Monteith equation (PM) is widely recommended because of its detailed and com-
prehensive theoretical base. This method is recommended by FAO as the sole method to calculate reference
evapotranspiration (ET0) and for evaluating the other methods. The objective of this study is to compare PM
using hybrid of artificial neural networks and algorithm genetic (ANN–GA) and artificial neural networks
(ANNs) models for estimating ET0 only on the basis of the meteorological data. ANNs are effective tools
to model nonlinear systems and require fewer inputs, and GAs are strong tools to reach the global optimal
solution. The weather stations selected for this study are located in Esfahan Province (center of Iran). The
monthly meteorological data from 1951 to 2005 have been used for this study. The meteorological data were
maximum, average and minimum air temperatures, relative humidity, sunshine duration and wind speed. The
ANNs and ANN–GA models learned to forecast PM reference evaporation (PM ET0). The results of this
research indicate that ANN–GA predicted PM ET0 better than ANNs model.
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1 Introduction

Evapotranspiration (ET) is one of the major components of the hydrologic cycle. The estimation of evapotrans-
piration from a plant surface can be regarded as the basic element in the computation of the water budget and in
the estimation of the water demand and supply. As more than half of the world population depends on products
from irrigation agriculture, it is very important to quantify crop evapotranspiration. A common method for
estimating ET from a well-watered agriculture crop is to first estimate reference crop evapotranspiration (ET0)
from a standard surface and then to apply an appropriate empirical crop coefficient (KC), which accounts for
the difference between the reference crop evapotranspiration and crop evapotranspiration. Reference evapo-
transpiration is measured using a lysimeter directly or can be estimated using the water budget method or the
climatic variables indirectly. Because the measurements of this parameter using a lysimeter directly require
much unnecessary time and needs voluble experience, it is not always possible in field measurements. Thus,
an empirical approach based on the climatic variables is generally used to estimate ET0 [1,2]. Jensen et al.
[3] measured ET0 using a lysimeter at 11 stations located in the different climatic zones of various regions
around the world. They compared the results of the lysimeters with those of 20 different empirical equations
and methodologies for the ET0 measurements. It was found that Penman–Monteith (PM) method showed the
optimal results over all the climatic zones. If the observed data for ET0 does not exist, PM method can be
considered as a reference methodology to estimate ET0.

The Penman–Monteith (PM) method is recommended by FAO as appropriate to calculate ET0 wherever the
required input data are available [4,5]. The PM is a physically based approach, which requires measurements
of air temperature, relative humidity, solar radiation and wind speed.

Determination of ET0 is a complex nonlinear phenomenon because it depends on several interacting cli-
matological factors, such as air temperature, humidity, wind speed, radiation, as well as on the type and growth
stage of the crop. A tool that can be used to estimate ET0 is the ANNs. ANNs are effective tools to model
nonlinear systems and require fewer inputs. According to Sudheer et al. [6], the main advantage of ANNs
methods over conventional methods is the ability for solving problems, which are difficult to formalize.

Recently, outstanding results using the ANNs model in the fields of evaporation and evapotranspiration
have been obtained.

Bruton et al. [7] used weather data from Rome, Plains and Watkinsville, Georgia, consisting of 2,044 daily
records from 1992 to 1996 to develop the models of daily pan evaporation. They indicated that pan evaporation
estimated with ANNs models was slightly more accurate than that estimated with a multiple linear regression
model or the Priestley–Taylor equation.

Trajkovic et al. [8] applied ANNs model for forecasting reference evapotranspiration (ET0) with meteo-
rological data of Serbia and Montenegro. The sequential adaptation of parameters and structure was achieved
using an extended Kalman filter. Therefore, they suggested ANNs model for forecasting reference evapotrans-
piration with high reliability.

Keskin and Terzi [9] used meteorological data from Lake Eğirdir consisting of 490 daily records from
2001 to 2002 to develop the model for daily pan evaporation estimation. The results of the Penman method and
ANNs models were compared to pan evaporation values. The comparison showed a better agreement between
the ANNs estimations and measurements of daily pan evaporation than for other models.

Kisi [10] indicated that the generalized regression neural networks (GRNN) technique could be employed
successfully in modeling the ET0 process.

Kisi [11] investigated the modeling of ET0 using the feed-forward artificial neural networks (ANNs) tech-
nique with the Levenberg–Marquardt (LM) training algorithm in Los Angeles, USA. It was found that the
neural computing technique could be employed successfully in modeling ET0 process from the available cli-
matic data. The results also indicate that the Hargreaves method provides better performance than the Penman
and Turc methods in the estimation of the ET0.

Parasuraman et al. [12] compared the performance of the genetic programming models (GP) with ANNs
model and the traditional Penman–Monteith (PM) method. Results indicated that both the data-driven models,
GP and ANNs, performed better than the PM method. However, performance of the GP model was comparable
with that of the ANNs model.

Due to its ease of application and simple architecture, the ANNs model has become a promising research
field with surprising potential. Sudheer et al. [13] investigated the prediction of Class A pan evaporation (PE)
using the ANNs model. They used the ANNs model for the evaporation process using proper combinations of
the observed climate variables such as temperature, relative humidity, sunshine duration and wind speed for the
ANNs model. Kisi [14] used the neuro-fuzzy model to estimate the daily PE using observed climatic variables.
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He used proper combinations of the observed climatic variables such as air temperature, solar radiation, wind
speed, pressure and relative humidity for the neuro-fuzzy model. Kumar et al. [15] developed the ANNs model
to estimate the daily grass reference evapotranspiration (ET0). They evaluated proper combinations of different
climate data (solar radiation, temperature, relative humidity and wind speed) for the ANNs model. Kisi and
Ozturk [16] used the neuro-fuzzy model to estimate the FAO-56 PM ET0 using the observed climatic variables.
They used proper combinations of the observed climatic variables for the neuro-fuzzy model.

In this paper, the PM, the neural network methods and GA models for estimating monthly ET0 have been
evaluated in the semiarid environment of the Esfahan Province in the center of Iran.

2 Methods and Materials

2.1 Study Area and Climate Dataset

The area under study was the Esfahan Province, which lies approximately between 32◦ 37′ N in latitude and
between 51◦ 40′ E in longitude. This region is located in the center of Iran (Fig. 1).

This area is irrigated by the Zayandeh-Rood River. Esfahan Province is categorized as having a cool semi-
arid climate based on the Koppen climate classification. The 54 years monthly meteorological data from 1951
to 2005 were used for this study. The meteorological data were maximum, average and minimum air temper-
atures, relative humidity, sunshine duration and wind speed. The data range used in the model is presented in
Table 1.

The Penman–Monteith formula (Dingman [17]) is given by the following equation:

ET0 = 0.048�(Rn − G) + γ 900
T +273 u2(es − ea)

� + γ (1 + 0.34u2)
(1)

where ET0 is the reference evapotranspiration calculated by the PM method (mm day−1), Rn is the daily net
radiation (MJ m2 day−1), G is the soil heat flux (MJ m2 day−1), T is the average daily air temperature at 2 m

Fig. 1 Study area (Esfahan) and spatial distribution of measurement stations

Table 1 Material properties used in this investigation

Wind speed Solar radiation Relative humidity Temperature (◦C)
(not) (MJ m−2 day−1) (%) Minimum Average Maximum

Data range 13.33–493.37 3.38–12.71 14–77 −9.1 to 23.9 −3 to 31.7 3.1–39.7
Data average 179.72 9.12 39.91 9.05 16.25 23.4
Data period 1951–2005 1951–2005 1951–2005 1951–2005 1951–2005 1951–2005
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height (◦C), U2 is the daily mean of wind speed at 2 m height (m s−1), es is the saturation vapor pressure
(kPa), � is the actual vapor pressure (kPa), D is the slope of saturation vapor pressure versus air temperature
curve (kPa ◦C−1), and c is the psychometric constant (kPa ◦C−1).

Some reliable evapotranspiration-estimating methods, like Penman–Monteith, require knowledge of the
available energy expressed by the difference between net radiation (Rn) and soil heat flux (G). G is considered
as either zero or portion of Rn, changing with the crop development and, thus, with the leaf area index (L).
Establishment of a relationship between G/Rn and L is attempted here both for day and nighttime during the
development of a crop, under varying soil moisture regimes. A reliable exponential relation between the two
parameters, applicable for crops with varying geometry and architecture of canopy, is proposed for daytime.
With L approaching zero, G/Rn tends to the value 0.43, whereas for large L , the ratio approaches its limit
value 0.1. At night, G/Rn and L are related linearly for L > 2, but for smaller values of L , G approaches Rn.

All parameters were calculated using the equations provided by Allen et al. [4]. The soil heat flux, G, is the
energy that is utilized in heating the soil. G is positive when the soil is warming and negative when the soil is
cooling. Although the soil heat flux is small compared to Rn and may often be ignored, the amount of energy
gained or lost by the soil in this process should theoretically be subtracted or added to Rn when estimating
evapotranspiration.

2.2 Artificial Neural Networks

ANNs were originally designed for the modeling of the performance of a biological neural system. The inter-
nal architecture of an ANNs is similar to the structure of a biological brain with a number of layers of fully
interconnected nodes or neurons. The most common architecture is composed of: the input layer, where the
data are introduced into the ANNs, the hidden layer(s) where the data are processed, and the output layer where
the results of given inputs are obtained (Fig. 2). This type of ANNs is called multilayer perceptron (MLP)
(Fausset [18]). The other properties of ANNs model are summarized in Fig. 2. In this research, Neuro Solution
5 software was used for modeling dara [19].

Table 2 shows the specifications and optimal structure of proposed ANNs model topology.

Fig. 2 Schematic of proposed ANNs model (ANNs: artificial neural networks)

Table 2 Specifications and optimal structure of proposed ANNs model topology

Learning rule Number of Threshold Epoch Momentum Learning Final training Validation
neurons function coefficient coefficient (repeat) error

Quick Prop 9,2 Tan H 16 0.1 0.125 10000 0.0397
Delta Rule 9,4 Tan H 1 0.4 0.5 3000 0.0705
Norm.Cum.D 6,5 Sigmoid 18 0.4 0.5 18000 0.0711
Max Prop 5,1 Tan H 9 0.8 1 17000 0.0789
Delta.Bar.De 10,3 Tan H 36 0.4 0.5 20000 0.0805
Ext DBD 5,1 Sigmoid 16 0.4 0.5 14000 0.0849
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Fig. 3 Schematic of proposed GA–ANN models (GA–ANN: genetic algorithms model)

Table 3 Specifications and optimal structure of the proposed ANN–GA model topology

Learning rule Number of Threshold Epoch Momentum Learning Final training Validation
neurons function coefficient coefficient (repeat) error

Quick Prop 8,2 Sigmoid 12 0.4 0.25 10000 0.0438
Delta Rule 6,4 Tan H 6 0.6 0.5 5000 0.0811
Norm.Cum.D 6,4 Sigmoid 16 0.4 0.75 14000 0.0826
Max Prop 8,2 Tan H 10 0.8 1 16000 0.0851
Delta.Bar.De 9,1 Tan H 24 0.4 0.75 20000 0.0907
Ext DBD 10,1 Sigmoid 18 0.6 0.5 10000 0.0966

2.3 Genetic Algorithm

Many researchers have widely used the back propagation algorithm (BPA) for the training performance of the
neural networks model. It is a first-order method based on the steepest gradient descent, with the direction
vector being set equal to the negative of the gradient vector. It is also possible for the training performance to
be trapped at the local minimum despite the use of a learning rate [20]. Therefore, the various methodologies
have been suggested to overcome the weakness of the BPA application for the training performance of the
neural networks model. The training performance of the neural networks model using the genetic algorithm
(GA) starts by initializing the connection weights and the input layer nodes. The global error at the output layer
of the neural networks model is then calculated as the fitness value of the objective function. These procedures
are repeated from one generation to the next with the objective of reaching the global optimal solution after a
sufficient number of generations. It is to be noted that a generation in the GA is highly analogous to iteration in
the BPA, and the goal in both algorithms is to update the connection weights. Once the connection weights are
updated at the end of a generation, the fitness value of the objective function can be calculated. In Fig. 3, input
layers of GA-model consists of six meteorological parameters and output layer only consists of ET0 [12].

Table 3 shows the specifications and optimal structure of the proposed ANN–GA model topology.
In order to compare PM methods with ANNs and hybrid method of ANNs and GA models based on

temperature data, the same climatic data required for the application of the PM method were selected as input
variable of the network; therefore, ANNs and hybrid method of ANNs and GA evapotranspiration models with
five input variables (maximum air temperature, minimum air temperature, average air temperature, relative
humidity, sunshine and wind speed) are considered. Since the purpose of this study is the estimation of ET0,
the ANNs has only one output variable. The PM estimates monthly ET0 values that are employed as substitute
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for measured ET0 data and used for output values. The number of hidden nodes in the ANNs is determined
empirically by trial and error, considering the need to derive reasonable results. The inputs and outputs of
the data sets were normalized to improve the performance of the network. The normalization applied was as
follows:

xni,k = xi,k − mk

SDk
(2)

where xni;k is the normalized input k or target data at i = 1, 2, . . . , N , the index number of the data value,
xi,k the original data, and mk and SDk are the mean value and standard deviation of input k or target data.

In this study, ANNs and hybrid method of ANNs, GA are employed with Neuro Solution software. 60 %
of the total data were randomized for as training set for determining the weights and biases of network, 20 %
of the total data were randomized for testing performance and 20 % were selected for cross-validation perfor-
mance. The validation error normally decreases at the beginning of the training process. When the network
starts to over-fit the data, the validation error begins to increase. The training is stopped when the validation
error begins to increase, and the weights and biases will then be derived at the minimum error. The last data
set is for validating the weights and biases to verify the effectiveness of the stopping criterion and to estimate
the expected network operation on new data sets.

In ANNs model, multi-layer perceptron (MLP) neural networks are used that consist of two hidden layers
and one output layer using log sigmoid functions. The accuracy of the networks was evaluated for each epoch
in the training through mean-squared error (MSE).

For achieving a logical relation between input and output data, ANNs uses trial and error process in its
training stage. But, it is obvious that this method has a great error. It might be possible that the user did not
obtain an ideal relation. One of the methods which has recently been offered by researchers is the hybrid
method of ANNs and GA [21,22]. Therefore, as the continuation of the program, genetic algorithm toolbox
in Neuro Solution software has been used to optimize the process. The adequacy of the ANNs and GAs
evapotranspiration models is evaluated by estimating the coefficient of determination (R), defined based on
the evapotranspiration estimation errors as:

R2 = E0 − E

E0
(3)

E0 =
n∑

i=1

(ETi(measured) − ETi(mean))
2 (4)

E =
n∑

i=1

(ETi(measured) − ETsimulated)
2 (5)

where ETi(measured), ETi(simulated) and ETmean are monthly evapotranspiration measurement, ANNs model
evapotranspiration and average of ETi(measured).

2.4 Mean Absolute Error (MAE) and Root Mean Square Error (RMSE)

Mean absolute error can be defined as the average value of the absolute of the difference between the calculated
and observed evaporation values. A low MAE implies good model performance. A perfect match between
the calculated and observed evaporation values would yield MAE =0. This value can be calculated from the
following Eq. (6).

MAE = 1

n

n∑

i=1

{ȳi (x) − y(x)} (6)

Root mean-square error is a measure of the hydrologic model. The hydrological model consists of a computer
analysis of large amounts of historical data to predict how variables such as temperature, rain and carbon
dioxide levels might affect outcomes. In hydrological models, various parameters must be combined so that
the best relationship between input and output data is obtained. For example, in the cases that the purpose of
modeling is rainfall estimate in a region, meteorological parameters should be used to model the precipitation
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Table 4 The sensitivity of the reference evapotranspiration to the six meteorological variables

Sensitivity ET0

Maximum temperature 0.0217
Minimum temperature 0.0457
Average temperature 0.0216
Humidity 0.0495
Wind speed 0.00484
Sunshine 0.0430

Table 5 Statistical analysis of the ANNs and ANN–GA model for testing performance

Performance ANN-GA ANNs

MSE 0.3693 0.4669
NMSE∗ 0.0675 0.0813
MAE 0.4751 0.5241
Min Abs Error 0.0012 0.0096
Max Abs Error 1.6770 2.1222
R2 0.9685 0.9036

phenomena. Although various hydrological models based on various parameters are defined, the best model
is the one that has the greatest number of parameters and also where it takes place modeling has the full statis-
tical data [22]. RMSE can be defined as the square root of the average value of the squares of the differences
between the calculated and observed evaporation values. A low RMSE implies good model performance.
A perfect match between the calculated and observed evaporation values would yield RMSE = 0. This value
can be calculated from the following Eq. (7).

RMSE =
√√√√1

n

n∑

i=1

(ȳi (x) − y(x))2 (7)

3 Results

In this study, hybrid of artificial neural networks and algorithm genetic (ANN–GA) and artificial neural net-
works (ANNs) models have been used for estimating PM ET0 only on the basis of the climatic data. The
statistical parameters have been applied to compare PM methods with ANNs and hybrid method of ANNs and
GA models.

3.1 Sensitivity Analysis

The sensitivity of the reference evapotranspiration to meteorological variables is shown in Table 4. It is clear
that humidity, minimum air temperature and sunshine are the most sensitive variables.

Garson [20] is employed to evaluate the sensitivity of each climatic variable on PM-ET0 with the help of
the parameters of the ANNs models. While the physical process of evapotranspiration is well understood, this
analysis helps explain why an ANNs model is able to accurately compute ET0 with limited climatic data. Our
results are in agreement with many researchers, who have studied the reliability of ANNs for estimating ET0
as a function of climatic elements [6,8,23]. These researchers found satisfactory results, even better than those
obtained from the PM method [15].

The testing performance applied a cross-validation method in order to overcome the overfitting of data.
The cross-validation method does not train all of the training data until MSE reaches the minimum amount, but
cross-validates with the testing data at the end of each performance. The correlation coefficient and MSE values
are used to judge the performance of models for data. The actual and predicted values of efficiency have been
also plotted. Table 5 shows the results of the statistical comparison between the hybrid of the neural network
and algorithm genetic (ANN–GA) model and PM values. This table shows that for cross validation, the values
of MSE, MAE and r -square (R2) were obtained in comparison as 0.369, 0.475 and 0.968, respectively.
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Table 6 The model error for different percentages of input data

Model Test Validation Training Percent of Percent of
error error error training data (%) validation data (%)

ANNs 0.0488 0.0397 0.0960 60 20
0.1071 0.0818 0.0672 50 25

ANN-GA 0.0677 0.0434 0.109 60 20
0.188 0.797 0.0655 50 25

Fig. 4 Correlations between the Penman–Monteith ET0 and output of ANN–GA model (ET0: reference evapotranspiration;
ANNs: artificial neural networks; GA: genetic algorithm)

Table 5 also shows the results of statistical comparison between the ANNs model and PM values. This table
shows that for cross-validation, the values of MSE, MAE and r -square (R2) were obtained in comparison as
0.4669, 0.5241 and 0.9035, respectively. The R2 and MSE values were used to judge the performance of hybrid
of neural network and algorithm genetic (ANN–GA) and ANNs for data set. According to the average MSE,
MAE and R2 statistics for the ANNs model (0.4669 mm day−1, 0.5241 mm day−1 and 0.9035, respectively)
and GA model (0.369 mm day−1, 0.475 mm day−1 and 0.968, respectively), hybrid of neural network and
algorithm genetic (ANN–GA) give a relatively strong agreement with PM estimates. Also, Table 6 shows the
model error for different percentages of input data in ANNs and ANN–GA models.

Actual and predicted values of efficiency are also plotted. One advantage of using the hybrid of neural
network and algorithm genetic (ANN–GA) is the use of a quadratic optimization, which provides a global
minimum in comparison to local minima with back propagation neural network due to the use of non-linear
optimization. Both hybrid neural network, genetic algorithm (ANN–GA) and ANNs are applied for determina-
tion coefficient and MSE using cross-validation and a percentage split method for the input data set comprising
different attributes.

Figures 4 and 5 shows the scatter plots of ET0 values as estimated by hybrid neural network and algorithm
genetic (ANN–GA) and ANNs with PM ET0 estimates. It can be seen that there is a close relationship between
ET0 from the PM method and the hybrid neural network and algorithm genetic (ANN–GA) method. The
results suggest that the monthly ET0 could be computed from climatic data using a hybrid of neural network
and algorithm genetic. Figure 4 shows scatter plots of PM ET0 values as estimated by the hybrid of neural
network and genetic algorithm (ANN–GA). It can be found that there is a close relationship between ET0 from
the PM method and from the ANNs network. The results suggest that the monthly ET0 could be computed
from climatic data using the neural network.

Use of ANNs and GA models compared with simpler methods, such as interpolation and extrapolation
methods, is more realistic. Interpolation and extrapolation methods as against ANNs and GA models are less
efficient because the variation within these methods assume a linear relation in the study area. In fact, this
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Fig. 5 Correlation between the Penman–Monteith ET0 and output of ANNs model model (ET0: reference evapotranspiration;
ANNs: artificial neural networks)

assumption is wrong for changes in evapotranspiration, and the methods for such work are old and many
researchers do not use it. Therefore, new methods like ANNs and GA may be used because linear problems
of this kind of methods can be solved.

The time taken to implement the ANNs model was less than for the GA model. The reason was that the GA
model had a more complex algorithm compared to the ANNs model. The run time of these models depends on
the amount of data and the computer capacity that is used. So, the numbers are listed here may not apply to all
cases. But, it can be said with certainty that the times of models process execution varied with various stages.
These models include three stages: test, validation and training. In two models, the time of program running
in validation stage is more than in other stages. In ANNs model, the time for the test stage is more than for the
training stage, but in the GA model, the time for the test stage is lower than the training stage. The difference
between the times of running of the models is due to difference between the ANNs and GA model algorithms.

4 Discussion

In this study, the ANNs and GA models are evaluated based on climatic data for PM ET0 estimation. The
hybrid neural network and algorithm genetic (ANN–GA) provides a quite good agreement with the evapo-
transpiration obtained by the Penman–Monteith method. It gives a reliable estimation at all of the locations.
The overall results are of significant practical use because the climatic-based neural network can be employed
when air temperature, relative humidity, radiation, and wind speed data are available.

The method that we have proposed to estimate the evapotranspiration has been used in several regions
having variable climate. The rectitude of our method was found to be acceptable in all regions. The results of
this study also agree well with these previous approaches. Both ANNs and GA methods have already been
used by many researchers. Also, uses of these techniques are not only in hydrology and water resources, but
in many other sciences. The important point is that the use of these methods by us should not be assumed as
indicating a duplicate study. But, applying these methods in different areas of the world will help to enhance
the credibility and accuracy of these methods and newer models that have developed algorithms, and provide
material for future research.

For the recommendations for further research, we proposed that these models be used in combination with
other models such as Nero-Fuzzy and SVM models. The most important factor in improving these methods
is the use of these methods in all parts of the world to rectify their defects, especially in areas that have
suitable meteorological data and meteorological parameters. In addition to the data used by us, the use of other
meteorological parameters can help to increase the accuracy of these models.
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