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Abstract In this work, particle swarm optimization (PSO) is applied to automate the DNA computing readout
method based on a real-time polymerase chain reaction (PCR). Moreover, real-time amplification was per-
formed and the TaqMan detection approach was used for the plan and the readout approach development. The
most important part of the readout method is identifying two different reactions in the real-time PCR, which
involve in vitro and in silico processes in order to inspect the placement of pairs of nodes in the Hamiltonian
path problem. In addition, the real-time PCR experiment is implemented on the LightCycler System. Previ-
ously, manual method was exploited to classify two different output reactions of real-time PCR that was a
time consuming process. In this study, by exploiting MATLAB the PSO has been implemented for clustering
output reactions of real-time PCR and experimental results depict that the amplification response for “YES”
and “NO” reactions can be clustered correctly.

Keywords Particle swarm optimization · DNA computing · Data clustering · Real-time PCR

1 Introduction

Based on the findings of the polymerase chain reaction (PCR) [1], the following innovation in real-time is
commonly employed and has played a significant role in molecular medicine and clinical diagnostics [2]. All
real-time amplification instruments require a fluorescence reporter molecule for detection and quantization
that the increment in its signal is proportional to the amount of amplified product. A TaqMan DNA probe is a
modified nonexpendable dual labeled oligonucleotide. The 5′ and 3′ ends of the oligonucleotide are terminated
with an attached reporter, such as FAM, and quencher fluorophores dyes, such as TAMRA, respectively, as
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Fig. 1 Illustration of the structure of a TaqMan DNA probe. Here, R and Q denote the reporter and quencher fluorophores,
respectively

Fig. 2 An instance of reaction plots related to TaqMan (V0, Vk , Vl) = YES and TaqMan (V0, Vk , Vl) = NO

shown in Fig. 1 [3]. Upon laser excitation at 488 nm, the FAM fluorophore emits fluorescence at 518 nm in
isolation. Given the proximity of the TAMRA quencher, however, and based on the principle of fluorescence
resonance energy transfer (FRET), the excitation energy is not emitted by the FAM fluorophore, but rather is
transferred to TAMRA via the dipole–dipole interaction between FAM and TAMRA. As TAMRA emits this
absorbed energy at significant wavelengths (580 nm), the resulting fluorescence is not observable in Channel 1
of the real-time PCR instruments [4].

Previously, we proposed a readout method tailored specifically to the Hamiltonian path problem (HPP)
in DNA computing, which employs a hybrid in vitro/in silico approach [5]. In the in vitro phase, O(|V |2)
TaqMan-based real-time PCR reactions are performed in parallel to investigate the ordering of pairs of nodes
in the Hamiltonian path of a |V |-node instance graph, in terms of relative distance from the DNA sequence
encoding the known start node. The resulting relative orderings are then processed in silico, a process that
efficiently returns the complete Hamiltonian path.

The proposed approach is an experimentally validated optical method specifically designed for the quick
readout of HPP instances in DNA computing. Previously, graduated PCR, originally demonstrated by Adle-
man [6], was employed to perform such operations. While a DNA chip based methodology, which makes
use of biochip hybridization for the same purpose has been proposed [7,8], this method is more costly and
has yet to be experimentally implemented. Previously, Saaid et al. [9] exploited a Fuzzy C-means algorithm,
implemented on the LightCycler System, to cluster the output of DNA computing automatically. In this paper,
we develop an automated system for the DNA computing readout method implemented on real-time PCR and
involving an in vitro/in silico approach. The real-time amplification is performed using TaqMan probes with
the TaqMan detection mechanism exploited in the design and development of the readout approach. The in
vitro part is performed on the LightCycler System. As shown in Fig. 2, the output of the DNA computing
readout method implemented on the LightCycler System consists of two kinds of reactions, namely, “YES”
and “NO” reactions. In the in silico information processing, a particle swarm optimization (PSO) clustering
algorithm [10] is implemented for automatic classification of the “YES” and “NO” reactions.

2 Readout Approach for DNA Computing Based on Real-Time PCR

2.1 Notation and Basic Principles

In the subsequent text, V1(a)V2(b)V3(c)V4(d) denotes a double stranded DNA (dsDNA), containing the base-
pair subsequences, V1, V2, V3, and V4. Here, the subscripts in parentheses (a, b, c, and d) indicate the
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Fig. 3 Output of real-time PCR, reactions 1–6 indicate the [(|V|−2)2− (|V|−2)]/2 TaqMan (V0, Vk , Vl) reactions of the input
example

length of each respective base-pair subsequence. For instance, V1(20) indicates that the length of the dou-
ble-stranded subsequence V1 is 20 base-pairs (bp). When convenient, a dsDNA may also be represented
without indicating the segment lengths (e.g. V1V2V3V4). A reaction denoted by TaqMan (V0, Vk, Vl) indi-
cates that real-time PCR is performed using the forward primer V0, reverse primer Vl , and TaqMan
probe Vk . In accordance with the proposed method, there are two possible reaction conditions related to
the relative positions of the TaqMan probe and reverse primer. In particular, the first condition occurs
when the TaqMan probe specifically hybridizes to the template, between the forward and reverse prim-
ers, while the second occurs when the reverse primer hybridizes between the forward primer and the
TaqMan probe. As shown in Fig. 3, these two conditions result in different amplification patterns during
real-time PCR, given the same DNA template (i.e., assuming that they occurred separately, in two dif-
ferent PCR reactions). The higher fluorescent output of the first condition is a typical amplification plot
for real-time PCR. In contrast, the low fluorescent output of the second condition reflects the cleavage of
a few of the TaqMan probes via DNA polymerase due to the ‘unfavorable’ hybridization position of the
reverse primer. Thus, TaqMan (V0, Vk, Vl) = YES if an amplification plot similar to the first condition
is observed, while TaqMan (V0, Vk, Vl) = NO, if an amplification plot similar to the second condition is
observed.

2.1.1 In Vitro Step

Let the output of an in vitro computation of an HPP instance of the input graph be represented by a 120-
bp dsDNA v0(20)v2(20)v4(20)v1(20)v3(20)v5(20), where the Hamiltonian path V0 → V2 → V4 → V1 →
V3 → V5, begins at node node V0, ends at node V5, and contains intermediate nodes V2, V4, V1, and
V3. Note that in practice, only the identities of the start and end nodes, and the presence of all interme-
diate nodes will be known in advance to characterize the solution path. The specific order of the interme-
diate nodes within such a path is unknown. The first part of the approach, which is performed in vitro,
comprises [(|V| − 2)2 − (|V| − 2)]/2 real-time PCR reactions, each denoted by TaqMan (V0, Vk, Vl)
for all k and l, such that 0 < k < |V | − 2, 1 < l < |V | − 1, and k < l. In this example
instance, so that the DNA template is the dsDNA v0v2v4v1v3v5, these six reactions are given as fol-
lows:

1. TaqMan (V0, V1, V2) = NO
2. TaqMan (V0, V1, V3) = YES
3. TaqMan (V0, V1, V4) = NO
4. TaqMan (V0, V2, V3) = YES
5. TaqMan (V0, V2, V4) = YES
6. TaqMan (V0, V3, V4) = NO
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Note that the overall process consists of a set of parallel real-time PCR reactions, and thus requires
O(1) laboratory steps for in vitro amplification. The accompanying space complexity, in terms of the
required number of tubes is O(|V |2). Clearly, only one forward primer is required for all real-time
PCR reactions, while the number of reverse primers and TaqMan probes required with respect to the
size of input graph is |V| − 3 in both cases. After all real-time PCR reactions have been completed,
the in vitro output is subjected to an algorithm for in silico information processing, producing the sat-
isfying Hamiltonian path of the HPP instance in O(n2) time (here, n denotes the number of verti-
ces).

2.2 In Silico Part

The next step is to use all the information from the six TaqMan reactions to allocate each node of the Hamil-
tonian path. This can be done by applying the in silico algorithm as follows:

Input: N[0…|V|-1]=2 // N[0, ?, ?, ?, ?, 5] 

A[1…|V|-2]=|V| // A[1, 1, 1, 1]

for k=1 to |V|-3

for l=k+1 to |V|-2

if TaqMan( , , )  = YES

A[l] = A[l]+1

else A[k] = A[k]+1

endif

endfor

N[ A[k] ] = k

endfor

N[ A[ |V|-2] ]=|V|-2

V0 Vk Vl

In this algorithm, an array (N[0. . .|V| − 1]) is defined to store all the nodes of the Hamiltonian path.
In addition, an array of aggregation values (A[1 . . . |V| − 2]), used to locate the Hamiltonian path in each
array of nodes, is also defined. Based on the modified algorithm, the input array N is first initialized to
N = {0, ?, ?, ?, ?, 5} since the start and end nodes of the path are known in advance. Next, the aggregation
array A is initialized to A = {1, 1, 1, 1}. During the loop operations of the algorithm, the values in array A
are increased in each iteration step. The aggregation array A[i] is used to index the node array for each value
of k. After the loop operation, |V| − 2 is assigned to cell N[A[|V| − 2]. The output of the in silico algorithm
can be viewed by calling back all the cells in the node array N[0] to N[|V| − 1]. The outcome of the in silico
algorithm is N = {0, 2, 4, 1, 3, 5}. Note that this algorithm can be carried out once all the information for the
TaqMan reactions has been obtained. This can only be done if clustering is applied to investigate the “YES”
and “NO” reactions.

3 Particle Swarm Optimization

Particle swarm optimization (PSO) is a population-based stochastic search process, modeled on the social
behavior of a flock of birds [11,12]. In PSO, the assumed birds, called particles, fly in a virtual space to find
the optimum of a predefined fitness function. PSO has been exploited across a vast area of research [13]. Any
optimization problem can be solved by PSO if a proper fitness function is defined. In PSO every particle finds
a solution to the optimization problem. The position of a particle is changed according to the best position
experienced by it and that of the best particle in the entire swarm. The closeness of the particle to the global
optimum is measured using the predefined fitness function. Each particle in the group is defined in the following
format:
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• xi the present position of the particle;
• vi the present velocity of the particle;
• pi the local best position of the particle.

Based on the above definitions, the position of a particle changes according to:

Vi (t + 1) = iw · vi (t) + r1 · ac1(Pi (t) − Xi (t)) + r2 · ac2(Gi (t) − Xi (t)) (1)

Xi (t + 1) = Xi (t) + Vi (t + 1) (2)

Here, variables r1 and r2 are positive random numbers, produced by a uniform distribution and limited by
an upper bond. Coefficients ac1 and ac2 are named acceleration constants and iw is called the inertia weight.
Moreover, pi is the local best solution found up to now by the i-th particle, while gi shows the position of the
best particle thus far in the entire swarm. Equation (1) represents the new velocity of the particle expressed as
the sum of the three objective functions explained below.

1. Fraction of the old velocity that depends on the inertia coefficient defined at the beginning of the algorithm
and which reduces gradually.

2. Perceptive factor, which is the distance of the particle from its best visited position multiplied by an
acceleration coefficient and a random value to train the particle not to fly far from its best experience.

3. Group factor, which is the distance of the particle from the global best visited position multiplied by an
acceleration coefficient and a random value to train the particle to follow the best swarm to converge to
the goal of the algorithm.

The local best position of particle i is the best position experienced by particle i up to now. If f is the
fitness function then the personal best position of a particle at time step t is equal to:

Pi (t + 1) =
{

Pi (t) if f (Xi (t + 1)) > f (Pi (t))
Xi (t + 1) if f (Xi (t + 1)) < f (Pi (t))

(3)

After completing the algorithm, a large number of particles are predicted to converge within a small radius
around the global optimum of the flying space.

4 PSO Data Clustering Algorithm

A clustering algorithm such as PSO-clustering can be implemented for automatic classification of the data
of the output graph of real-time PCR. PSO has become a popular and powerful method in cluster analysis,
and has been applied in many fields [14]. PSO is a data clustering technique based on the optimization of the
objective function [10]:

Je =
∑C

i=1
∑N

j=1 ‖x j − yi‖2/ni

C
∀x j ∈ ni (4)

where C is the number of clusters and N the number of data. Each data point in the data set needs to belong to
a cluster. The purpose of PSO is to group data points into different specific clusters. Let X = {x1, x2, . . . , xn}
be a collection of data. By minimizing (4), X is classified into C separate clusters, ni is the number that shows
whether data x j is a member of the specific cluster and cluster set yi , and Y = {y1, y2, . . . , yn} includes all
the cluster centers.

Here, ‖x j − yi‖ is the Euclidean distance between x j and yi .

The aim of this study is to cluster the results of the TaqMan reactions, called “YES” and “NO” reac-
tions. In addition, each graph of the reactions is depicted as a vector X j = {x j (1), x j (2), . . . , x j (45)}.
The reactions are clustered into two groups with their centroids at Y j = {y1(1), y1(2), . . . , y1(45)} and
Y2 = {y2(1), y2(2), . . . , y2(45)}, respectively. The center that exists in the non-amplification part is definitely
smaller than the other center in the amplification part. Based on the previous description, we refer to these
centers as the “YES” and “NO” centers, where the “NO” center is smaller than the “YES” center. Finally, by
using the PSO data clustering algorithm these data are exploited to cluster the TaqMan reactions into “YES”
and “NO” reactions.
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The whole classification process for automatic classification of a datum of the output graph of real-time
PCR by using PSO can be described by the following steps.

1: For p = 1 to 45
2: Initialize each particle with 2 random cluster centers.
3: For iteration iter = 1 to maximum iterations do
4: Reduce inertia from 0.9 to 0.4 based on the iterations
5: For all particles i do
6: For all members x j in the swarm do
7: Calculate Euclidean distance of x j with all cluster centers
8: Appoint x j to the group that have nearest center to x j
9: End for
10: Compute the Je
11: End for
12: Find the personal best and global best position of each particle.
13: Update position and velocity formula of PSO (1, 2).
14: End for
15: Define the members of a cluster with the larger centroid as YES and the other as NO
16: End for

The initial parameters for PSO clustering are as follows:

– number of iterations is 90;
– total number of input data is 6;
– number of cluster centers is 2;
– number of particles is 30;
– inertia reduces from 0.9 to 0.4;
– correction factor = 1.42;
– random coefficient is a variable between 0 and 1.

Tables 1 and 2 contain data that can be clustered by this particular algorithm.

5 Results and Discussion

As mentioned previously, in the in vitro phase of the readout approach, each real-time PCR reaction is mapped
to a binary output (either “YES” or “NO”), based on the occurrence or absence of an exponential amplification.
Given the existence of this mapping, the subsequent in silico information processing is capable of determining
the Hamiltonian path of the input instance (that is, V0 → V2 → V4 → V1 → V3 → V5 in the example
instance). PSO is used to cluster the TaqMan reactions produced by the DNA LightCycler. The parameters for
clustering are N = 6 and C = 2, with the algorithms implemented using MATLAB 7.0. Figure 4 depicts the
convergence curve of the PSO-clustering algorithm.

The allocation of data to the partitions is given in Tables 3 and 4. Based on these tables, it is shown that the
PSO algorithm correctly clusters the “YES” and “NO” reactions compared to manual attempts. Moreover, the
final result is similar to that of previous work by Saaid et al. [9], although in the Fuzzy method the values for
M1j and M2j are floating point numbers between 0 and 1. Recently, the efficiency of the PSO approach has
been widely discussed and a novel PSO-NTVE method has been proposed [15]. In this study, the software has
been tested repeatedly and the robustness of the obtained result shown.

This software can analyze only six nodes of the HPP. As shown in Figs. 5 and 6, the output data can be
plotted to illustrate the difference between the “YES” and “NO” reactions. According to Table 3, the partition
matrix (grey color) consists of either 0’s or 1’s. Hence, if this matrix, M, is defined as

M =

⎡
⎢⎢⎢⎢⎢⎣

01
10
01
10
10
01

⎤
⎥⎥⎥⎥⎥⎦
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Table 1 First set of input data for clustering algorithm

Cycles TaqMan 1 TaqMan 2 TaqMan 3 TaqMan 4 TaqMan 5 TaqMan 6

1 −0.06153 −0.05134 −0.04466 −0.07269 −0.02776 −0.05634
2 −0.0485 −0.03884 −0.03059 −0.06071 −0.0267 −0.04297
3 −0.02918 −0.02599 −0.02849 −0.03151 −0.01737 −0.02627
4 −0.00942 −0.00632 −0.00209 −0.00712 −0.0066 −0.00402
5 0.02244 0.020956 0.017757 0.029153 0.013787 0.026531
6 0.064662 0.050194 0.043412 0.070199 0.036876 0.046726
7 0.111083 0.077998 0.074357 0.118585 0.06485 0.083573
8 0.159726 0.10396 0.107139 0.166418 0.09142 0.117665
9 0.214736 0.122577 0.131925 0.211994 0.113661 0.150973
10 0.26243 0.13438 0.147138 0.254498 0.122613 0.184741
11 0.308589 0.142117 0.156186 0.286811 0.136738 0.217243
12 0.348588 0.146311 0.159987 0.310461 0.141073 0.24109
13 0.381277 0.151949 0.163526 0.325078 0.143175 0.262244
14 0.404939 0.153523 0.164836 0.336238 0.148628 0.277632
15 0.418205 0.159166 0.164573 0.342774 0.155203 0.286288
16 0.43205 0.161658 0.163918 0.345082 0.155341 0.291667
17 0.438394 0.163752 0.165228 0.347964 0.160937 0.299558
18 0.444454 0.167033 0.165754 0.349508 0.161217 0.301093
19 0.451093 0.171226 0.165889 0.347775 0.162478 0.303976
20 0.450514 0.171361 0.162608 0.350272 0.166813 0.305323
21 0.465517 0.171997 0.165099 0.350083 0.16765 0.304173
22 0.464359 0.172957 0.165491 0.345854 0.163176 0.304362
23 0.473881 0.175454 0.167065 0.34835 0.169471 0.302826
24 0.481098 0.175454 0.165099 0.345854 0.173526 0.304173
25 0.488021 0.180455 0.166146 0.347964 0.176184 0.307055
26 0.490041 0.181802 0.166544 0.345082 0.179121 0.304362
27 0.496089 0.183345 0.170872 0.342003 0.183528 0.304173
28 0.490903 0.186039 0.164836 0.342963 0.18059 0.301668
29 0.492923 0.184692 0.163397 0.338734 0.184361 0.302629
30 0.492628 0.187763 0.162871 0.336041 0.186045 0.299944
31 0.496089 0.187763 0.161034 0.339506 0.18919 0.300322
32 0.496964 0.192 0.161298 0.338545 0.196948 0.302826
33 0.499551 0.194308 0.156578 0.341428 0.200522 0.300708
34 0.499846 0.196419 0.157759 0.337199 0.21017 0.302826
35 0.499551 0.201616 0.15697 0.344507 0.215626 0.303401
36 0.499267 0.204688 0.160906 0.340853 0.223177 0.304173
37 0.499551 0.206609 0.154741 0.341814 0.226322 0.303598
38 0.500708 0.211232 0.158672 0.342199 0.236812 0.306094
39 0.503307 0.216422 0.15828 0.33912 0.244158 0.303212
40 0.499551 0.220077 0.157759 0.341625 0.2536 0.302629
41 0.507347 0.225267 0.159724 0.340081 0.262621 0.304173
42 0.501866 0.228732 0.156578 0.336624 0.269966 0.304937
43 0.503886 0.234119 0.158543 0.33797 0.279194 0.302251
44 0.497826 0.240655 0.158151 0.336813 0.288636 0.302826
45 0.503886 0.24642 0.161163 0.334891 0.304787 0.301093

to obtain the elements of matrix M, in every iteration the Euclidean distance between each datum in the dataset
and the position of all the particles in that specific iteration is computed and stored in a 6 × 2 matrix. Then
the minimum element of every row of this matrix is identified and stored in a six element array. Thereafter,
every element of every row of the aforementioned matrix is compared with the corresponding value from
the specific array and if the element of the matrix is smaller, the corresponding value in matrix M is “1”.
Otherwise, it is “0”. In matrix M, the first column gives the assignment of data into the “YES” cluster if
the value is 1 for each particular TaqMan, whereas the second column shows the assignment of data into the
“NO” cluster for each particular TaqMan. If there are more than two cluster centers, only one column can
have the value 1 in each row, while all the other rows have 0’s. The implemented software in this work has
the ability to cluster the TaqMan reactions by applying the PSO algorithm using MATLAB. It can be seen
that between steps 35 and 45 in the first data set and between steps 28 and 43 in the second data set, there is
a change in the clustering trend. The main reason for this phenomenon is noise that exists in the environment
in which the experiment was carried out. However, based on the specific rule that the average number of
clusters justifies the final result and that the steps of the experiment are not independent, these sudden changes
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Table 2 Second set of input data for clustering algorithm

Cycles TaqMan 1 TaqMan 2 TaqMan 3 TaqMan 4 TaqMan 5 TaqMan 6

1 −0.03709 −0.06681 −0.04673 −0.05613 −0.06094 −0.02923
2 −0.02765 −0.05614 −0.03441 −0.04205 −0.04793 −0.02039
3 −0.01847 −0.03542 −0.02182 −0.02771 −0.02905 −0.01943
4 −0.00536 −0.00858 −0.00609 −0.00822 −0.00796 −0.0072
5 0.014311 0.027781 0.018393 0.021025 0.021148 0.012386
6 0.037172 0.072365 0.043919 0.056954 0.063791 0.034637
7 0.063263 0.13111 0.076046 0.092882 0.11241 0.062436
8 0.083851 0.19007 0.10056 0.13209 0.17394 0.081316
9 0.11611 0.24661 0.12102 0.17136 0.23987 0.098364
10 0.13119 0.29122 0.1382 0.21309 0.30525 0.10558
11 0.14142 0.31527 0.15525 0.25232 0.37133 0.11489
12 0.14574 0.32719 0.15551 0.28578 0.42067 0.11803
13 0.14679 0.33469 0.15983 0.31617 0.46481 0.11895
14 0.14915 0.34354 0.17059 0.33983 0.48452 0.11843
15 0.14561 0.34738 0.17833 0.35598 0.50689 0.11882
16 0.15033 0.34815 0.18187 0.37425 0.51493 0.12052
17 0.14902 0.34834 0.18816 0.38175 0.52262 0.12092
18 0.15125 0.34738 0.1933 0.39099 0.52858 0.11947
19 0.14915 0.34585 0.19637 0.39675 0.53802 0.12026
20 0.15138 0.34623 0.20137 0.40974 0.54571 0.12013
21 0.15309 0.34334 0.20541 0.40598 0.5541 0.12223
22 0.14627 0.33796 0.21426 0.41666 0.56074 0.12039
23 0.14719 0.342 0.22022 0.4181 0.56739 0.11961
24 0.146 0.34585 0.22484 0.43426 0.57158 0.11895
25 0.15728 0.34065 0.22984 0.4406 0.57507 0.12157
26 0.15099 0.34315 0.23542 0.44262 0.57997 0.12249
27 0.15217 0.34642 0.246 0.44955 0.58417 0.12236
28 0.14863 0.34661 0.24945 0.44204 0.58278 0.12079
29 0.15178 0.34507 0.2533 0.4406 0.58906 0.12105
30 0.14968 0.34373 0.25888 0.45069 0.58872 0.11803
31 0.15072 0.33546 0.26157 0.44406 0.59326 0.12052
32 0.14915 0.33623 0.27003 0.44925 0.59011 0.11987
33 0.14915 0.33007 0.27234 0.44291 0.59187 0.12249
34 0.1502 0.33507 0.27792 0.45387 0.59711 0.12039
35 0.1544 0.33142 0.28638 0.45329 0.59641 0.1221
36 0.14929 0.33258 0.29638 0.45617 0.60165 0.12236
37 0.14745 0.32911 0.29677 0.45907 0.59607 0.12079
38 0.15047 0.32854 0.30754 0.45069 0.59675 0.1242
39 0.14627 0.33103 0.31369 0.45387 0.60235 0.12275
40 0.14771 0.33469 0.32138 0.45877 0.60759 0.12367
41 0.14915 0.33911 0.33254 0.46051 0.6048 0.12406
42 0.15125 0.32815 0.3412 0.45791 0.60446 0.12551
43 0.15401 0.33373 0.34561 0.45993 0.60376 0.12354
44 0.15519 0.3345 0.36274 0.45963 0.61074 0.12302
45 0.15532 0.33238 0.36639 0.45271 0.61285 0.12485

are not considered in allocating data to a specific cluster. For example, in the first data set, for TaqMan 4
all data are allocated to the “YES” cluster until step 35. Although after step 35 and until step 45 the data
are allocated to the “NO” cluster, based on the nearest Euclidean distance (as depicted in Figs. 5 and 6), by
applying the rule explained above, all the steps in TaqMan 4 are allocated to the “YES” cluster in the first data
set.

Table 5 shows the final results of the data clustering from the first to the last steps in both data sets.

6 Conclusions

The PSO data clustering algorithm has been implemented to automate the in silico information of the real-time
PCR. This PCR based readout approach for DNA computing was implemented on the LightCycler System.
Moreover, experimental results show that the amplification response for “YES” and “NO” reactions can be

123



Arab J Sci Eng (2012) 37:697–707 705

Fig. 4 Convergence curve of the fitness function

Table 3 PSO partition value for each TaqMan reaction in the first data set

TaqMan M1j M2j Manual observation Fuzzy C-means PSO

TaqMan(v0, v1, v2) 1 0 “YES” “YES” “YES”
TaqMan(v0, v1, v3) 1 0 “YES” “YES” “YES”
TaqMan(v0, v1, v4) 0 1 “NO” “NO” “NO”
TaqMan(v0, v2, v3) 1 0 “YES” “YES” “YES”
TaqMan(v0, v2, v4) 0 1 “NO” “NO” “NO”
TaqMan(v0, v3, v4) 0 1 “NO” “NO” “NO”

Table 4 PSO partition value for each TaqMan reaction in the second data set

TaqMan M1j M2j Manual observation Fuzzy C-means PSO

TaqMan(v0, v1, v2) 0 1 “NO” “NO” “NO”
TaqMan(v0, v1, v3) 1 0 “YES” “YES” “YES”
TaqMan(v0, v1, v4) 0 1 “NO” “NO” “NO”
TaqMan(v0, v2, v3) 1 0 “YES” “YES” “YES”
TaqMan(v0, v2, v4) 1 0 “YES” “YES” “YES”
TaqMan(v0, v3, v4) 0 1 “NO” “NO” “NO”

Fig. 5 Output of real-time PCR with “YES” and “NO” centers calculated using PSO clustering algorithm (first data set)
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Fig. 6 Output of real-time PCR with “YES” and “NO” centers calculated using PSO clustering algorithm (second data set)

Table 5 Cluster centers for both data sets

u1 u2 u1 u2

−0.06129 −0.03768 −0.06047 −0.03621
−0.0487 −0.02748 −0.05461 −0.03477
−0.03073 −0.01991 −0.02829 −0.01737
−0.00799 −0.00572 −0.00737 −0.00306
0.023318 0.01503 0.027842 0.018735
0.064369 0.038576 0.067431 0.044302
0.121761 0.073657 0.114834 0.075195
0.182006 0.099454 0.163072 0.105046
0.24324 0.126719 0.213365 0.129784
0.269854 0.12499 0.258464 0.147218
0.312971 0.137187 0.2977 0.163071
0.344548 0.13976 0.300047 0.149124
0.371889 0.141857 0.322866 0.152884
0.389291 0.146057 0.339603 0.155662
0.403409 0.147588 0.349089 0.159648
0.412444 0.15091 0.356266 0.160305
0.417571 0.1527 0.361972 0.163306
0.422234 0.154665 0.365018 0.164668
0.426875 0.155261 0.367615 0.166531
0.433893 0.157625 0.368703 0.166927
0.434476 0.160245 0.373257 0.168248
0.43845 0.160298 0.371525 0.167208
0.442477 0.162339 0.375019 0.170663
0.450563 0.163264 0.377042 0.17136
0.452105 0.169563 0.381014 0.174262
0.455254 0.169637 0.379828 0.175822
0.460048 0.173507 0.380755 0.179248
0.457143 0.172955 0.378512 0.177155
0.458238 0.175376 0.378096 0.177483
0.461047 0.175533 0.376204 0.178893
0.518656 0.217068 0.378639 0.179329
0.519682 0.218818 0.379445 0.183415
0.51739 0.218509 0.380562 0.183802
0.525495 0.220896 0.379957 0.188116
0.524847 0.223576 0.382486 0.191404
0.528905 0.225152 0.499267 0.246759
0.527565 0.223529 0.499551 0.246617
0.523722 0.227687 0.500708 0.251002
0.528112 0.228438 0.503307 0.252238
0.533182 0.231848 0.499551 0.255138
0.434242 0.136604 0.507347 0.258373
0.432929 0.138373 0.501866 0.259367
0.435742 0.138775 0.503886 0.262415
0.441903 0.139105 0.497826 0.265416
0.441084 0.140074 0.503886 0.269671
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categorized separately. It is possible that other suitable algorithms can be implemented to cluster the output of
real-time PCR automatically.
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