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Abstract We used computational mechanics consisting of various numerical methods to analyze different
problems under various boundary conditions. The main advantage of the element free Galerkin (EFG) method
is that the model meshing stage is not required and the nodal points are distributed throughout the model domain
instead of being meshed. Nodal points are distributed within the model domain to capture a stress singularity
around the crack tip. In this paper, various 2D problems in the field of linear elastic fracture mechanics were
analyzed to validate the accuracy of the EFG code that was developed in a Matlab environment. To simulate
the fracturing process based on the maximum hoop stress criterion, stress intensity factors and the angle of
crack propagation were calculated under different loading conditions and the crack trajectory was determined.
The obtained results of the developed EFG-code were compared with available experimental data and other
numerical (boundary element method and finite element method) methods.
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List of symbols
(σθ max) Maximum hoop stress
(Gmax) Maximum energy release rate
(Sθ max) Strain energy density factor
K I , KII Stress intensity factors for mode-I and mode-II
θC , θ0 Angle of crack propagation
β Angle of crack inclination
a Half crack length
wI Weight function of node I
dI Support size of node I
xI Coordinate vector of node I
ni , n j Number of nodes are i, j directions
r Normalized radius
� Domain of problem geometry
� Global boundary
�u Displacement boundary condition
�t Traction boundary condition
u Displacement vector
ū Prescribed boundary displacement
b Vector of body forces
t̄ Prescribed boundary tractions
λ Lagrangian multiplier
�T Shape functions matrix
B Strain–displacement relationship matrix
N Lagrange interpolation matrix
D Stress–strain relationship matrix
f Force vector
K Stiffness matrix
G Transition matrix
E Young’s modulus
ν Poisson’s ratio
σT ∞ Stress applied in infinite
L Model length
D Model width
t Model thickness

1 Introduction

In linear elastic fracture mechanics crack propagation is modeled by calculating stress intensity factors and the
crack initiation direction obtained after doing a stress analysis on the model domain [1]. Computational meth-
ods have been used to solve these problems in the engineering field. Many new approaches in computational
mechanics such as the finite element method (FEM) [2] and the boundary element method (BEM) [3] have
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been used for the analysis of fracture mechanics problems in the wider field of numerical fracture mechanics
[4–6]. Although the FEM is a robust and well established technique for the modeling of complicated problems
it has some deficiencies because of the mesh-base structure of the FEM. The reliance of the FEM on mesh
size and shape leads to complications such as fracture propagation problems in some cases. Subsequently,
for the modeling of large deformation fracture propagation and fragmentation processes the accuracy of this
method decreases significantly because of the high compression or torsion of the elements. An analysis of
these problems by mesh-base methods may require domain remeshing for each step of the progression. On the
other hand, continuous remeshing causes a reduction in accuracy and it requires a difficult procedure for code
implementation while mesh generation is time-consuming [7,8].

To solve the problem of discretization interfering with the arbitrary crack extension, meshing needs to be
removed from the simulation process [9]. Using meshless methods the crack can propagate through a system of
nodes, which is enhanced by taking the displacement field into account near the crack tip to precisely capture
the stress singularity. Belytschko et al. [8] introduced the element free Galerkin method (EFGM) as a meshless
or mesh-free approach and it has applications in computational fracture mechanics [10,11]. The relationships
among the meshless category methods have been described previously [7,12].

In the element free Galerkin method (EFGM) a moving least squares (MLS) [13] approximation is used
and a linear combination of basis functions fits to data by a weighted function. The MLS approximation is
constructed entirely in terms of a set of interior nodes and a description of the model boundaries. The values
of desired functions like displacements at any point are obtained by solving a set of linear equations. The size
of the system is determined by the number of nodes, which influences the approximation at a point [9]. By
analyzing a domain containing a crack the node organization near a fracture tip has an intense impact on the
exactness of the stress intensity factor calculation [8].

Alshoaibi and Ariffin [4] calculated stress intensity factors with the FEM by triangular mesh generation
using the advancing front method for an elastic-plastic crack growth problem under plane strain and plane
stress conditions. In their method, the values of the stress intensity factors (SIFs) in pure mode-I were based
on the displacement extrapolation method using the maximum hoop stress criterion.

In this paper, after a brief present of EFGM theory, various 2D problems in the linear elastic fracture
mechanics (LEFM) field are modeled using EFG code developed in Matlab. To simulate the fracturing pro-
cess, the SIFs and the crack initiation angle were calculated under different loading conditions and the crack
trajectory was determined using the maximum circumferential stress method. The results obtained from the
developed EFG-code were compared with other numerical methods (the FEM and the BEM) and with other
experimental research. To carry out a meaningful comparison the input parameters of the EFG code were
selected based on available experimental and numerical data (BEM and FEM) from other reported work.

2 Mechanics of Linear Elastic Fracture Propagation

The classic general objective of fracture mechanics is to determine the rate of change for an existing crack [9].
Crack propagation is determined by the stress and strain fields of the crack tip in its instantaneous vicinity. To
determine the behavior of cracked domains and to correlate this with experimental data, crack tip fields must
be inferred. In the LEFM the SIFs are significant parameters that can be applied to various loading conditions,
which leads to different failure modes.

Several methods have been proposed to determine SIFs such as the energy domain integral method [14],
the J-integral method [15,16] and displacement extrapolation near the crack tip [17,18]. In this paper, the
path-independent J-integral method was used to calculate SIFs based on the ratio of the relative crack tip
displacement determined using the EFGM. Basic definitions and a complete procedure for the accurate deter-
mination of the J-integral have been reported previously [15,16]. For the simulation of fracture propagation
using the LEFM the fracture trajectory direction must be determined. Many criteria to evaluate fracture propa-
gation direction have been reported in the literature and these are critical dilatational strain energy (T-criterion)
[19], the maximum stress triaxiality criterion (M-criterion) [20], the minimum radius criterion (R-criterion)
[21], the maximum hoop stress (σθ max) criterion [22], the maximum energy release rate (Gmax) criterion [23]
and the strain energy density factor (Sθ max) criterion [24]. We used maximum hoop stress theory wherein the
crack tip is extended in the direction where the circumferential stress is at a maximum and the direction of
crack propagation θC is determined as follows:

K I sin θC + K I I (3 cos θC − 1) = 0 (1)
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Khan and Khraisheh [21] carried out a comprehensive comparison between the above-mentioned criteria.
Despite the fact that these criteria represent various viewpoints all these methods produce comparable results
and empirically recognizable differences have not been reported [25]. Based on Eq. (1) the crack propagation
direction is θC = 0 for pure mode-I (K I I = 0) and the propagation angle is θC = ±70.5 for pure Mode-II
(K I = 0).

θC = 2 arctan
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+ 8
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3 Overview of the EFGM

The main objective of meshless methods is to remove or diminish the difficulty of meshing and remeshing
the entire structure by only adding or deleting nodes within the entire structure. Each node is associated with
a domain of influence and supports a weight function wI (x) with wI (x) > 0 within the domain of influence
and wI (x) = 0 outside the domain of influence [7,11]. Figure 1 shows that the domains of influence for nodes
are typically circular or rectangular areas.

Weight functions wI (xI ) play a significant role in meshless methods. They should be constructed positively
so that a unique solution of shape functions is assured. Additionally, they should be relatively large for xI near
x and comparatively small for more distant xI [12,26]. The cubic spline weight function is applied in this
paper as suggested in previous work [27] and it is shown as a function of r in Fig. 2.

w(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2

3
− 4r2 + 4r3 r ≤ 1

4

3
− 4r + 4r2 − 4

3
r3 1

2
< r ≤ 1

2
0 r > 1

(3)

with

r = ‖xI − x‖
dI

where dI is the support size of the node.
The discretization of the governing equations by the EFG method requires a least square approximation

composed of three constituents that contain a weight function related to each node, a set of non-constant coef-
ficients and a monomial basis function. A complete formulation of the MLS was given in previous work [13].

Fig. 1 Model discretization using a meshless method

123



Arab J Sci Eng (2011) 36:1381–1392 1385

Fig. 2 Cubic spline weight function over the normalized distance r

3.1 Discrete Equations and Integration

For a two-dimensional problem on the domain � bounded by � in elasticity mechanics, u is the displacement
field on �, b is the body force, ū is the boundary values of the displacement boundary, and �u and t̄ are the
boundary values on the traction boundary �t . In the EFGM the final discrete equation for this case is [10]:

[
K G
GT 0

]{
u
λ

}
=

{
f
q

}
(4)

where

f =
∫

�

�Tbd� +
∫

�t

�Tt̄d� (5)

q = −
∫

�

NTūd� (6)

K =
∫

�

BTDBd� (7)

G = −
∫

�

�TNd� (8)

In the above equations, λ is the Lagrange multipliers that were applied to satisfy the essential boundary
conditions because the shape functions for the MLS approximation do not meet the essential boundary condi-
tions exactly, �T is the shape functions matrix for the MLS approximation [28], B is the strain–displacement
relationship matrix for the MLS approximation [13], N is the Lagrange interpolation matrix and D is the
stress–strain relationship matrix, which is defined as follows:

D =
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E
(1−v2)

⎡
⎣

1 v 0
v 1 0
0 0 (1−v)

2

⎤
⎦ plane stress

E
(1+v)(1−2v)

⎡
⎣

1 − v v 0
v 1 − v 0
0 0 (1−2v)

2

⎤
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(9)

here, E and ν are Young’s modulus and Poisson’s ratio, respectively.
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Fig. 3 Flowchart for the extraction of SIFs and the crack initiation angle in the EFG code

To integrate the stiffness matrix (Eq. 7) and the force vector (Eq. 5), a Guassian quadrature is used for the
interior of the solution domain and its boundary. In general, a 4×4 quadrature is adequate but for more precise
results, particularly in the cells that surround the fracture tip, a 8 × 8 quadrature may be used for integration
[29]. However, rezoning effects are very small and they do not seem to guarantee any consequent intricacies.

3.2 General Coding Procedure

The general EFG coding algorithm for 2D problems as proposed by Dolbow and Belytschko [27] can be
depicted in Fig. 3:

The algorithm was coded in the MATLAB programming environment because of its good matrix manip-
ulation performance. In the first step of the program, the model geometry (L × D) is defined and the nodal
coordinates (x) are set up while the nodes (ni × n j ) are distributed uniformly within the model domain. In the
second step the parameters of the weight function (wI (x − xI)) and the node’s domain of influence (dI ) are
set. In the third step integration points and weights are determined. To assemble the discrete equations, a loop
over is required for each integration point to determine all the matrices. After solving the system of obtained
equations the displacement field is determined within the model domain (u). By multiplying the stiffness of
the model material (D) with the strain (ε) the stress field is obtained. Based on the obtained stresses, SIFs
(K I , K I I ) are calculated and finally the new crack propagation direction (θC ) is calculated.

4 Numerical Simulation

To carry out an extensive evaluation of the SIFs and the fracture propagation direction the EFG developed
code was used to evaluate the SIFs and the crack initiation angle for the LEFM under plane strain and plane
stress conditions.
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Fig. 4 a Problem statement and b nodal distribution before fracture propagation for the edged horizontal crack

Fig. 5 Sensitivity analysis of the number of nodes in the SIF calculation

4.1 Rectangular Plate with a Single Edge Crack Under Tension

The model geometry and its discretized meshless model for a single edge cracked rectangular plate under plane
stress are shown in Fig. 4. The model crack situation is shown in the first step before fracture propagation.

The plate has an initial crack length of a = 0.4 units, a plate length of L = 2 units, a plate width of
D = 1 units and a thickness of t = 1 unit while the 800(20 × 40) uniform nodes are constructed for an
MLS approximation. To choose a nodal density for each analysis a sensitivity analysis was carried out and
the obtained values were compared. As for FE analysis the mesh density varies in different cases when trying
to determine the optimum conditions for meshing. Fig. 5 shows a comparison of the various nodal densities
for this problem and the calculated SIF values. As shown in Fig. 5, when the number of nodes is larger than
800 (20 × 40) the SIF value does not change considerably and the maximum error is about 0.28%.

The tensile stress for the upper and lower bounds of the model was σT ∞ = 1. The other input parameters
are presented in Table 1.
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Table 1 Input parameters for the meshless model

Model configuration Plane stress
Model dimensions L × D = 2 × 1
Crack length a = 0.4
Stress applied in infinite σT ∞ = 1
Elastic modulus E = 1 × 106

Poisson’s ratio υ = 0.3
Nodal distribution n = 40 × 80
Domain of support Circular

Table 2 Values of the calculated SIFs determined by different methods

Method Calculated stress intensity factor

Exact solution [31] 2.3570
FEM [4] 2.3415
Hybrid [30] 2.3441
EFG code (present study) 2.3503

Fig. 6 Similarity of the calculated SIFs from FEM [4] results, the FRANC2D program and EFG code (this study)

Alshoaibi and Ariffin [4] evaluated the value K I = 2.3415 using FEM with an adaptive posteriori h-type
mesh refiner using a norm stress error estimator and the maximum hoop stress criterion. Additionally, Rao and
Rahman [30] evaluated SIF values for a similar boundary and model geometry using a hybrid FEM/meshless
method. The pure mode-I SIF of 2.357 was calculated based on its exact solution in [31] as,

K I = √
πCσa, (10)

where C = 1.12 − 0.231
( a

D

) + 10.55
( a

D

)2 − 21.72
( a

D

)3 + 30.39
( a

D

)4
.

In Table 2 the EFG Matlab code results are compared with the analytical value of the SIF in pure mode-I
based on previous work [31] and the results of other methods. It is obvious in Table 2 that using the Matlab
developed EFG code the expected SIF values agree well with the exact value of K I . Additionally, the EFG
code output gave a SIF value for 7,200 nodes of K I = 2.3569, which approaches the exact value obtained by
the closed-form method in previous work [31].

A further analysis of the fracture propagation steps was carried out by changing the model size to L × D =
20 × 10 and the initial crack length to a = 0.5 and SIFs were obtained using the developed EFG code. These
values were compared with those calculated by a program developed by Cornell Fracture Group (FRANC2D/L)
as well as FEM results from Alshoaibi and Ariffin [4] with a similar fracture propagation criterion and boundary
conditions. Results of these comparisons are shown in Fig. 6 and the agreement is good.

In fact, the fracture propagation trends are almost the same in all cases as shown in Fig. 6. Additionally,
the obtained crack propagation behavior based on the EFGM lies between the two other procedures.
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Fig. 7 Problem statement (a) and the nodal distribution (b) before fracture propagation for a centered slanted crack

Table 3 Input parameters for the meshless model

Model configuration Plane stress
Model dimensions L × D = 10 × 10
Crack length a = 0.3
Stress applied in infinite σT ∞ = 1
Elastic modulus E = 1 × 107

Poisson’s ratio υ = 0.3
Nodal distribution n = 40 × 40
Crack dip β = 40◦

4.2 Rectangular Plate with a Centered Slant Crack

A rectangular plate containing a slanted crack was subjected to uniaxial tension in a plane strain problem as
depicted in Fig. 7.

The geometry of the domain and the model discretization is the same as that used for the single edge
cracked plate shown in Fig. 7 and Table 3. Uniaxial tension was applied along the vertical direction, as shown
in the figure. This leads to the asymmetric Mode-II loading condition.

The calculated values for K I and K I I in mixed mode growth for the 5 step fracture propagation process
are depicted in Fig. 8b. K I increases with step extension and K I I decreases with crack growth. The crack
propagation direction, θ0, based on the values of K I and K I I and the selected crack growth criterion were
calculated and the final crack trajectory is depicted in Fig. 8a. The crack grows in the direction that finally
tends to be perpendicular to the maximum hoop stress.

Erdogan and Sih [22] performed uniaxial tension tests on isotropic Plexiglass sheets (229×457×4.8 mm)
containing a 50.8 mm central crack. To predict the crack propagation these tests were simulated using the
developed EFG code. Chen et al. [6] reproduced these tests using another numerical method (BEM) with
the same domain geometry and boundary conditions. The angle of fracture initiation using different crack
orientation angles was calculated to validate the developed EFG code.

The results obtained from the developed EFG code were compared with those calculated using the BEM
by Chen et al. [6] and with experimental results [22] using the same boundary and loading conditions for the
plane stress condition based on the maximum hoop stress criterion. The results of this comparison are shown
in Fig. 9. This figure shows that the calculated values of the initiation angles are closer to the experimental
results than the BEM results. For example, in the case of β = 30◦, the BEM [6] has an error of about 5% and
the EFG code has an error of about 1% relative to the experimental data [22].
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Fig. 8 Output of the meshless model as a the final fracture propagation trajectory (Matlab code output) and b the calculated SIFs

Fig. 9 Variation in the crack initiation angle θ0 with the crack angle β under uniaxial tension. Experimental results [16], BEM
[4] and EFGM (this study)

5 Conclusion

The meshless EFG method shows great promise in engineering applications because of its flexibility in solving
problems because of discontinuities in fracture mechanics and large deformations. The aim of this paper was
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to evaluate the capability of Matlab developed EFG code in the analysis of crack propagation problems and to
compare the accuracy of common numerical methods for the extraction of SIFs and the propagation trajectory
of fractures.

Meshless element free Galerkin code using the MLS approximation was developed to simulate fracture
propagation based on linear elastic fracture mechanics. Nodal points were scattered within the model domain
to capture the stress singularity around the crack tip. The SIFs and the crack initiation angle were predicted
using the developed EFG code for a uniaxial loading. The SIFs that were predicted using the EFG code coin-
cide well with those of a standard solution [31] and those from related publications [4,6,30] as well as with a
fracture growth program developed by the Cornell Fracture Group (FRANC2D/L). The evaluated crack growth
trajectory demonstrated the ability of the developed code to solve fracture propagation problems under various
loading conditions.

This code may be extended to the study of anisotropic materials that contain many discontinuities such as
faults and joints within a rock or soil mass, which makes it more applicable to practical problems.
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