RESEARCH ARTICLE - MATHEMATICS

Meiling Zhu · Huixiang Chen · Libin Li

Quasitriangular Hopf Group Coalgebras and Braided Monoidal Categories

Received: 10 February 2010 / Accepted: 5 October 2010 / Published online: 13 September 2011 @ King Fahd University of Petroleum and Minerals 2011

Abstract Turaev introduced the notions of group coalgebras, Hopf group coalgebras and quasitriangular Hopf group coalgebras. Virelizier studied algebraic properties of Hopf π -coalgebras. In this paper, we give the definitions of a (crossed) left H- π -modules over a (crossed) Hopf π -coalgebra H, and show that the categories of (crossed) left H- π -modules are both monoidal categories. Finally, we show that a family $R = \{R_{\alpha,\beta} \in H_{\alpha} \otimes H_{\beta}\}_{\alpha,\beta\in\pi}$ of elements is a quasitriangular structure of a crossed Hopf π -coalgebra H if and only if the category of crossed left H- π -modules over H is a braided monoidal category with braiding defined by R.

Keywords Crossed left H- π -modules · Braided monoidal category

Mathematics Subject Classification (2010) 16W30

الملخص

قدم تيور اييف مفاهيم جبريات الزمرة المرافقة، وجبريات زمر هوبف المرافقة، وجبريات زمر هوبف شبه المثلثية المرافقة. درس فيرليزير الخصائص الجبرية لو π - جبريات هوبف المرافقة. في هذه الورقة البحثية، نعطي تعريفات لو π - π - حلقيات (متقاطعة) يسرى على π - جبرية هوبف مرافقة H، ونبين أن فئتي H- π - الحلقيات (المتقاطعة) اليسرى مونوئيدية. أخيراً، نبين أن أي عائلة $\pi_{-\beta\in\pi} \otimes H_{\beta} \otimes H_{\beta} = R$ من العناصر تمتلك بناءً لو π - جبرية هوبف مرافقة متقاطعة شبه مثلثية H إذا وفقط إذا كانت فئة π -H- الحلقيات المتقاطعة اليسرى على H فئة مونوئيدية مضفرة مع تضغير معرف على R.

1 Introduction

The notion of a quasitriangular Hopf algebra was introduced by Drinfeld [1] when he studied the Yang–Baxter equation. Recently, Turaev [9] introduced Hopf π -coalgebra, which generalizes the notion of Hopf algebra. Hopf π -coalgebras are used by Virelizier [11] to construct Hennings-like (see [2,4]) and Kuperberg-like (see [5]) invariants of principal π -bundles over link complements and over three-manifolds. Virelizier also studied

H. Chen E-mail: hxchen@yzu.edu.cn

L. Li E-mail: lbli@yzu.edu.cn

M. Zhu (⊠) · H. Chen · L. Li School of Mathematical Science, Yangzhou University, Yangzhou 225002, China E-mail: 147484340@qq.com

algebraic properties of Hopf group coalgebras and generalized the main properties of quasitriangular Hopf algebras to the setting of quasitriangular Hopf π -coalgebras in [10].

In this paper, we first give the definitions of left H- π -modules and crossed left H- π -modules over a Hopf π -coalgebra H. Then, we show that the category of left H- π -modules is a monoidal category and so is the category of crossed left H- π -modules. Finally, for a Hopf π -coalgebra H, we show that a family $R = \{R_{\alpha,\beta} \in H_{\alpha} \otimes H_{\beta}\}_{\alpha,\beta\in\pi}$ of elements is a quasitriangular structure of H if and only if the category of crossed left H- π -modules is a braided monoidal category with braiding defined by R.

2 Basic Definitions

Throughout the paper, we let π be a discrete group (with neutral element 1) and k be a fixed field. We set $k^* = k \setminus \{0\}$. All algebras and coalgebras, π -coalgebras and Hopf π -coalgebras are defined over k. The definitions and properties of algebra, coalgebra, Hopf algebra and category can be seen in [3,6,7]. We use the standard Sweedler notation for comultiplication. The tensor product $\otimes = \otimes_k$ is always assumed to be over k. If U and V are k-spaces, $\tau_{U,V} : U \otimes V \to V \otimes U$ will denote the twist map defined by $\tau_{U,V} (u \otimes v) = v \otimes u$. The following definitions and notations in this section can be found in [8–10].

Definition 2.1 A π -coalgebra (over k) is a family $C = \{C_{\alpha}\}_{\alpha \in \pi}$ of k-spaces endowed with a family $\Delta = \{\Delta_{\alpha,\beta} : C_{\alpha\beta} \to C_{\alpha} \otimes C_{\beta}\}_{\alpha,\beta \in \pi}$ of k-linear maps (the comultiplication) and a k-linear map $\varepsilon : C_1 \to k$ (the counit) such that Δ is coassociative in the sense that for any $\alpha, \beta, \gamma \in \pi$,

$$(\Delta_{\alpha,\beta} \otimes \mathrm{id}_{C_{\gamma}}) \Delta_{\alpha\beta,\gamma} = (\mathrm{id}_{C_{\alpha}} \otimes \Delta_{\beta,\gamma}) \Delta_{\alpha,\beta\gamma},$$

$$(\mathrm{id}_{C_{\alpha}} \otimes \varepsilon) \Delta_{\alpha,1} = \mathrm{id}_{C_{\alpha}} = (\varepsilon \otimes \mathrm{id}_{C_{\alpha}}) \Delta_{1,\alpha}$$

Note that $(C_1, \Delta_{1,1}, \varepsilon)$ is a coalgebra in the usual sense.

Sweedler's notation We extend the Sweedler notation for a comultiplication in the following way: for any $\alpha, \beta \in \pi$ and $c \in C_{\alpha\beta}$, we write $\Delta_{\alpha,\beta}(c) = \sum c_{(1,\alpha)} \otimes c_{(2,\beta)} \in C_{\alpha} \otimes C_{\beta}$, or shortly, we write $\Delta_{\alpha,\beta}(c) = c_{(1,\alpha)} \otimes c_{(2,\beta)}$. The coassociativity axiom gives that for any $\alpha, \beta, \gamma \in \pi$ and $c \in C_{\alpha\beta\gamma}$,

$$c_{(1,\alpha\beta)(1,\alpha)} \otimes c_{(1,\alpha\beta)(2,\beta)} \otimes c_{(2,\gamma)} = c_{(1,\alpha)} \otimes c_{(2,\beta\gamma)(1,\beta)} \otimes c_{(2,\beta\gamma)(2,\gamma)}$$

this element of $C_{\alpha} \otimes C_{\beta} \otimes C_{\gamma}$ is written as $c_{(1,\alpha)} \otimes c_{(2,\beta)} \otimes c_{(3,\gamma)}$. By iterating the procedure, we define inductively $c_{(1,\alpha_1)} \otimes c_{(2,\alpha_2)} \otimes \cdots \otimes c_{(n,\alpha_n)}$ for any $c \in C_{\alpha_1\alpha_2...\alpha_n}$.

Definition 2.2 A Hopf π -coalgebra is a π -coalgebra $H = (\{H_{\alpha}\}, \Delta, \varepsilon)$ endowed with a family $S = \{S_{\alpha} : H_{\alpha} \to H_{\alpha^{-1}}\}_{\alpha \in \pi}$ of k-linear maps (the antipode) such that each H_{α} is an algebra with multiplication m_{α} and neutral element $1_{\alpha} \in H_{\alpha}, \varepsilon : H_{1} \to k$ and $\Delta_{\alpha,\beta} : H_{\alpha\beta} \to H_{\alpha} \otimes H_{\beta}$ are algebra homomorphisms for all $\alpha, \beta \in \pi$, and such that for any $\alpha \in \pi$,

$$m_{\alpha}(S_{\alpha^{-1}} \otimes \mathrm{id}_{H_{\alpha}}) \Delta_{\alpha^{-1},\alpha} = \varepsilon 1_{\alpha} = m_{\alpha}(\mathrm{id}_{H_{\alpha}} \otimes S_{\alpha^{-1}}) \Delta_{\alpha,\alpha^{-1}}.$$

We remark that $(H_1, m_1, 1_1, \Delta_{1,1}, \varepsilon, S_1)$ is a usual Hopf algebra.

Definition 2.3 A Hopf π -coalgebra $H = (\{H_{\alpha}\}, \Delta, \varepsilon, S)$ is said to be crossed provided it is endowed with a family $\varphi = \{\varphi_{\beta} : H_{\alpha} \to H_{\beta\alpha\beta^{-1}}\}_{\alpha,\beta\in\pi}$ of *k*-linear maps (the crossing) such that the following conditions are satisfied

- 1. each $\varphi_{\beta}: H_{\alpha} \to H_{\beta\alpha\beta^{-1}}$ is an algebra isomorphism,
- 2. each φ_{β} preserves the comultiplication, i.e., for all $\alpha, \beta, \gamma \in \pi$,

$$(\varphi_{\beta} \otimes \varphi_{\beta}) \Delta_{\alpha, \gamma} = \Delta_{\beta \alpha \beta^{-1}, \beta \gamma \beta^{-1}} \varphi_{\beta},$$

- 3. each φ_{β} preserves the counit, i.e., $\varepsilon \varphi_{\beta} = \varepsilon$,
- 4. φ is multiplicative in the sense that $\varphi_{\beta\beta'} = \varphi_{\beta}\varphi_{\beta'}$ for all $\beta, \beta' \in \pi$.

Definition 2.4 A quasitriangular Hopf π -coalgebra is a crossed Hopf π -coalgebra $H = (\{H_{\alpha}\}, \Delta, \varepsilon, S, \varphi)$ endowed with a family $R = \{R_{\alpha,\beta} \in H_{\alpha} \otimes H_{\beta}\}_{\alpha,\beta\in\pi}$ of invertible elements (the *R*-matrix) such that the following conditions are satisfied

🖄 Springer

1. $R_{\alpha,\beta} \cdot \Delta_{\alpha,\beta}(x) = \tau_{\beta,\alpha}(\varphi_{\alpha^{-1}} \otimes \mathrm{id}_{H_{\alpha}})\Delta_{\alpha\beta\alpha^{-1},\alpha}(x) \cdot R_{\alpha,\beta},$ 2. $(\mathrm{id}_{H_{\alpha}} \otimes \Delta_{\beta,\gamma})(R_{\alpha,\beta\gamma}) = (R_{\alpha,\gamma})_{1\beta3} \cdot (R_{\alpha,\beta})_{12\gamma},$ 3. $(\Delta_{\alpha,\beta} \otimes \mathrm{id}_{H_{\gamma}})(R_{\alpha\beta,\gamma}) = [(\mathrm{id}_{H_{\alpha}} \otimes \varphi_{\beta^{-1}})(R_{\alpha,\beta\gamma\beta^{-1}})]_{1\beta3} \cdot (R_{\beta,\gamma})_{\alpha23},$

- 4. $(\varphi_{\beta} \otimes \varphi_{\beta})(\dot{R}_{\alpha,\gamma}) = R_{\beta\alpha\beta^{-1},\beta\gamma\beta^{-1}},$

where $\alpha, \beta, \gamma \in \pi, x \in H_{\alpha\beta}, \tau_{\beta,\alpha}$ denotes the twist map $H_{\beta} \otimes H_{\alpha} \to H_{\alpha} \otimes H_{\beta}$. For k-spaces P, Q and $r = \Sigma p_i \otimes q_i \in P \otimes Q$, we set $r_{12\gamma} = r \otimes 1_{\gamma} \in P \otimes Q \otimes H_{\gamma}, r_{\alpha 23} = 1_{\alpha} \otimes r \in H_{\alpha} \otimes P \otimes Q$, and $r_{1\beta3} = \Sigma p_i \otimes 1_\beta \otimes q_i \in P \otimes H_\beta \otimes Q.$

Note that $R_{1,1}$ is a (classical) *R*-matrix for the Hopf algebra H_1 .

3 The Category of Left H- π -Modules

Definition 3.1 Let $H = ({H_{\alpha}}_{\alpha \in \pi}, \Delta, \varepsilon, S)$ be a Hopf π -coalgebra. A left H- π -module over H is a family $M = \{M_{\alpha}\}_{\alpha \in \pi}$ of k-spaces such that M_{α} is a left H_{α} -module for any $\alpha \in \pi$. We denote the structure maps of left H_{α} -module M_{α} and left H- π -module M by $\Gamma_{M_{\alpha}}: H_{\alpha} \otimes M_{\alpha} \to M_{\alpha}$ and $\Gamma_{M} = \{\Gamma_{M_{\alpha}}\}_{\alpha \in \pi}$, respectively.

Definition 3.2 Let $M = \{M_{\alpha}\}_{\alpha \in \pi}$, $N = \{N_{\alpha}\}_{\alpha \in \pi}$ be left H- π -modules. A left H- π -module morphism is a family $f = \{f_{\alpha} : M_{\alpha} \to N_{\alpha}\}_{\alpha \in \pi}$ of k-linear maps such that f_{α} is an H_{α} -module morphism for any $\alpha \in \pi$.

Let $H = (\{H_{\alpha}\}_{\alpha \in \pi}, \Delta, \varepsilon, S)$ be a Hopf π -coalgebra. We denote by $_{H}\mathcal{M}$ the category of all left H- π -modules, whose morphisms are left H- π -module morphisms.

Suppose that $M = \{M_{\alpha}\}_{\alpha \in \pi}$ and $N = \{N_{\alpha}\}_{\alpha \in \pi}$ are left H- π -modules. Then, $M_{\beta} \otimes N_{\gamma}$ is a left $H_{\beta} \otimes H_{\gamma}$ -module for any $\beta, \gamma \in \pi$. Because $\Delta_{\beta,\gamma} : H_{\beta\gamma} \to H_{\beta} \otimes H_{\gamma}$ is an algebra morphism, $M_{\beta} \otimes N_{\gamma}$ is a left $H_{\beta\gamma}$ -module with the action given by $h \cdot (m \otimes n) = \Delta_{\beta,\gamma}(h)(m \otimes n), h \in H_{\beta\gamma}, m \in M_{\beta}, n \in N_{\gamma}$. So $(M \otimes N)_{\alpha} := \bigoplus_{\beta \gamma = \alpha} M_{\beta} \otimes N_{\gamma}$ is a left H_{α} -module. Thus, $M \otimes N = \{(M \otimes N)_{\alpha}\}_{\alpha \in \pi}$ is a left H- π -module, where the structure maps $\Gamma_{M\otimes N} = {\Gamma_{(M\otimes N)_{\alpha}}}_{\alpha\in\pi}$ are given by

$$\Gamma_{(M\otimes N)_{\alpha}} = \bigoplus_{\beta\gamma=\alpha} (\Gamma_{M_{\beta}}\otimes\Gamma_{N_{\gamma}})(\mathrm{id}_{H_{\beta}}\otimes\tau_{H_{\gamma},M_{\beta}}\otimes\mathrm{id}_{N_{\gamma}})(\Delta_{\beta,\gamma}\otimes\mathrm{id}_{M_{\beta}}\otimes\mathrm{id}_{N_{\gamma}})$$

Suppose that $P = \{P_{\alpha}\}_{\alpha \in \pi}$ is also a left H- π -module. Then, we have two left H- π -modules $(M \otimes N) \otimes P$ and $M \otimes (N \otimes P)$. By definition, for any $\alpha \in \pi$, we have

$$((M \otimes N) \otimes P)_{\alpha} = \bigoplus_{\beta \gamma = \alpha} (M \otimes N)_{\beta} \otimes P_{\gamma}$$
$$= \bigoplus_{\beta \gamma = \alpha} (\bigoplus_{\theta \sigma = \beta} (M_{\theta} \otimes N_{\sigma}) \otimes P_{\gamma})$$
$$= \bigoplus_{\theta \sigma \gamma = \alpha} (M_{\theta} \otimes N_{\sigma}) \otimes P_{\gamma}.$$

and

$$(M \otimes (N \otimes P))_{\alpha} = \bigoplus_{\theta \beta = \alpha} M_{\theta} \otimes (N \otimes P)_{\beta}$$
$$= \bigoplus_{\theta \beta = \alpha} M_{\theta} \otimes (\bigoplus_{\sigma \gamma = \beta} (N_{\sigma} \otimes P_{\gamma}))$$
$$= \bigoplus_{\theta \sigma \gamma = \alpha} M_{\theta} \otimes (N_{\sigma} \otimes P_{\gamma}).$$

Let $\theta, \sigma, \gamma \in \pi$. Because Δ is coassociative, one knows that

$$a_{\theta,\sigma,\gamma} : (M_{\theta} \otimes N_{\sigma}) \otimes P_{\gamma} \to M_{\theta} \otimes (N_{\sigma} \otimes P_{\gamma})$$
$$(m \otimes n) \otimes p \mapsto m \otimes (n \otimes p)$$

is an isomorphism of $H_{\theta\sigma\gamma}$ -module. Hence, for any $\alpha \in \pi$, $a_{\alpha} = \bigoplus_{\theta\sigma\gamma=\alpha} a_{\theta,\sigma,\gamma}$ is an isomorphism of left H_{α} -module from $((M \otimes N) \otimes P)_{\alpha}$ to $(M \otimes (N \otimes P))_{\alpha}$. And $a = \{a_{\alpha}\}_{\alpha \in \pi} : (M \otimes N) \otimes P \to M \otimes (N \otimes P)$ is a left H- π -module isomorphism. Obviously, it is a family of natural isomorphisms.

Because H_1 is a usual Hopf algebra, k is a left H_1 -module with the action given by $h \cdot \lambda = \varepsilon(h)\lambda$, $h \in H_1, \lambda \in k$. Hence, $K = \{K_\alpha\}_{\alpha \in \pi}$ is a left H- π -module, where $K_1 = k$, $K_\alpha = 0$, $\forall 1 \neq \alpha \in \pi$. For any left H- π -module M, we have $(K \otimes M)_\alpha = K_1 \otimes M_\alpha = k \otimes M_\alpha$ and $(M \otimes K)_\alpha = M_\alpha \otimes K_1 = M_\alpha \otimes k, \alpha \in \pi$. So we have natural isomorphisms $l_M : K \otimes M \to M$ and $r_M : M \otimes K \to M$ defined by

$$(l_M)_{\alpha} : k \otimes M_{\alpha} \to M_{\alpha}, \lambda \otimes m \mapsto \lambda m, (r_M)_{\alpha} : M_{\alpha} \otimes k \to M_{\alpha}, m \otimes \lambda \mapsto \lambda m.$$

That is, $\{l_M\}$ and $\{r_M\}$ are two families of natural isomorphisms of left H- π -modules. We summarize the above discussion as follows.

Theorem 3.3 ($_H\mathcal{M}, \otimes, K, a, l, r$) is a monoidal category, where K is the unit object.

Example 3.4 The category π -*Vect_k* of π -graded vector spaces becomes the category of left *H*- π -modules over the trivial Hopf π -coalgebra $H = \{H_{\alpha}\}_{\alpha \in \pi}$ defined by $H_{\alpha} = k$.

4 The Category of Crossed Left H- π -Modules

Definition 4.1 Let *H* be a crossed Hopf π -coalgebra. A left *H*- π -module *M* is called crossed if there exists a family $\varphi_M = \{\varphi_{M,\beta} : M_\alpha \to M_{\beta\alpha\beta^{-1}}\}_{\alpha,\beta\in\pi}$ of *k*-linear maps such that the following conditions are satisfied

1. each $\varphi_{M,\beta}: M_{\alpha} \to M_{\beta\alpha\beta^{-1}}$ is a vector space isomorphism,

2. each $\varphi_{M,\beta}$ preserves the action, i.e., for all $\alpha, \beta \in \pi, h \in H_{\alpha}, m \in M_{\alpha}, \varphi_{M,\beta}(h \cdot m) = \varphi_{\beta}(h) \cdot \varphi_{M,\beta}(m)$.

3. each φ_M is multiplicative in the sense that $\varphi_{M,\beta}\varphi_{M,\beta'} = \varphi_{M,\beta\beta'}$ for all $\beta, \beta' \in \pi$.

Remark 4.2 The regular left *H*- π -module *H* is always crossed if we set $\varphi_H = \{\varphi_\beta\}_{\beta \in \pi}$.

Definition 4.3 Let $M = \{M_{\alpha}\}_{\alpha \in \pi}$, $N = \{N_{\alpha}\}_{\alpha \in \pi}$ be two crossed left H- π -modules. A crossed left H- π -module morphism is a left H- π -module morphism $f = \{f_{\alpha}\}_{\alpha \in \pi} : M \to N$ such that $\varphi_{N,\beta} f_{\alpha} = f_{\beta \alpha \beta^{-1}} \varphi_{M,\beta}$ for any $\alpha, \beta \in \pi$.

Let $H = (\{H_{\alpha}\}_{\alpha \in \pi}, \Delta, \varepsilon, S, \varphi)$ be a crossed Hopf π -coalgebra. We denote by ${}_{H}\mathcal{M}_{\text{crossed}}$, the category of crossed left H- π -modules and crossed left H- π -module morphisms.

Let M, N be any crossed left H- π -modules. We have already proved that $M \otimes N$ is also a left H- π -module. Define $\varphi_{M \otimes N, z} : (M \otimes N)_{\alpha} \longrightarrow (M \otimes N)_{z\alpha z^{-1}}$ by $\varphi_{M \otimes N, z}|_{M_{\beta} \otimes N_{\gamma}} := \varphi_{M, z}|_{M_{\beta}} \otimes \varphi_{N, z}|_{N_{\gamma}}$, where $\alpha, \beta, \gamma, z \in \pi$ with $\beta \gamma = \alpha$. Since

$$(M \otimes N)_{\alpha} = \bigoplus_{\beta \gamma = \alpha} M_{\beta} \otimes N_{\gamma}$$

and

$$(M \otimes N)_{z\alpha z^{-1}} = \bigoplus_{z\beta\gamma z^{-1} = z\alpha z^{-1}} M_{z\beta z^{-1}} \otimes N_{z\gamma z^{-1}}$$
$$= \bigoplus_{\beta\gamma = \alpha} M_{z\beta z^{-1}} \otimes N_{z\gamma z^{-1}},$$

 $\varphi_{M\otimes N,z}$ is a well defined k-linear isomorphism from $(M\otimes N)_{\alpha}$ to $(M\otimes N)_{z\alpha z^{-1}}$ for any $\alpha, z \in \pi$. Moreover, for any $h \in H_{\alpha}, m \in M_{\beta}$ and $n \in N_{\gamma}$, we have

$$\begin{split} \varphi_{M\otimes N,z}(h\cdot(m\otimes n)) &= (\varphi_{M,z}\otimes \varphi_{N,z})(h_{(1,\beta)}\cdot m\otimes h_{(2,\gamma)}\cdot n) \\ &= \varphi_{M,z}(h_{(1,\beta)}\cdot m)\otimes \varphi_{N,z}(h_{(2,\gamma)}\cdot n) \\ &= \varphi_z(h_{(1,\beta)})\cdot \varphi_{M,z}(m)\otimes \varphi_z(h_{(2,\gamma)})\cdot \varphi_{N,z}(n). \end{split}$$

and

$$\varphi_{z}(h) \cdot \varphi_{M \otimes N, z}(m \otimes n) = \varphi_{z}(h) \cdot (\varphi_{M, z}(m) \otimes \varphi_{N, z}(n))$$
$$= \Delta_{z\beta z^{-1}, z\gamma z^{-1}}(\varphi_{z}(h)) \cdot (\varphi_{M, z}(m) \otimes \varphi_{N, z}(n)).$$

Since φ_z preserves the comultiplication, we have

$$\Delta_{z\beta z^{-1}, z\gamma z^{-1}}(\varphi_z(h)) = (\varphi_z \otimes \varphi_z) \Delta_{\beta, \gamma}(h) = \sum \varphi_z(h_{(1,\beta)}) \otimes \varphi_z(h_{(2,\gamma)}).$$

Hence $\varphi_{M \otimes N,z}(h \cdot (m \otimes n)) = \varphi_z(h) \cdot \varphi_{M \otimes N,z}(m \otimes n)$. It is easy to see that $\varphi_{M \otimes N,z}\varphi_{M \otimes N,z'} = \varphi_{M \otimes N,zz'}$, i.e., $\varphi_{M \otimes N}$ is multiplicative. Thus, $M \otimes N$ is a crossed left H- π -module.

Now let M, N and P be crossed left H- π -module. Then, one can easily check that $\varphi_{M\otimes(N\otimes P),z}a_{\alpha} = a_{z\alpha z^{-1}}\varphi_{(M\otimes N)\otimes P,z}$ for any $\alpha, z \in \pi$, and hence $a : (M \otimes N) \otimes P \to M \otimes (N \otimes P)$ is a crossed left H- π -module morphism.

Note that $K_{\alpha} = K_{\beta\alpha\beta^{-1}} = k$ if $\alpha = 1$, and $K_{\alpha} = K_{\beta\alpha\beta^{-1}} = 0$ if $\alpha \neq 1$. Since $\varphi_1 = \text{id} : H_{\alpha} \to H_{\alpha}$ is the identity map, the unit object $K = \{K_{\alpha}\}_{\alpha \in \pi}$ is a crossed left H- π -module if we set $\varphi_{K,\beta} = \text{id} : K_{\alpha} \to K_{\beta\alpha\beta^{-1}}$. Then, one can easily check that the left and right unit constraints $l = \{l_M\}$ and $r = \{r_M\}$ are crossed left H- π -module morphisms. Thus, we have the following theorem.

Theorem 4.4 ($_H \mathcal{M}_{crossed}, \otimes, K, a, l, r$) is a monoidal category, where K is the unit object.

Remark 4.5 There exists a natural monoidal functor *F* from $({}_{H}\mathcal{M}_{crossed}, \otimes, K, a, l, r)$ to $({}_{H}\mathcal{M}, \otimes, K, a, l, r)$ defined by forgetting the crossing.

Example 4.6 Let $H = \{H_{\alpha}\}_{\alpha \in \pi}$ be the trivial Hopf π -coalgebra defined by $H_{\alpha} = k$ as in Example 3.4. Then, H is a crossed Hopf π -coalgebra with the unique crossing $\varphi = \{\varphi_{\beta} = \text{id} : H_{\alpha} \to H_{\beta\alpha\beta^{-1}}\}_{\alpha,\beta\in\pi}$. A left H- π -module is a π -graded vector space $V = \{V_{\alpha}\}_{\alpha\in\pi}$. Now assume that V is a crossed left H- π -module with a crossing $\varphi_{V} = \{\varphi_{V,\beta} : V_{\alpha} \to V_{\beta\alpha\beta^{-1}}|\alpha,\beta\in\pi\}$. Then, $\dim V_{\alpha} = \dim V_{\beta\alpha\beta^{-1}}$ for all $\alpha,\beta\in\pi$. Let $\mathcal{K}(\pi)$ denote the set of conjugate classes of π and assume $m_{C} := \dim V_{\alpha} < \infty$ for any $\alpha \in C \in \mathcal{K}(\pi)$. For any $\alpha \in \pi$, let us fix a basis of V_{α} . Then, a k-linear isomorphism $\varphi_{V,\beta} : V_{\alpha} \to V_{\beta\alpha\beta^{-1}}$ is determined by an invertible matrix $X_{\alpha,\beta}$ in $GL_{m_{C}}(k)$, where $\alpha \in C \in \mathcal{K}(\pi)$ and $\beta \in \pi$. Thus, a crossing of V is determined by a map

$$\varphi:\pi\times\pi\to\bigcup_{C\in\mathcal{K}(\pi)}GL_{m_C}(k)$$

with $\varphi(\alpha, \beta) \in GL_{m_C}(k)$ when $\alpha \in C \in \mathcal{K}(\pi)$, satisfying $\varphi(\beta \alpha \beta^{-1}, \gamma)\varphi(\alpha, \beta) = \varphi(\alpha, \gamma \beta)$ for all $\alpha, \beta, \gamma \in \pi$.

5 The Braided Monoidal Category

Throughout the following, assume that $H = ({H_{\alpha}}_{\alpha \in \pi}, \Delta, \varepsilon, S, \varphi)$ is a crossed Hopf π -coalgebra, and let $R = {R_{\beta,\gamma} \in H_{\beta} \otimes H_{\gamma}}_{\beta,\gamma \in \pi}$ be a family of elements. Let M and N be any crossed left H- π -modules. For any $\beta, \gamma \in \pi$, define

$$c_{M_{\beta},N_{\gamma}}: M_{\beta} \otimes N_{\gamma} \to N_{\beta \vee \beta^{-1}} \otimes M_{\beta}$$

by

$$r_{M_{\beta},N_{\gamma}}(m \otimes n) = (\varphi_{N,\beta} \otimes \mathrm{id}_{M_{\beta}})\tau_{\beta,\gamma}(R_{\beta,\gamma} \cdot (m \otimes n))$$
(1)

where $m \in M_{\beta}$ and $n \in N_{\gamma}$. For any $\alpha \in \pi$, define

$$(c_{M,N})_{\alpha}: (M \otimes N)_{\alpha} = \bigoplus_{\beta \gamma = \alpha} M_{\beta} \otimes N_{\gamma} \to (N \otimes M)_{\alpha} = \bigoplus_{\beta \gamma = \alpha} N_{\beta \gamma \beta^{-1}} \otimes M_{\beta}.$$

by $(c_{M,N})_{\alpha} = \bigoplus_{\beta \gamma = \alpha} c_{M_{\beta},N_{\gamma}}$. Then it is obvious that $(c_{M,N})_{\alpha}$ is a k-linear isomorphism for any $\alpha \in \pi$ if and only if so is $c_{M_{\beta},N_{\gamma}}$ for any $\beta, \gamma \in \pi$.

Lemma 5.1 With the above notations, we have

- 1. $(c_{M,N})_{\alpha}$ is a k-linear isomorphism for any crossed left H- π -modules M and N, and $\alpha \in \pi$ if and only if R is a family of invertible elements.
- 2. $c_{M,N}: M \otimes N \to N \otimes M$ is a left H- π -module morphism for any crossed left H- π -module M and N if and only if

$$R_{\beta,\gamma} \cdot \Delta_{\beta,\gamma}(h) = \tau_{\gamma,\beta}(\varphi_{\beta^{-1}} \otimes \mathrm{id}_{H_{\beta}}) \Delta_{\beta\gamma\beta^{-1},\beta}(h) \cdot R_{\beta,\gamma}$$

for all $\beta, \gamma \in \pi$ and $h \in H_{\beta\gamma}$.

- *Proof* 1. Assume that $R = \{R_{\beta,\gamma} \in H_{\beta} \otimes H_{\gamma}\}_{\beta,\gamma \in \pi}$ is a family of invertible elements. Then obviously, $c_{M_{\beta},N_{\gamma}}$ is a *k*-linear isomorphism for any $\beta, \gamma \in \pi$ since so is $\varphi_{N,\beta}$. Conversely, let M = N = H. Because φ_{β} is an isomorphism, from the hypothesis one knows that the map $H_{\beta} \otimes H_{\gamma} \to H_{\beta} \otimes H_{\gamma}, x \otimes y \mapsto R_{\beta,\gamma}(x \otimes y)$ is a *k*-linear isomorphism for all $\beta, \gamma \in \pi$. It follows that $R_{\beta,\gamma}$ is an invertible element in the algebra $H_{\beta} \otimes H_{\gamma}$.
- 2. From [10] we know that $\varphi_{\beta}\varphi_{\beta^{-1}} = \varphi_1 = \text{id. Let } M$ and N be crossed left H- π -modules. Then it is clear that $(c_{M,N})_{\alpha}$ is an H_{α} -module morphism for any $\alpha \in \pi$ if and only if $c_{M_{\beta},N_{\gamma}}$ is an $H_{\beta\gamma}$ -module morphism for any $\beta, \gamma \in \pi$. Let $m \in M_{\beta}, n \in N_{\gamma}$ and $h \in H_{\beta\gamma}$ with $\beta, \gamma \in \pi$. Then, we have

$$\begin{aligned} c_{M_{\beta},N_{\gamma}}(h \cdot (m \otimes n)) &= c_{M_{\beta},N_{\gamma}}(\Delta_{\beta,\gamma}(h)(m \otimes n)) \\ &= (\varphi_{N,\beta} \otimes id_{M_{\beta}})\tau_{\beta,\gamma}(R_{\beta,\gamma}(\Delta_{\beta,\gamma}(h)(m \otimes n))) \\ &= (\varphi_{N,\beta} \otimes id_{M_{\beta}})\tau_{\beta,\gamma}((R_{\beta,\gamma}\Delta_{\beta,\gamma}(h))(m \otimes n)) \end{aligned}$$

and

$$\begin{split} h \cdot c_{M_{\beta},N_{\gamma}}(m \otimes n) \\ &= \Delta_{\beta\gamma\beta^{-1},\beta}(h) \cdot c_{M_{\beta},N_{\gamma}}(m \otimes n) \\ &= ((\varphi_{\beta} \otimes \operatorname{id}_{H_{\beta}})(\varphi_{\beta^{-1}} \otimes \operatorname{id}_{H_{\beta}})\Delta_{\beta\gamma\beta^{-1},\beta}(h)) \cdot (\varphi_{N,\beta} \otimes \operatorname{id}_{M_{\beta}})(\tau_{\beta,\gamma}(R_{\beta,\gamma}(m \otimes n))) \\ &= (\varphi_{\beta} \otimes \operatorname{id}_{H_{\beta}})((\varphi_{\beta^{-1}} \otimes \operatorname{id}_{H_{\beta}})\Delta_{\beta\gamma\beta^{-1},\beta}(h)) \cdot (\varphi_{N,\beta} \otimes \operatorname{id}_{M_{\beta}})(\tau_{\beta,\gamma}(R_{\beta,\gamma}(m \otimes n))) \\ &= (\varphi_{N,\beta} \otimes \operatorname{id}_{M_{\beta}})(((\varphi_{\beta^{-1}} \otimes \operatorname{id}_{H_{\beta}})\Delta_{\beta\gamma\beta^{-1},\beta}(h)) \cdot \tau_{\beta,\gamma}(R_{\beta,\gamma}(m \otimes n))) \\ &= (\varphi_{N,\beta} \otimes \operatorname{id}_{M_{\beta}})(\tau_{\beta,\gamma}(\tau_{\gamma,\beta}((\varphi_{\beta^{-1}} \otimes \operatorname{id}_{H_{\beta}})\Delta_{\beta\gamma\beta^{-1},\beta}(h))) \cdot \tau_{\beta,\gamma}(R_{\beta,\gamma} \cdot (m \otimes n))) \\ &= (\varphi_{N,\beta} \otimes \operatorname{id}_{M_{\beta}})\tau_{\beta,\gamma}(\tau_{\gamma,\beta}((\varphi_{\beta^{-1}} \otimes \operatorname{id}_{H_{\beta}})\Delta_{\beta\gamma\beta^{-1},\beta}(h))) \cdot R_{\beta,\gamma} \cdot (m \otimes n)) \end{split}$$

Because $\varphi_{N,\beta}$ is an isomorphism, $c_{M_{\beta},N_{\gamma}}(h \cdot (m \otimes n)) = h \cdot c_{M_{\beta},N_{\gamma}}(m \otimes n)$ if and only if $(R_{\beta,\gamma} \Delta_{\beta,\gamma}(h))(m \otimes n) = \tau_{\gamma,\beta}((\varphi_{\beta^{-1}} \otimes \operatorname{id}_{H_{\beta}}) \Delta_{\beta\gamma\beta^{-1},\beta}(h)) \cdot R_{\beta,\gamma} \cdot (m \otimes n)$. Thus, if $R_{\beta,\gamma} \cdot \Delta_{\beta,\gamma}(h) = \tau_{\gamma,\beta}(\varphi_{\beta^{-1}} \otimes \operatorname{id}_{H_{\beta}}) \Delta_{\beta\gamma\beta^{-1},\beta}(h) \cdot R_{\beta,\gamma}$ for all $h \in H_{\beta\gamma}$, then $c_{M_{\beta},N_{\gamma}}$ is an isomorphism of left $H_{\beta\gamma}$ -modules. Conversely, let $M = N = H, m = 1_{\beta} \in H_{\beta}$ and $n = 1_{\gamma} \in H_{\gamma}$. Then, from $(R_{\beta,\gamma} \Delta_{\beta,\gamma}(h))(m \otimes n) = \tau_{\gamma,\beta}((\varphi_{\beta^{-1}} \otimes \operatorname{id}_{H_{\beta}}) \Delta_{\beta\gamma\beta^{-1},\beta}(h)) \cdot R_{\beta,\gamma} \cdot (m \otimes n)$, one gets $R_{\beta,\gamma} \cdot \Delta_{\beta,\gamma}(h) = \tau_{\gamma,\beta}((\varphi_{\beta^{-1}} \otimes \operatorname{id}_{H_{\beta}}) \Delta_{\beta\gamma\beta^{-1},\beta}(h)) \cdot R_{\beta,\gamma}$.

Lemma 5.2 The following two statements are equivalent:

1. $\varphi_{N\otimes M,z}(c_{M,N})_{\alpha} = (c_{M,N})_{z\alpha z^{-1}} \varphi_{M\otimes N,z}$ for any crossed left H- π -modules M and N, and $\alpha, z \in \pi$. 2. $(\varphi_z \otimes \varphi_z)(R_{\beta,\gamma}) = R_{z\beta z^{-1}, z\gamma z^{-1}}$ for any $\beta, \gamma, z \in \pi$.

Proof Let M and N be crossed left H- π -modules. For any β , γ , $z \in \pi$, $m \in M_{\beta}$ and $n \in N_{\gamma}$, we have

$$\begin{split} \varphi_{N\otimes M,z}(c_{M,N})_{\beta\gamma}(m\otimes n) \\ &= (\varphi_{N,z}\otimes \varphi_{M,z})(c_{M\beta,N\gamma})(m\otimes n) \\ &= (\varphi_{N,z}\otimes \varphi_{M,z})(\varphi_{N,\beta}\otimes \operatorname{id}_{M\beta})\tau_{\beta,\gamma}(R_{\beta,\gamma}\cdot(m\otimes n)) \\ &= (\varphi_{N,z}\varphi_{N,\beta}\otimes \varphi_{M,z})(\tau_{\beta,\gamma}(R_{\beta,\gamma})\cdot(n\otimes m)) \\ &= (\varphi_{N,z\beta}\otimes \varphi_{M,z})(\tau_{\beta,\gamma}(R_{\beta,\gamma})\cdot(n\otimes m)) \\ &= (\varphi_{N,z\betaz^{-1}}\otimes \operatorname{id}_{M_{z\betaz^{-1}}})(\varphi_{N,z}\otimes \varphi_{M,z})(\tau_{\beta,\gamma}(R_{\beta,\gamma})\cdot(n\otimes m)) \\ &= (\varphi_{N,z\betaz^{-1}}\otimes \operatorname{id}_{M_{z\betaz^{-1}}})((\varphi_{z}\otimes \varphi_{z})(\tau_{\beta,\gamma}(R_{\beta,\gamma}))\cdot(\varphi_{N,z}(n)\otimes \varphi_{M,z}(m))) \\ &= (\varphi_{N,z\betaz^{-1}}\otimes \operatorname{id}_{M_{z\betaz^{-1}}})(\tau_{z\betaz^{-1},z\gammaz^{-1}}((\varphi_{z}\otimes \varphi_{z})(R_{\beta,\gamma}))\cdot(\varphi_{N,z}(n)\otimes \varphi_{M,z}(m))) \end{split}$$

and

$$\begin{aligned} (c_{M,N})_{z\beta\gamma z^{-1}}\varphi_{M\otimes N,z}(m\otimes n) \\ &= c_{M_{z\beta z^{-1}},N_{z\gamma z^{-1}}}(\varphi_{M,z}(m)\otimes\varphi_{N,z}(n)) \\ &= (\varphi_{N,z\beta z^{-1}}\otimes \operatorname{id}_{M_{z\beta z^{-1}}})\tau_{z\beta z^{-1},z\gamma z^{-1}}(R_{z\beta z^{-1},z\gamma z^{-1}}\cdot(\varphi_{M,z}(m)\otimes\varphi_{N,z}(n))) \\ &= (\varphi_{N,z\beta z^{-1}}\otimes \operatorname{id}_{M_{z\beta z^{-1}}})(\tau_{z\beta z^{-1},z\gamma z^{-1}}(R_{z\beta z^{-1},z\gamma z^{-1}})\cdot(\varphi_{N,z}(n)\otimes\varphi_{M,z}(m))) \end{aligned}$$

It follows that Part (2) implies Part (1). Now assume that Part (1) is satisfied. Let M = N = H, $m = 1_{\beta}$ and $n = 1_{\gamma}$. Then from $\varphi_{N \otimes M, z}(c_{M,N})_{\beta\gamma}(m \otimes n) = (c_{M,N})_{z\beta\gamma z^{-1}}\varphi_{M \otimes N, z}(m \otimes n)$, one gets

$$\begin{aligned} (\varphi_{z\beta z^{-1}} \otimes \operatorname{id}_{H_{z\beta z^{-1}}})(\tau_{z\beta z^{-1}, z\gamma z^{-1}}((\varphi_z \otimes \varphi_z)(R_{\beta, \gamma}))) \\ &= (\varphi_{z\beta z^{-1}} \otimes \operatorname{id}_{H_{z\beta z^{-1}}})(\tau_{z\beta z^{-1}, z\gamma z^{-1}}(R_{z\beta z^{-1}, z\gamma z^{-1}})). \end{aligned}$$

Since $\varphi_{z\beta z^{-1}}$ and $\tau_{z\beta z^{-1}, z\gamma z^{-1}}$ are isomorphisms, it follows that $(\varphi_z \otimes \varphi_z)(R_{\beta,\gamma}) = R_{z\beta z^{-1}, z\gamma z^{-1}}$.

Lemma 5.3 The following two statements hold:

1. $c_{M,N\otimes P} = (\mathrm{id}_N \otimes c_{M,P})(c_{M,N} \otimes \mathrm{id}_P)$ for all crossed left H- π -modules M, N and P, if and only if for all $\alpha, \beta, \gamma \in \pi$,

$$(\mathrm{id}_{H_{\alpha}} \otimes \Delta_{\beta,\gamma})(R_{\alpha,\beta\gamma}) = (R_{\alpha,\gamma})_{1\beta3} \cdot (R_{\alpha,\beta})_{12\gamma}$$

2. $c_{M\otimes N,P} = (c_{M,P} \otimes id_N)(id_M \otimes c_{N,P})$ for all crossed left H- π -modules M, N and P, if and only if for all $\alpha, \beta, \gamma \in \pi$,

$$(\Delta_{\alpha,\beta} \otimes \mathrm{id}_{H_{\gamma}})(R_{\alpha\beta,\gamma}) = [(\mathrm{id}_{H_{\alpha}} \otimes \varphi_{\beta^{-1}})(R_{\alpha,\beta\gamma\beta^{-1}})]_{1\beta3} \cdot (R_{\beta,\gamma})_{\alpha23}$$

Proof We only prove Part (2). The proof of Part (1) is similar.

Let M, N and P be crossed left H- π -modules. For any $m \in M_{\alpha}, n \in N_{\beta}$ and $p \in P_{\gamma}$ with $\alpha, \beta, \gamma \in \pi$, we have

 $((c_{M,P} \otimes \mathrm{id}_N)(\mathrm{id}_M \otimes c_{N,P}))_{\alpha\beta\gamma}(m \otimes n \otimes p)$

- $= (c_{M_{\alpha},P_{\beta \vee \beta^{-1}}} \otimes \mathrm{id}_{N_{\beta}})(\mathrm{id}_{M_{\alpha}} \otimes c_{N_{\beta},P_{\gamma}})(m \otimes n \otimes p)$
- $= (c_{M_{\alpha},P_{\beta_{\nu\beta}-1}} \otimes \mathrm{id}_{N_{\beta}})((\mathrm{id}_{M_{\alpha}} \otimes \varphi_{P,\beta} \otimes \mathrm{id}_{N_{\beta}})(\mathrm{id}_{M_{\alpha}} \otimes \tau_{\beta,\gamma})((R_{\beta,\gamma})_{\alpha23} \cdot (m \otimes n \otimes p)))$

 $= (\varphi_{P,\alpha} \otimes \mathrm{id}_{M_{\alpha}} \otimes \mathrm{id}_{N_{\beta}})(\tau_{\alpha,\beta\gamma\beta^{-1}} \otimes \mathrm{id}_{N_{\beta}})$

 $\times ((R_{\alpha,\beta\gamma\beta^{-1}})_{12\beta} \cdot ((\mathrm{id}_{M_{\alpha}} \otimes \varphi_{P,\beta} \otimes \mathrm{id}_{N_{\beta}})(\mathrm{id}_{M_{\alpha}} \otimes \tau_{\beta,\gamma})((R_{\beta,\gamma})_{\alpha23} \cdot (m \otimes n \otimes p))))$

 $=(\varphi_{P,\alpha}\otimes \mathrm{id}_{M_{\alpha}}\otimes \mathrm{id}_{N_{\beta}})(\tau_{\alpha,\beta\gamma\beta^{-1}}\otimes \mathrm{id}_{N_{\beta}})((\mathrm{id}_{H_{\alpha}}\otimes\varphi_{\beta}\otimes \mathrm{id}_{H_{\beta}})([(\mathrm{id}_{H_{\alpha}}\otimes\varphi_{\beta^{-1}})(R_{\alpha,\beta\gamma\beta^{-1}})]_{12\beta})\cdot$

 $\times ((\mathrm{id}_{M_{\alpha}} \otimes \varphi_{P,\beta} \otimes \mathrm{id}_{N_{\beta}})(\mathrm{id}_{M_{\alpha}} \otimes \tau_{\beta,\gamma})((R_{\beta,\gamma})_{\alpha 23} \cdot (m \otimes n \otimes p))))$

- $= (\varphi_{P,\alpha} \otimes \mathrm{id}_{M_{\alpha}} \otimes \mathrm{id}_{N_{\beta}})(\tau_{\alpha,\beta\gamma\beta^{-1}} \otimes \mathrm{id}_{N_{\beta}})(\mathrm{id}_{M_{\alpha}} \otimes \varphi_{P,\beta} \otimes \mathrm{id}_{N_{\beta}})$
 - $\times ([(\mathrm{id}_{H_{\alpha}} \otimes \varphi_{\beta^{-1}})(R_{\alpha,\beta\gamma\beta^{-1}})]_{12\beta} \cdot ((\mathrm{id}_{M_{\alpha}} \otimes \tau_{\beta,\gamma})((R_{\beta,\gamma})_{\alpha23} \cdot (m \otimes n \otimes p))))$
- $= (\varphi_{P,\alpha} \otimes \mathrm{id}_{M_{\alpha}} \otimes \mathrm{id}_{N_{\beta}})(\varphi_{P,\beta} \otimes \mathrm{id}_{M_{\alpha}} \otimes \mathrm{id}_{N_{\beta}})(\tau_{\alpha,\gamma} \otimes \mathrm{id}_{N_{\beta}})$
 - $\times (\mathrm{id}_{M_{\alpha}} \otimes \tau_{\beta,\gamma})([(\mathrm{id}_{H_{\alpha}} \otimes \varphi_{\beta^{-1}})(R_{\alpha,\beta\gamma\beta^{-1}})]_{1\beta3} \cdot ((R_{\beta,\gamma})_{\alpha23} \cdot (m \otimes n \otimes p)))$
- $= (\varphi_{P,\alpha\beta} \otimes \mathrm{id}_{M_{\alpha} \otimes N_{\beta}})(\tau_{\alpha,\gamma} \otimes \mathrm{id}_{N_{\beta}})(\mathrm{id}_{M_{\alpha}} \otimes \tau_{\beta,\gamma})$
- $\times (([(\mathrm{id}_{H_{\alpha}} \otimes \varphi_{\beta^{-1}})(R_{\alpha,\beta\gamma\beta^{-1}})]_{1\beta3}(R_{\beta,\gamma})_{\alpha23}) \cdot (m \otimes n \otimes p))$

and

 $\begin{aligned} (c_{M\otimes N,P})_{\alpha\beta\gamma}(m\otimes n\otimes p) \\ &= (\varphi_{P,\alpha\beta}\otimes \mathrm{id}_{M_{\alpha}\otimes N_{\beta}})\tau_{\alpha\beta,\gamma}(R_{\alpha\beta,\gamma}\cdot((m\otimes n)\otimes p)) \\ &= (\varphi_{P,\alpha\beta}\otimes \mathrm{id}_{M_{\alpha}\otimes N_{\beta}})(\tau_{\alpha,\gamma}\otimes \mathrm{id}_{N_{\beta}})(\mathrm{id}_{M_{\alpha}}\otimes \tau_{\beta,\gamma})((\Delta_{\alpha,\beta}\otimes \mathrm{id}_{H_{\gamma}})(R_{\alpha\beta,\gamma})\cdot(m\otimes n\otimes p)). \end{aligned}$

Thus, if $(\Delta_{\alpha,\beta} \otimes \operatorname{id}_{H_{\gamma}})(R_{\alpha\beta,\gamma}) = [(\operatorname{id}_{H_{\alpha}} \otimes \varphi_{\beta^{-1}})(R_{\alpha,\beta\gamma\beta^{-1}})]_{1\beta3} \cdot (R_{\beta,\gamma})_{\alpha23}$ for all $\alpha, \beta, \gamma \in \pi$, then $c_{M\otimes N,P} = (c_{M,P} \otimes \operatorname{id}_N)(\operatorname{id}_M \otimes c_{N,P})$ for all crossed left H- π -modules M, N and P. Conversely, let M = N = P = H, $m = 1_{\alpha}$, $n = 1_{\beta}$ and $p = 1_{\gamma}$. Then from $(c_{M\otimes N,P})_{\alpha\beta\gamma}(m\otimes n\otimes p) = ((c_{M,P}\otimes \operatorname{id}_N)(\operatorname{id}_M \otimes c_{N,P}))_{\alpha\beta\gamma}(m\otimes n\otimes p)$, one gets $(\Delta_{\alpha,\beta} \otimes \operatorname{id}_{H_{\gamma}})(R_{\alpha\beta,\gamma}) = [(\operatorname{id}_{H_{\alpha}} \otimes \varphi_{\beta^{-1}})(R_{\alpha,\beta\gamma\beta^{-1}})]_{1\beta3} \cdot (R_{\beta,\gamma})_{\alpha23}$ since $\varphi_{P,\alpha\beta}, \tau_{\alpha,\gamma}$ and $\tau_{\beta,\gamma}$ are isomorphisms.

Theorem 5.4 Let $H = (\{H_{\alpha}\}_{\alpha \in \pi}, \Delta, \varepsilon, S, \varphi)$ be a crossed Hopf π -coalgebra, and let $R = \{R_{\alpha,\beta} \in H_{\alpha} \otimes H_{\beta}\}_{\alpha,\beta\in\pi}$ be a family of elements. Then, the monoidal category $({}_{H}\mathcal{M}_{crossed}, \otimes, K, a, l, r)$ of crossed left H- π -modules is a braided monoidal category with the braiding c if and only if $H = (\{H_{\alpha}\}_{\alpha\in\pi}, \Delta, \varepsilon, S, \varphi, R)$ is a quasitriangular Hopf π -coalgebra, where c is defined by R as in (1).

Proof If *c* is a braiding of the monoidal category (${}_{H}\mathcal{M}_{crossed}$, \otimes , *K*, *a*, *l*, *r*), then it follows from Lemmas 5.1, 5.2 and 5.3 that *R* is a quasitriangular structure. Conversely, assume that *R* is a quasitriangular structure. Then by Lemmas 5.1, 5.2 and 5.3, it is enough to show that $c = \{c_{M,N}\}$ is natural.

Let $f : M \to M'$ and $g : N \to N'$ be two crossed morphisms of crossed left H- π -modules. For any $m \in M_{\alpha}$ and $n \in N_{\beta}$, where $\alpha, \beta \in \pi$, we have

$$\begin{aligned} ((g \otimes f)c_{M,N})_{\alpha\beta}(m \otimes n) &= (g_{\alpha\beta\alpha^{-1}} \otimes f_{\alpha})c_{M_{\alpha},N_{\beta}}(m \otimes n) \\ &= (g_{\alpha\beta\alpha^{-1}} \otimes f_{\alpha})(\varphi_{N,\alpha} \otimes \mathrm{id}_{M_{\alpha}})\tau_{\alpha,\beta}(R_{\alpha,\beta} \cdot (m \otimes n)) \\ &= (g_{\alpha\beta\alpha^{-1}} \otimes f_{\alpha})(\varphi_{N,\alpha} \otimes \mathrm{id}_{M_{\alpha}})(\tau_{\alpha,\beta}(R_{\alpha,\beta}) \cdot (n \otimes m)) \\ &= (g_{\alpha\beta\alpha^{-1}} \otimes f_{\alpha})(((\varphi_{\alpha} \otimes \mathrm{id}_{H_{\alpha}})\tau_{\alpha,\beta}(R_{\alpha,\beta})) \cdot (\varphi_{N,\alpha}(n) \otimes m)) \\ &= ((\varphi_{\alpha} \otimes \mathrm{id}_{H_{\alpha}})\tau_{\alpha,\beta}(R_{\alpha,\beta})) \cdot ((g_{\alpha\beta\alpha^{-1}} \otimes f_{\alpha})(\varphi_{N,\alpha}(n) \otimes m)) \\ &= ((\varphi_{\alpha} \otimes \mathrm{id}_{H_{\alpha}})\tau_{\alpha,\beta}(R_{\alpha,\beta})) \cdot (g_{\alpha\beta\alpha^{-1}}\varphi_{N,\alpha}(n) \otimes f_{\alpha}(m)) \\ &= ((\varphi_{\alpha} \otimes \mathrm{id}_{H_{\alpha}})\tau_{\alpha,\beta}(R_{\alpha,\beta})) \cdot (\varphi_{N',\alpha}g_{\beta}(n) \otimes f_{\alpha}(m)) \end{aligned}$$

and

$$\begin{aligned} (c_{M',N'}(f \otimes g))_{\alpha\beta}(m \otimes n) &= c_{M'_{\alpha},N'_{\beta}}(f_{\alpha} \otimes g_{\beta})(m \otimes n) \\ &= c_{M'_{\alpha},N'_{\beta}}(f_{\alpha}(m) \otimes g_{\beta}(n)) \\ &= (\varphi_{N',\alpha} \otimes \operatorname{id}_{M'_{\alpha}})\tau_{\alpha,\beta}(R_{\alpha,\beta} \cdot (f_{\alpha}(m) \otimes g_{\beta}(n))) \\ &= (\varphi_{N',\alpha} \otimes \operatorname{id}_{M'_{\alpha}})(\tau_{\alpha,\beta}(R_{\alpha,\beta}) \cdot (g_{\beta}(n) \otimes f_{\alpha}(m))) \\ &= ((\varphi_{\alpha} \otimes \operatorname{id}_{H_{\alpha}})\tau_{\alpha,\beta}(R_{\alpha,\beta})) \cdot ((\varphi_{N',\alpha} \otimes \operatorname{id}_{M'_{\alpha}})(g_{\beta}(n) \otimes f_{\alpha}(m))) \\ &= ((\varphi_{\alpha} \otimes \operatorname{id}_{H_{\alpha}})\tau_{\alpha,\beta}(R_{\alpha,\beta})) \cdot (\varphi_{N',\alpha}g_{\beta}(n) \otimes f_{\alpha}(m)). \end{aligned}$$

Hence $(g \otimes f)c_{M,N} = c_{M',N'}(f \otimes g)$. This completes the proof.

Acknowledgments This work is supported by NSF of China, No. 10771182 and No. 10771183, and supported by Doctorate foundation, No. 200811170001, Ministry of Education of China.

References

- 1. Drinfeld, V.G.: Quantum groups. In: Proceedings of ICM, 1986, vol. 1, pp. 798–820, American Mathematical Society, Providence (1987)
- 2. Hennings, M.A.: Invariants of links and 3-manifolds obtained from Hopf algebras. J. Lond. Math. Soc. 54(2), 594-624 (1996)
- 3. Kassel, C.: Quantum Groups. Springer, New York (1995)
- Kauffman, L.H.; Radford, D.E.: Invariants of 3-manifolds derived from finite dimensional Hopf algebras. J. Knot Theory Ramif. 4, 131–162 (1995)
- 5. Kuperberg, G.: Involutory Hopf algebras and 3-manifold invariants. Internat. J. Math. 2(1), 41-66 (1991)
- Montgomery, S.: Hopf Algebras and Their Actions on Rings. CBMS Series in Mathematics, vol. 82, American Mathematical Society, Providence (1993)
- 7. Sweedler, M.E.: Hopf Algebras. Benjamin, New York (1969)
- 8. Turaev, V.G.: Crossed Group-Categories. AJSE 33, 483-504 (2008)
- 9. Turaev, V.G.: Homotopy field theory in dimension 3 and crossed group-categories. Preprint GT/0005291
- 10. Virelizier, A.: Hopf group-coalgebras. J. Pure Appl. Algebra 171(1), 75–122 (2002)
- 11. Virelizier, A.: Crossed Hopf group-coalgebras and invariants of links and 3-manifolds. in preparation

