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Abstract
Interested in the previous work of Walters et al. (Korea Aust Rheol J 21:225–233, 2009) regarding the competing roles of 
extensional viscosity and normal stress differences in complex flows of elastic liquids, rheological studies rarely discuss the 
relationship between the shear and extension-induced first normal stress differences (N1S and N1E) within a mixed flow for 
a viscoelastic fluid. One, therefore, derives N1S and N1E related to Weissenberg’s number and Trouton’s ratio. The classic 
White–Metzner viscoelastic constitutive equation coupled with the recent GNF-X (Generalized Newtonian Fluid eXtended) 
weighted shear/extension viscosity has the potential to show the typical vortex growth in entry flow simulations. Based on the 
improved White–Metzner model, demonstrating the opposite effect of N1S and N1E with respect to strain rates is evident. 
N1S mainly dominates the shell layer near the wall boundary at high strain rates, whereas N1E controls the center core at low 
strain rates. In contraction flow simulations, the predicted slit-die velocity profile is in good agreement with experimental 
data. It is significant to conclude that N1E hinders flow and N1S facilitates flow. In addition, a comparison of extensional-
thickening and extensional-thinning viscosity curves for the velocity profile is discussed herein.
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1  Introduction

In rheology, viscoelasticity is the property of materials that 
exhibit both viscous and elastic characteristics when under-
going deformation. Generally, the elastic effect is related 
to the shear-induced first normal stress difference (N1S), 
NS
1
= �11 − �22 , wherein �11 and �22 denote the normal 

stresses in the principal flow and gradient directions, respec-
tively. For a particular point of interest, extensional viscosity 
�E is the ratio of “net tensile stress”, �E = ��

11
− ��

22
 , to exten-

sion rate 𝜀̇ , namely, 𝜂E = 𝜎E∕𝜀̇ , wherein �′
11

 and �′
22

 denote 
the normal stresses in the principal stretch and shrink direc-
tions, respectively. Thus, �E is defined as the extensional-
viscosity generating first normal stress difference (N1E), NE

1
 . 

However, it is not normal to discuss the competitive role of 

N1S and N1E coexisting in complex flows for viscoelastic 
fluids of polymer melts.

Early on, Debbaut and Crochet [1] considered the effect 
of extensional viscosity as a cause of corner vortex in abrupt 
4:1 contraction flow simulations. In addition, they concluded 
the conflicting effects of the extensional viscosity and NS

1
 on 

vortex activity. Later, Walters et al. [2] used the Oldroyd B 
viscoelastic constitutive model to show the potential impor-
tance of NS

1
 in axisymmetric contraction flows for Boger flu-

ids. Specifically, they summarized that high �E can retard the 
flow, whereas high NS

1
 can have the opposite effect. James 

[3] investigated the possible role of shear-generated normal 
stresses to be extensional in nature. For Boger fluids flow-
ing through arrays of rods, the increased flow resistance is 
related to the elasticity property NS

1
 , and not to the exten-

sional viscosity stress NE
1
 . Although NS

1
 is small, it cannot be 

ignored. However, their numerical results did not evidently 
demonstrate the opposite effect of NS

1
 and NE

1
 in those arti-

cles aforementioned.
In the rheology, the Deborah number De and Weissenberg 

number Wi are key dimensionless number to indicate the vis-
coelastic character of polymer melts [4]. Experimentally, De 
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is defined as the ratio of the characteristic time of the fluid � 
to the characteristic time of the flow tf:

Theoretically, Wi is the product of the shear rate 𝛾̇ and 
relaxation time �:

At a large Weissenberg number or Deborah number, 
Wi >> 1 or De >> 1 , the fluid will respond with elastic behav-
ior like that of a solid. For Wi << 1 or De << 1 , a liquid-like 
viscous state is expected, while there is sufficient time to relax 
during deformation. Wi ≈ 1 or De ≈ 1 implies the viscoelas-
tic fluid. Addiontally, Pipkin diagram [5] is the relationship 
between De and Wi to represent different flow regimes of a 
material regarding viscometric flows, linear viscoelasticity, 
and nonlinear viscoelasticity.

Recently, Tseng [6] derived a potential weighted shear/
extensional viscosity, called the GNF-X (Generalized Newto-
nian Fluid eXtended) model. For the 3D (three-dimensional) 
entry flow simulation of a low-density polyethylene (LDPE) 
melt, he [6], therefore, demonstrated the vortex formation in 
terms of the weighted viscosity and extensional flow. The ear-
lier White–Metzner (WM) constitutive equation [7] expresses 
a relatively simple nonlinear viscoelastic fluid. Based on the 
GNF-X model, Tseng continued to develop a modification 
of the WM constitutive equation, called the WMT-X (WM 
eXtended by Tseng) model [8–10]. Such a model can pretty 
well fit the first normal stress difference for characterizing a 
fluid’s elasticity, as well as its shear viscosity and extensional 
viscosity. The predicted vortex sizes are in good agreement 
with the experimental data. In the WMT-X numerical calcula-
tion carried out over a wide range of Deborah numbers, it is 
stably convergent.

Using the WMT-X viscoelastic fluid model, the primary 
objective of the present study is, therefore, to demonstrate 
the competitive role of shear and extension-induced first nor-
mal stress differences coexisting in complex flows of poly-
mer melts. Additionally, one can derive NS

1
 and NE

1
 related 

to Weissenberg’s number and Trouton’s ratio. In contraction 
flow simulations, the numerical predictions of slit-die velocity 
profile at different viscous and viscoelastic constitutive equa-
tions, including GNF, GNF-X, and WMT-X, are compared 
with related experimental data. The governing equations and 
constitutive equations of polymer melts are introduced in the 
next section for completeness.

(1)De = �∕tf

(2)Wi = 𝜆𝛾̇ .

2 � Theoretical background

The actual flow of polymer melts is complicated. In non-
Newtonian fluid mechanics, the polymer processing is highly 
nonlinear, as the material properties are dependent upon flow 
and temperature conditions. For completeness, the governing 
equations of fluid dynamics, including those on continuity, 
motion, and energy, are addressed:

where � is the density; v is the velocity vector; t is the time; 
P is the pressure; � is the extra stress tensor; g is the accel-
eration vector of gravity; Cp is the specific heat; T is the 
temperature; k is the thermal conductivity. Note that the 
velocity gradient tensor ∇ v, rate-of-deformation tensor D, 
and vorticity tensor W are kinematic tensors; their relation-
ships are expressed as follows:

where D and W are the symmetric and anti-symmetric parts 
of ∇ v, respectively.

For different viscous and viscoelastic fluids, a rheological 
state expression of the stress tensor � in terms of various kin-
ematic tensors is called the so-called constitutive equation. The 
constitutive equations of interest, including the standard GNF 
(generalized Newtonian fluid) viscous model of shear viscos-
ity, the extended GNF (GNF-X) viscous model of weighted 
shear/extensional viscosity, and the improved White–Metzner 
viscoelastic model of WMT-X (White–Metzner eXtended by 
Tseng), are introduced in the present study.

2.1 � GNF shear and extensional viscosity

The famous GNF (generalized Newtonian fluid) shear viscos-
ity model [4, 11–13] describes the mathematical relationship 

(3)
��

�t
+ ∇ ⋅ �� = 0

(4)
�

�t
(��) + ∇ ⋅ (���) = −∇P + ∇ ⋅ � + ��

(5)�CP

(
�T

�t
+ � ⋅ ∇T

)
= ∇ ⋅ (k∇T) + � ∶ �,

(6)� =
∇� + (∇�)T

2

(7)� =
∇� − (∇�)T

2
,
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between the tensors � and D in a steady-state, homogenous, 
and generalized 3D deformation, as follows:

where shear viscosity �S , which is a nonlinear function of 
strain rate, indicates flow resistance in simple shear; the 
strain rate 𝛾̇ is the magnitude of the rate-of-deformation ten-
sor, namely, D: 𝛾̇ =

√
2� ∶ �.

The flow curves of shear viscosity dominate the flow behav-
iors of a variety of materials. Commonly, the Carreau model 
[12], a type of the GNF shear viscosity model, is often used to 
fit experimental viscosity data:

where � is the characteristic time; n is the power index; �0 
is the Newtonian fluid (NF) constant viscosity or the zero-
shear-rate viscosity. When 𝛾̇ = 0 , the GNF viscosity returns 
to the NF viscosity.

In rheology, the Trouton ratio Tr is the uniaxial exten-
sional viscosity �UE over shear viscosity �S [13–15]:

For the isotropic Newtonian viscosity [14], the Trouton 
ratio ideally equals 3, namely, Tr = 3. In particular, Tseng [6] 
proposed the Trouton ratio function for an interrelationship 
between nonlinear shear viscosity and nonlinear extensional 
viscosity,

where three parameters:Tr0 , �T , and nT are the anisotropic 
factor, characteristic time, and power index, respectively. 
Equation (12) is an empirical equation fitted by the experi-
mental extension viscosity data to describe the significant 
extension thinning and extension thickening characteristics,, 
refer to the previous work of Sarkar and Gupta [15]. Note the 
maximum value of Tr(𝛾̇) at large 𝛾̇ , namely, maxTr = 3 + Tr0.

2.2 � GNF‑X weighted shear/extensional viscosity

Recently, Tseng [6] derived the weighted shear/extensional 
viscosity 𝜂W(𝛾̇) , called the eXtended GNF (GNF-X) model, 
as expressed below:

(8)� = 2𝜂S(𝛾̇)�,

(9)𝜂S(𝛾̇) =
𝜂0

[1 + (𝜆𝛾̇)2]
1−n

2

,

(10)Tr =
�UE

�S
.

(11)𝜂UE(𝛾̇) = 𝜂S(𝛾̇)Tr(𝛾̇)

(12)Tr(𝛾̇) = 3 +
Tr0[

1 + (𝜆T𝛾̇)
−2
]nT ,

(13)� = 2�W�

where W is the weighting function, also known as the exten-
sion fraction; �S and �E are the generalized shear and exten-
sional viscosities with respect to strain rates, respectively.

𝛾̇S and 𝛾̇E are characteristic shear and extensional rates, 
respectively. Note that the weighted function W represents 
the percentage of extension rate. When W = 0, the GNF-X 
weighted viscosity returns to the GNF shear viscosity. For 
the flow classification, W = 0 and W = 1 indicate viscomet-
ric (or shear) and extensional (or shearfree) flows, respec-
tively. Notably, it cannot be used to identify a rigid body 
rotation. Details of the GNF-X weighted viscosity are avail-
able elsewhere [6].

However, Park [16] commented the GNF-X model in 
which those so-called principal shear and extension rates 
cannot represent the shear and extension rates correctly. 
Therefore, Tseng [17] have sufficiently demonstrated that 
the GNF-X numerical algorithm can decompose exact shear 
and extension rates validated in the analytical center-gated 
disk flow. Significantly, Wen et al. [18] performed the non-
isothermal GNF-X flow simulations to estimate the exten-
sional viscosity for various polymer melts.

Basically, the GNF-X weighted viscosity is similar to 
the early Schunk-Scriven experiential model of a linear 
combination (or arithmetic mean) of the two type-Carreau-
type shear and extension viscosities [19]. Differently, the 
Schunk-Scriven weighting function depends on the Astarita 
flow-classification parameter [20], which is the related to the 
trace of the relative vorticity and rate-of-deformation ten-
sors. Another alternative to employ, Scriven and coworkers 
[21] proposed the weighted geometric-mean viscosity. The 
concept of the mixed viscosity was previously explored in 
several articles [22–25].

Additionally, the uniaxial extensional flow is defined as 
follows:

(14)�W = (1 −W)�S +W�E

(15)1 −W =
𝛾̇2
S

𝛾̇2

(16)W =
𝛾̇2
E

𝛾̇2

(17)𝛾̇2 = 𝛾̇2
S
+ 𝛾̇2

E
,

(18)𝜂UE =
𝜏11 − 𝜏22

𝜀̇
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where �11 , �22 , and �33 are the x-axial, y-axial, and z-axial 
normal stress tensor components, respectively; 𝜀̇ is an exten-
sion rate. Therefore, the generalized extensional viscosity 
�E is related to the uniaxial extensional (UE) viscosity �UE,

Such an extensional viscosity �E is also known as the 
stressing viscosity of Meissner et al. [11, 26]. For planar 
extension, the stressing viscosity equals

In previous article of Tseng [6], the key part of Eq. (21) 
is not discussed for the GNF-X model in relating �E and 
�UE . The two most commonly used techniques for measuring 
extensional viscosity of polymer melts are the rheometric 
scientific RME (rheometric melt elongation) rheometer and 
the Münstedt tensile rheometer [27]. In practice, it is dif-
ficult to directly measure the steady extensional viscosity of 
thermoplastic composite materials at high extension rates. 
The Cogswell analytic method of extensional viscosity was 
famously derived in the pressure drop of entrance flow for 
capillary rheometer [28].

2.3 � WMT‑X viscoelastic constitutive equation

Based on the GNF-X weighed shear/extension viscosity 
[6], Tseng [8] improved the classic White–Metzner (WM) 
viscoelastic constitutive equation, named WMT-X (WM 
eXtended by Tseng):

where 𝜆W(𝛾̇) is Weissenberg’s relaxation time;  is the 
Gordon–Schowalter time derivative [12]. Its complete form 
is expanded as follows:

(19)� =

⎡
⎢⎢⎣

�11 0 0

0 �22 0

0 0 �33

⎤
⎥⎥⎦

(20)� = 𝜀̇

⎡⎢⎢⎣

1 0 0

0 −
1

2
0

0 0 −
1

2

⎤⎥⎥⎦
,

(21)𝜂E =
𝜂UE

3
=

𝜏11 − 𝜏22

3𝜀̇
.

(22)�E =
�PE

4
.

(24)
𝜆
W
(𝛾̇)

𝜕�

𝜕t
+W

i
(𝛾̇)

(
�

𝛾̇
⋅ ∇�

)

−Wi(𝛾̇)[(�∗
⋅ � + � ⋅�∗T ) + C

N
(𝛾̇)(�∗

⋅ � + � ⋅ �∗)] + � = 2𝜂
W
(𝛾̇)�

where Wi is Weissenberg’s number; D* and W* are dimen-
sionless tensors of the rate-of-deformation tensor D and 
the vorticity tensor W, respectively; the variable CN(𝛾̇) is 
the normal stress parameter limited between 0 and 1; the 
variable 𝜉(𝛾̇) is a slip factor. When �W = �S , the WMT-X 
model returns to the White–Metzner model. Note that � = 0 
and 1 signify the upper-convected and corotational forms, 
respectively. For a constant viscosity and � = 0, WMT-X is 
equivalent to UCM (upper convected Maxwell).

Especially for the “steady-state” and “homogenous” 
flows, the WMT-X stress tensor can be simplified to consist 
of the viscous and elastic terms:

This can be known as the informed viscoelastic (iVE) 
equation, which incorporating the shear and extension vis-
cous contributions, as well as the elastic effects. When Wi 
equals zero, the WMT-X viscoelastic model returns to the 
GNF-X viscous model. According to the steady-state and 
homogenous stress tensor under simple shear flow, the shear 
stress �12 , the first normal stress difference N1 and the second 
normal stress difference N2 are further found as below:

where �11 , �22 , and �33 are the x-axial, y-axial, and z-axial 
normal stress tensor components, respectively; �12 occurs 
in the xy plane.

(25)CN(𝛾̇) = 1 − 𝜉(𝛾̇)

(26)�∗ = �∕𝛾̇

(27)�∗ = �∕𝛾̇ ,

(28)
� = 2�W�

⏟⏟⏟
viscous

+Wi[(� ⋅�∗ +�∗T ⋅ �) + CN(� ⋅ �∗ + �∗ ⋅ �)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

elastic

.

(29)𝜏12 =
𝜂S𝛾̇

1 +Wi2(1 − C2
N
)

(30)N1 = �11 − �22 = 2Wi�12

(31)N2 = �22 − �33 = −(1 − CN)Wi�12

(32)−
N2

N1

=
(1 − CN)

2
=

�

2

(33)CN = 1 − 2

(
−
N2

N1

)
,
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During the shear flow, the Weissenberg number Wi has 
proven invaluable for rheologists in quantifying the viscoe-
lastic effects in a non-Newtonian fluid, which is the product 
of the strain rate 𝛾̇ and the longest relaxation time �W:

At a large Weissenberg number, Wi >> 1 , the fluid will 
respond with elastic behavior like that of a solid. For Wi << 1 , 
a liquid-like viscous state is expected, while there is sufficient 
time to relax during deformation. One can assume the strain-
rate dependence of Wi(𝛾̇) and 𝜆W(𝛾̇) . Thus, the relaxation time 
𝜆W(𝛾̇) is determined via Eq. (34):

For avoiding the high Weissenberg number problem [8] 
with unstable numerical calculations, one attempts to improve 
the unconstrained growth of Weissenberg function with 
respect to strain rates:

where the parameters Wi0, 𝛾̇CW , and nW are fit by the experi-
mental data of the first normal stress difference. Thus, the 
unstable high Wi problem is weakened by such a constrained 
Weissenberg growth function. Details of the WMT-X model 
scheme are referred to in the previous work of Tseng [8].

In addition, the elastic variable CN is related to the minus-
normal-stress-difference ratio of −N2/N1 [see Eq. (33)]. The 
(−N2/N1) ratio reasonably exists in a region between 0 and 
0.5 for general polymer melts. Thus, the ratio is assumed the 
independence of temperature, and is modeled as a step func-
tion of strain rates:

where the parameters R0 , 𝛾̇CR , and nR are fit by the experi-
mental data. When −N2/N1 = 0 and 0.5, the variable CN 
equals one and zero, respectively.

From theory to practice, the significant constitutive models, 
GNF-X and WMT-X, were incorporated into commercial sim-
ulation software of plastic injection molding, Moldex3D. The 
state-of-the-art Moldex3D CFD (computational fluid dynam-
ics) framework is developed by the three-dimensional finite 
volume method (3D-FVM) [29] to numerically solve the tran-
sient, non-isothermal governing equations of flow fields for 
complicated viscoelastic fluids of polymer melts. In addition, 

(34)Wi = 𝜆W𝛾̇ .

(35)𝜆W(𝛾̇) =
Wi(𝛾̇)

𝛾̇
.

(36)
Wi(𝛾̇) =

Wi0[
1 +

(
𝛾̇

𝛾̇CW

)−2
]nW ,

(37)

(
−
N2

N1

)
= R0 +

0.5 − R0[
1 +

(
𝛾̇

𝛾̇CR

)2
]nR ,

the advantage of 3D-FVM with robustness and efficiency is 
the ability to realize a nonlinear imbalanced flow phenomenon 
in complex channel geometries.

2.4 � Derivation of normal stress differences 
in hybrid shear/extensional flow

Consider that a hybrid flow of the velocity gradient tensor ∇� 
consists of simple shear and planar extension:

where the compression and stretch deformations are exerted 
along the x-axial and y-axial directions for the planar exten-
sion flow, respectively; the simple shear flow is given in the 
xz plane; 𝜀̇ and 𝛾̇S are the diagonal and off-diagonal compo-
nents, respectively. Thereby, the rate-of-strain tensor D and 
total strain rate and the total strain rate 𝛾̇ are expressed as:

where 𝛾̇S and 𝛾̇E are the characteristic shear and extensional 
rates, respectively.

According to the upper convected form of the WM model 
of Eq. (30), the first normal stress difference NS

1
 (abbreviation: 

N1S) for the steady-state and homogenous simple shear flow 
is shown as:

where �11 , �22 , and �33 are the x-axial, y-axial, and z-axial 
normal stress tensor components, respectively. In addition, 
the planar extensional viscosity is defined as:

where NE
1
 (abbreviation: N1E) is the first normal stress dif-

ference due to the planar extension flow.
This is based on the Trouton ratio of Eq. (10):

Therefore, the total first normal stress difference NT
1
(abbre-

viation: N1T) for hybrid shear/extension flow is expressed as:

(38)∇� =

⎡
⎢⎢⎣

−𝜀̇ 0 𝛾̇S
0 𝜀̇ 0

0 0 0

⎤
⎥⎥⎦
,

(39)� =

⎡⎢⎢⎣

−𝜀̇ 0
1

2
𝛾̇S

0 𝜀̇ 0
1

2
𝛾̇S 0 0

⎤⎥⎥⎦

(40)𝛾̇2 =
√
2� ∶ � = 𝛾̇2

S
+ 𝛾̇2

E

(41)𝛾̇E = 2𝜀̇,

(42)NS
1
= 𝜏11 − 𝜏33 = 2𝜂S𝛾̇SWi,

(43)𝜂PE =
𝜏22 − 𝜏11

𝜀̇
=

NE
1

𝜀̇
,

(44)NE
1
= Tr𝜂S𝜀̇.
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In dimensional forms, the stresses are written as follows:

For the percentage of NE
1
 and NS

1
 , one can find:

Thus, the NS
1
∕NE

1
 ratio is expressed as:

From the GNF-X model of Eq. (16), the 𝛾̇S∕𝛾̇E ratio is 
related to the weighted function W of extension fraction:

In the next section, dramatic variations of the stresses, 
NE
1
 and NS

1
 , with respect to strain rates are investigated in 

analytical flows of hybrid simple shear/planar extension.

3 � Results and discussion

In the present study, the main objective is to demonstrate the 
conflicting effects in the shear-induced and extension-induced 
first normal stress difference, NE

1
 and NS

1
 , which are related to 

the Trouton ratio and the Weissenberg number, respectively. 
For the analytical center-gated disk flow of power-law fluid, 
the primary necessity is to understand the characteristic shear 
rate and extension rate profiles, as well as the NE

1
 and NS

1
 dis-

tributions through the normalized thickness at various Weis-
senberg’s numbers under the fixed higher Trouton ratio. In 
addition to identifying the WMT-X parameters of material 
functions for LDPE melt, dramatic changes in NE

1
 and NS

1
 with 

(45)NT
1
= NS

1
+ NE

1
= 𝜂S𝛾̇S

(
2Wi +

1

2
Tr

𝛾̇E

𝛾̇S

)
.

(46)
NT
1

𝜂S𝛾̇S
= 2Wi +

1

2
Tr

𝛾̇E

𝛾̇S

(47)
NS
1

𝜂S𝛾̇S
= 2Wi

(48)
NE
1

𝜂S𝛾̇S
=

1

2
Tr

𝛾̇E

𝛾̇S
.

(49)
NE
1

NT
1

=
1

1 + 4(Wi∕Tr)(𝛾̇S∕𝛾̇E)

(50)
NS
1

NT
1

= 1 −
NE
1

NT
1

.

(51)
NS
1

NE
1

= 4
Wi

Tr

𝛾̇S

𝛾̇E
.

(52)
𝛾̇S

𝛾̇E
=

√
1 −W

W
.

respect to strain rates are investigated herein. As validation 
for different constitutive equations, including NF, GNF, GNF-
X, and WMT-X, the slit velocity profile in contraction flow 
simulations are performed to explore if the inelastic exten-
sional-viscosity-generating first normal stress difference NE

1
 

can obviously increase flow resistance, whereas the elastic 
shear-induced first normal stress difference NS

1
 can have the 

opposite effect to facilitate flow momentum.

3.1 � Analytical center‑gated disk flow of power‑law 
fluid

The center-gated disk flow of the velocity gradient tensor is 
guided by a complex combination flow consisting of the off-
diagonal shear component and diagonal extension component, 
as shown in Fig. 1. For the power-law fluid, the analytical 
velocity gradient tensor L of the center-gated disk is given to 
determine the symmetric rate-of-deformation tensor D and the 
anti-symmetric vorticity tensor W:
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Fig. 1   Illustration of the center-gated disk flow for the n = 0.5 power-
law fluid
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where Q is the volumetric flow rate; the total gap thick-
ness is 2h; vi is the velocity component in the xi direction, 
with the subscripts i, j = r,�,z in the cylindrical coordi-
nates; 0 < r ≤ R is constrained, and R is the disk radius. 
By using the cylindrical coordinates, the radial distance r 
describes the flow direction: the azimuth angle � is in the 
cross-flow direction, and the z axis is in the gradient direc-
tion. The velocity gradient tensor component is defined 
as:Lij = �vi∕�xj . LS and LE are the shear and extension com-
ponents of the velocity gradient tensor, respectively.

The rate-of-strain tensor D and total strain rate 𝛾̇ depend-
ing on LS and LE are obtained, as well:

The characteristic shear and extension rates, 𝛾̇S and 𝛾̇E , can 
both be discriminated:
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S
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(62)𝛾̇S = LS

(63)𝛾̇E = 2LE

In this work, the disk thickness and disk radius are 
2h = 0.3 cm and r = 5.0 cm; the flow rate Q = 100 cm3/s 
is given. For the power-law fluid with the power index 
n = 0.5, Fig. 2 shows total strain rate, shear rate, and exten-
sion rate profiles through the normalized thickness in ana-
lytical isothermal center-gated disk flow. Shear rate is the 
largest proportion of total strain rate. The maximum shear 
rate 𝛾̇max

S
 = 212.2 s−1 obviously occurs in the wall bound-

ary (z/h = 1.0), while the zero-shear-rate is found at the flow 
center (z/h = 0.0). Conversely, the maximum extension rate 
𝛾̇max
E

 = 5.6 s−1 is limited in the center and is close to zero near 
the wall. In Fig. 3, the extension fraction profile clearly con-
centrates at the thickness core. As shown in Fig. 4, one can 
attempt to find the relationship between extension fraction 
and strain rates. Thereby, the extension fraction or weighted 
function of the GNF-X model is expressed below:

where the critical strain rate is 𝛾̇C = 10 s−1; the power index 
is NW = 1.3.

The 𝛾̇S∕𝛾̇E ratio is estimated based on Fig.  4 of the 
extension fraction. In particular, Wi = 0 is given in the 
preceding Eqs. (49) and (50) so that N

E
1

NT
1

= 1 and N
S
1

NT
1

= 0 are 
obtained for inelastic power-law fluids with the power 
index n = 0.5. At various Weissenberg’s numbers 
(Wi = 0.1, 1.0, and 10) under the fixed higher Trouton ratio 
of Tr = 30, Fig.  5 shows the percentage of NE

1
 and NS

1
 

through the normalized thickness from the center core to 
the wall boundary. Exhibiting the opposite relation 

(64)𝛾̇2 = 𝛾̇2
S
+ 𝛾̇2

E
.

(65)W =
𝛾̇2
E

𝛾̇2
=

1[
1 +

(
𝛾̇

𝛾̇C

)]NW

,

Fig. 2   Total strain rate, shear 
rate, and extension rate profiles 
through the normalized thick-
ness for the analytical center-
gated disk flow of isothermal 
power-law fluid (n = 0.5)
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between the inelastic extensional-viscosity-generating first 
normal stress difference NE

1
 and the elastic shear-induced 

first normal stress difference NS
1
 is obvious. In addition, NE

1
 

occurs at the core and NS
1
 yields near the boundary. For the 

weak elastic effect with the small Weissenberg number of 
Wi = 0.1, NE

1
 almost dominates 90% of whole region, while 

NS
1
 occupies about 10%. Increasing the elastic effect at 

Wi = 1.0, NE
1
 and NS

1
 control 40% and 60%, respectively. In 

particular, due to the strong elastic effect with the extreme 
value of Wi = 10, it conversely results in 10% of NE

1
 and 

90% of NS
1
 . Therefore, higher NE

1
 corresponds to lower NS

1
 , 

and vice versa. When the Weissenberg number of elastic 
effect is increased, the elastic shear-induced first normal 
stress difference NS

1
 becomes stronger, but the inelastic 

extensional-viscosity-generating first normal stress differ-
ence NE

1
 is weak. Such a result verifies the conflicting role 

of NE
1
 and NS

1
 with respect to Weissenberg numbers in the 

analytical center-gated disk flow for the non-Newtonian 
fluid of power-law model.

Fig. 3   Extension fraction 
profiles through the normal-
ized thickness for the ana-
lytical center-gated disk flow 
of isothermal power-law fluid 
(n = 0.5)

Fig. 4   Extension fraction 
against strain rates for the 
analytical center-gated disk flow 
of isothermal power-law fluid 
(n = 0.5)
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3.2 � Variations of N1S and N1E with respect to strain 
rates

Referring to the previous work of Mitsoulis et al. [30], 
experimental rheological data on LDPE (low-density pol-
yethylene) melt at the isothermal temperature of 150 °C 

contain the shear viscosity, the extensional viscosity, and 
the first normal stress normal difference N1. The WMT-X 
viscoelastic constitutive Eq. (24) incorporates the Carreau 
model of shear viscosity of Eq. (9) and the Trouton ratio 
model of extensional viscosity of Eq. (12), as well as the 
Weissenberg function of the first normal stress difference 
of Eq. (36) and the (−N2/N1) ratio of Eq. (37). Figures 6 
and 7 show all material functions, including the shear vis-
cosity, the extensional viscosity, and the first normal stress 
difference, with respect to strain rates. The predictive curves 
match the related experimental data. Figure 8 presents the 
Trouton ratio, the Weissenberg function, and the (−N2/N1) 
ratio. All optimal model parameters are addressed in Table 1. 
The identified WMT-X parameters are used in the next sec-
tion for the contraction flow simulations.

Following the preceding result of the extension fraction 
with respect to strain rates in Fig. 4 for the hybrid simple 
shear/planar extension flow, Fig. 9 shows the shear-induced 
first normal stress difference NS

1
 and the extensional-vis-

cosity-generating inelastic first normal stress difference NE
1
 

against strain rates 𝛾̇ in dimensionless units, as well as the 
total first normal stress difference NT

1
 . A critical strain rate is 

found: 𝛾̇ �
C
= 50 s−1; the critical strain rate is influenced by the 

Weissenberg number and the Trouton ratio. Obviously, NS
1
 

dominates at high strain rates of 𝛾̇ > 𝛾̇C , whereas NE
1
 occurs 

at low strain rates of 𝛾̇ < 𝛾̇C . In addition, NE
1
 is larger than 

NS
1
 . Furthermore, Fig. 10 presents the NS

1
/NE

1
 ratio to reveal 

NS
1
 and NE

1
 at the high and low strain rates, respectively. The 

competing roles of NS
1
 and NE

1
 percentage distributions with 

respect to strain rates in Fig. 11 are clearly indicated as well.

3.3 � Slit velocity profile in contraction flow 
simulation

Following the same used material of 150 °C LDPE melt 
aforementioned, the experimental data of Schmidt et al. [31] 
regarding the slit velocity profile within a inhomogenous 
14:1 planar contraction flow were of interest herein. The pri-
mary objective is to demonstrate NS

1
 facilitating flow and NE

1
 

hindering flow for the velocity profile. Figure 12 illustrates 
the half symmetric geometry of 14:1 planar contraction flow, 
which includes two parts: the upstream channel of fluid res-
ervoir and the downstream channel of slit die. The square 
cross section of the reservoir is 14 × 14 mm2 and its length 
is 100 mm. The contraction ratio is 14 wherein the height of 
the reservoir and die is 14 and 1 mm, respectively. The die 
length is 50 mm. The apparent shear rate of 227 s−1 (or flow 
rate of about 300 mm3/s) is given for the slit die. Figure 13 
shows the trustworthy experimental velocity profile within 
the slit die measured by Schmidt et al. [31]. They ensured 
the homogenous temperature distribution in the measure-
ments and avoided some problems of flow instability and 
wall slip. The velocity profile presents a typical plug-like 

Fig. 5   Percentage of N1S and N1E profiles through the normalized 
thickness at various Weissenberg’s numbers for the analytical center-
gated disk flow of isothermal power-law fluid (n = 0.5)
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Fig. 6   Shear viscosity and first normal stress difference against shear rates for molten LDPE at 150 °C; solid symbols and solid lines represent 
experimental data and fitting curves, respectively

Fig. 7   Uniaxial extensional viscosity against extension rates for molten LDPE at 150 °C; solid symbols and solid lines represent experimental 
data and fitting curves, respectively
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shape; this result realistically confirms the general under-
standing of the theoretical analysis in rheology.

Referring to the previous work of Schmidt et al. [31], a 
research version of the commercial injection molding simu-
lation software, Moldex3D (CoreTech System Co., Taiwan) 
was adopted to perform the contraction flow simulation in 

the present work. The number of 3D cells is about 1,000,000 
hexagonal elements used in the flow computation for the 
contraction geometry in Fig. 12. The Cartesian coordi-
nate system was defined in the description and analysis of 
the velocity fields. The identified viscous and viscoelastic 
parameters of the NF, GNF, GNF-X, and WMT-X models 
are addressed in Table 1.

The early studies indicated that the temperature increase 
leads to opposite variations of the viscosity [32]. For high 
shear rates, shear heating viscous dissipation will increase 
substantially the downstream slit-wall temperature in the 
contraction flow. Typically, note that a pressure drop of 
10 MPa will induce a temperature increase of around 2 °C. 
At a high shear rate of 10,000 s−1 and a high pressure drop 
of 100 MPa, the mean temperature rise could be as high 
as 20 °C which will influence the viscosity. In the present 
study, such a slit-contraction flow simulation was performed 
by the Moldex3D software kept at the isothermal tempera-
ture of T = 150 °C at the lower appear shear rate of 227 s−1. 
Recently, Wen et al. [18] performed the non-isothermal 
GNF-X flow simulations to estimate the extensional viscos-
ity for various polymer melts.

As a result, the predictions of velocity profiles for 
different constitutive models of viscous and viscoelas-
tic fluids are shown in Fig. 13. For the linear NF con-
stant viscosity and the nonlinear GNF shear viscosity, 
the predicted velocity profile clearly presents the para-
bolic curve with over-estimation as compared with the 
experimental date. Basically, the nonlinear GNF shear 
viscosity increases the flow resistance. In addition, the 
GNF-X model results in the plug-flow distribution with 
under-prediction. Obviously, the central velocity slows 
down due to the resistance contribution of extensional 
viscosity. It is significant that the predictive curve by the 
WMT-X viscoelastic model is close to the experimental 

Fig. 8   Trouton ratio, Weissenberg number, and −N2/N1 ratio against 
strain rates for molten LDPE at 150 °C

Table 1   Model parameters of material functions for LDPE melt at 
150 °C

Material functions Model parameters Value

Carreau model for shear viscosity �
0
 (Pa*s) 5.0*104

� (s) 30.0
n 0.58

Trouton ratio for extensional viscosity T
0

25.0
�
T
 (s) 100.0

n
T

1.0
Weissenberg number for N1 W

0
1.0

𝛾̇
CW

 (s−1) 0.5
n
W

0.25
WMT-X model for –N2/N1 R

0
0.1

𝛾̇
CR

 (s−1) 1.0
n
R

1.0
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data of Schmidt et al. [31]. Therefore, one can focus the 
whole velocity profile especially for GNF-X and WMT-X 
models, confirming the importance of the elastic effect of 
the first normal stress difference to accelerate the flow-
ing speed, whereas the GNF-X model with extensional 
viscosity provides the attaining of a flowing resistance. 
Previously, the WMT-X viscoelastic model was used to 
find the vertex growth phenomenon [6, 8], which was 
slightly affected by the elastic effect of the first normal 

stress difference. Notably, the inelastic extensional-vis-
cosity-generating first normal stress difference NE

1
 hinders 

flow, whereas the elastic shear-induced first normal stress 
difference NS

1
 can have the opposite effect in facilitating 

the flow. Therefore, it evidently demonstrates the oppo-
site effect of the normal stresses NS

1
 and NE

1
 for the slit 

velocity in the contraction flow of LDPE melt.
In particular, a comparison of extensional-thicken-

ing and extensional-thinning viscosity curves at low 

Fig. 9   Dimensionless N1S, 
N1E, N1T against strain rates 
for molten LDPE at 150 °C

Fig. 10   The ratio of N1S to 
N1E against strain rates for 
molten LDPE at 150 °C



319The competing role of shear and extension‑induced first normal stress differences within a…

1 3

Fig. 11   The percentage of N1S 
and N1E against strain rates for 
molten LDPE at 150 °C

Fig. 12   The half symmetric 
geometry of 14:1 planar con-
traction flow with slit die

Fig. 13   Velocity profiles within 
the die slit for the LDPE melt at 
150 °C and 227 s−1 for differ-
ential viscous and viscoelastic 
constitutive models
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extension rates shown in Fig. 14.The extensional vis-
cosity model parameters of Trouton ratio are addressed 

in Table 2. Thereby, Fig.  15 presents that the central 
velocity of the extensional-thinning fluid is faster than 
that of the extensional-thinning fluid. It is evident to 
explore the difference between extensional-thinning and 
extensional-thinning.

4 � Conclusions

Using the WMT-X viscoelastic model, the ultimate goal was 
to demonstrate the conflicting roles of the inelastic exten-
sional viscosity-generating first normal stress difference 

Fig. 14   Extensional viscosity 
curves for extensional-thicken-
ing and extensional-thinning

Table 2   Trouton ratio for extensional-thickening and extensional-
thinning

Model parameters Extensional-thickening Exten-
sional-
thinning

T
0

25.0 5.0
�
T
 (s) 100.0 10.0

n
T

1.0 1.0

Fig. 15   Velocity profiles for 
extensional-thickening and 
extensional-thinning
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NE
1
 and the elastic shear-induced first normal stress differ-

ence NS
1
 in hybrid shear/extension flow. As a whole. NE

1
 is 

larger than NS
1
 . Although NS

1
 is somewhat small, it cannot be 

ignored. In addition, NS
1
 and NE

1
 dominate at high and low 

strain rates, respectively. When the Weissenberg number of 
elastic effect is increased, NS

1
 becomes stronger, while NE

1
 

is relatively weak. For predicting the slit velocity profile in 
contractions flow simulations, it is significant to show NS

1
 

facilitating flow, albeit NE
1
 has the opposite effect in hamper-

ing flow. In particular, it is evident to explore that the central 
velocity of the extensional-thinning fluid is faster than that 
of the extensional-thinning fluid.
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