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Common features of complex fluids include yield stress, thixotropy and elasticity. A comprehensive con-
stitutive model attempts to effectively predict flow responses dominated by such characteristics. Never-
theless, when constructing a constitutive model that deals with yield stress fluids one must try to preserve
the fundamental characteristics of a yield stress. This paper explores the static and energy stability of a clas-
sic viscoplastic model when elasticity or thixotropy are introduced. We exemplify this analysis using the
Bautista-Manero-Puig (BMP) model in the yield stress limit. This model has the advantages of a small num-
ber of parameters, a physically intuitive kinetic equation, and it has been widely used to represent fluids
with time-dependent rheology. We analyze stability of the BMP model for different limiting cases. Vis-
coplastic flows (VP), where we remove the elasticity and thixotropy behaviour, are shown to respond qual-
itatively in an analogous way to a simple yield stress fluid, e.g. Bingham, Casson. Thixo-visco-plastic flows
(TVP), identified by having an elastic time scale much faster than the thixotropic and viscous timescales,
preserve the notion of static and energy stability but with bounds now dependent on the stress and no longer
with finite time decay. Finally, elasto-visco-plastic flows (EVP), where the thixotropic evolution is faster
than the elastic, have a static stability limit perturbed linearly by the Weissenberg number. Numerically
solved examples of each of flow regime are given for stopping and starting flow, based on the plane Poi-
seuille flow.

Keywords: viscoelastoplasticity, thixotropy, yield stress fluids, energy stability, BMP model 

1. Introduction

The BMP model (Bautista et al., 1999), is a visco-elastic

extension of a thixotropic generalized Newtonian fluid

model proposed by Fredrickson (1970). The model is pop-

ular due to its flexibility and intuitive simplicity. This

interest and recognized limitations, have led to a range of

modifications and extensions, some of which we review

later. However, the focus of this paper is a particular lim-

iting case of the BMP model, in which true yield stress

behaviour is purported to occur.

Simple (or ideal) yield stress fluids, such as the Bing-

ham, Herschel-Bulkley and Casson fluids, have wide-

spread practical application and are extensively studied for

both applications and fundamental aspects; Frigaard

(2019a). However, it has long been known that these mod-

els are limited in describing the full range of rheological

behaviours observed as reviewed by Balmforth et al.

(2014), Bonn et al. (2017). There is a consequent current

trend to extend these models in ways that can describe a

wider range of observed flow phenomena. Elasticity fea-

tured in some of the earliest descriptions of viscoplastic

fluids, e.g., Schwedoff (1900), Oldroyd (1947), which are

amongst the first elasto-visco-plastic (EVP) fluids. More

recently Saramito (2007; 2009) has developed these ideas

into a modern tensorial context. The Saramito model has

had good success for example in explaining the fore-aft

asymmetry of a sphere moving slowly in Carbopol gel, as

observed by Putz et al. (2008), Holenberg et al. (2012).

This and other models are compared computationally by

Fraggedakis et al. (2016).

Thixotropic models have a long history; see e.g., the

reviews of Mujumdar et al. (2002), Mewis and Wagner

(2009). In the yield stress context, structural changes with

time are natural in applications and these concepts applied

simplistically, have been in use industrially since the

1960’s, e.g., the gel strength of a drilling fluid and more

recently the development of waxy phases in heavy crude

oils. Thixotropy has also been used as a tool to explain

transient aspects of the yield stress, as in e.g., the toy

model of Coussot and Bonn (Coussot et al., 2002; Moller

et al., 2009), or models discussed by de Souza Mendes

and Thompson (2012). These thixo-visco-plastic (TVP)

fluid developments are reviewed by de Souza Mendes and

Thompson (2019).

Finally, there are models recently proposed which com-

bine thixotropy and elasticity in modelling viscoplastic

flows (TEVP fluid models), such as those of de Souza
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Mendes et al. (2018), or Dimitriou and McKinley (2019).

An interesting physical perspective is also given by

Ewoldt and McKinley (2017). While it is of interest to

introduce new rheological models to capture different phe-

nomena, we should also take the opportunity to re-exam-

ine existing TEVP models, such as the BMP model, which

is conceptually simple and does not have a zoo of param-

eters, to see how they perform.

This is the intent here, where we look at the limit of the

BMP model with zero low shear fluidity. While we expect

some benefits from using a more complex rheological

model, we should not destroy essential features of simpler

models that we regard as representative. Simple yield

stress fluids share many qualitative features of other gen-

eralized Newtonian fluids, e.g., shear-thinning, but also

have unique behaviours. In yield stress fluid flows, parts

of the region are occupied by yielded fluid and other parts

by unyielded fluid. The latter are termed “plugs”, have

zero strain rate (i.e., move in rigid motion) and may be

further classed as moving or static plugs, with the latter

arising in regions attached to a wall.

Other unique features of simple yield stress fluids centre

on flow stability. Purely viscous fluids are unable to resist

a shear stress while at rest. Shear stresses comes from

either imposed body forces or applied surface tractions,

e.g., flow along a pipe under the action of a pressure drop.

In contrast yield stress fluids may resist this forcing of the

flow, i.e., a static flow is possible where a purely viscous

fluid would flow. This static stability is characterized by

exceeding a critical yield number, representing a critical

ratio of the yield stress to the driving stresses of the flow,

i.e., the pipe does not flow, the paint stays on the wall, etc.

A further interesting feature concerns the energy stabil-

ity of these static states. In other words, what happens to

the kinetic energy of a perturbation from the base state?

First, as with other purely viscous generalized Newtonian

fluids for interior flows the velocities remain bounded

since the viscous part of the dissipation becomes dominant

with respect to the work driving the flow. At smaller

velocities however, provided the critical yield number is

exceeded, the plastic dissipation exceeds the work driving

the flow. This results in energy stable flows, typically

globally so, and in many cases we have decay of the solu-

tion to zero in finite time; see e.g., Karimfazli and Frig-

aard (2016). This feature allows the yield stress to be used

as control parameter in different situations.

An outline of the paper is as follows: in section 2 we

introduce the BMP model and the governing scaled equa-

tions for the class of flows we analyze. In section 3, we

take the visco-plastic limit (W =  = 0) of the BMP model

and develop static stability and energy stability results that

are analogous to those for the classic Bingham model.

Simple examples are given using steady and unsteady

plane Poiseuille flows. In section 4, we explore analogous

stability bounds for thixo-visco-plastic (W = 0, )

flows when activating the structural timescale in the

inelastic BMP model. Later, in section 5 we examine the

stability bounds for the elasto-visco-plastic (EVP) flows,

where we conversely neglect thixotropy and retain elas-

ticity ( = 0, ). Finally, in section 6 we discuss and

reflect on the implications that these elastic and thixo-

tropic elements have in a constitutive model that aims to

preserve features of yield stress behaviour.

2. The BMP model

Our study concerns incompressible flows of fluids gov-

erned by the BMP model, in either ducts or interior

domains. These flows are governed by momentum and

mass conservation equations: 

, (1)

(2)

where , , , , and  are respectively, the density,

velocity, pressure, total stress, and a body force. We denote

dimensional quantities with the  symbol for clarity; 

is the usual material derivative. The total stress follows a

UCM approach: 

 +  = . (3)

Here  denotes the usual upper convected derivative, 

is the stress modulus,  is the fluidity, and  the strain

rate tensor: 

. (4)

The fluidity evolves according to: 

: , (5)

with = , i.e., summation is implicit.

Note we use the above inner product for tensors, denote

components by their indices with no bold script and the

associated tensor norm is denoted a = .

The Fredickson equation, Eq. (5) is written in terms of

the fluidity , which is the inverse of the viscosity. This

kinetic equation describes the evolution of structure due to

two contributions: the buildup of structure with a Max-

well-like characteristic time , and the breakdown of

structure by irreversible work, proportional to the dissipa-

tion rate :  and a rate constant . Assuming positivity

of the dissipation term, the fluidity is bounded by two

 0

W 0

̂
D̂

D̂t̂
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Newtonian plateaux: < , representing low and high

shear limits respectively. Our specific interest in this paper

is the yield stress limit of this model, which occurs if

= 0. We assume this throughout the paper.

The above is the original model from Bautista et al.

(1999). For variants/extensions  can be split into elastic

and solvent components, in what is called the MBM

(modified Manero-Bautista) model; see Manero et al.

(2002), Boek et al. (2005). Alternatively, it may be split

into particle and solvent components if a suspension is

considered, e.g., Calderas et al. (2013). Relaxing the

requirement that  be constant and introducing strain

rate dependency is associated with shear-banding variants

of the model, e.g., as in Bautista et al. (2007).

2.1. Scaled flows
Later we shall use the plane Poiseuille flow configura-

tion to illustrate our results. However, we wish to consider

flows in more generality and in particular the concept of

a critical yield number that divides flowing states from

static states. This does not apply to fluids for which

> 0, which can show only very viscous behaviour.

Therefore, we consider a domain  characterised by a

length-scale  and suppose that the driving force of the

flow has a characteristic stress scale . As an example, in

a duct flow we might expect a pressure drop  along a

length  and using  as representative transverse length

(e.g., radius, channel half-width, etc.), we might have: 

. (6)

Alternatively, consider an interior domain where the

body force  drives the flow. Here we assume a Helm-

holtz decomposition: , denoting the irro-

tational and divergence free components, respectively. The

irrotational part (e.g., gravity) simply modifies the pressure

and does not drive the flow. Thus here we would take:

, (7)

with  some suitable norm. In more complex flows the

driving force could be buoyancy, e.g., from thermal

expansion, or could arise from electro-magnetic effects,

although these cases also involve further field equations.

To normalize our equations we scale lengths with , all

stresses with , velocity with  = , time with

/ , and the fluidity with . This results in the fol-

lowing dimensionless system, that we study for the

remainder of the paper. 

, (8)

, (9)

W =   , (10)

(11)

The 4 dimensionless groups here are the Reynolds num-

ber (Re), Weissenberg number (W), the thixoviscous num-

ber (), and the yield number (Y). The first 3 of these are

defined as in Castillo and Wilson (2018): 

. (12)

We see that Re is the ratio of the viscous timescale

( ) to the flow timescale ( ). Similarly W com-

pares the viscoelastic relaxation time ( ) to the

flow timescale and  compares the buildup timescale to

the flow timescale. For vanishing Re we recover Stokes

flows, vanishing W leads to thixo-visco-plastic (TVP)

flows and vanishing  leads to elasto-visco-plastic (EVP)

flows.

Below we study the different limits of these flows in

which one or both of W and  is set to zero. In doing this

our physical interpretation of these limits is dynamic, as

discussed nicely in Castillo and Wilson (2018), i.e., W = 0

means simply that the elastic timescale is much faster than

the structural and viscous timescales.

The remaining dimensionless group is the yield number

Y: 

(13)

which plays the role of a dimensionless yield stress below.

In the BMP model there is critical stress  which is iden-

tified as the stress value that separates primary creep from

accelerating flow (under constant imposed shear stress);

see Fredrickson (1970). This is identified as 

, (14)

as . Thus Y is the ratio of  and the imposed stress

scale . This is the usual interpretation of a yield number,

provided that we accept  as a yield stress.

Equation (11) is a kinetic equation for . A steady state

of this equation implies a balance between the kinetics of

structural build-up and destruction, i.e., that there is an

equilibrium constant that captures the ratio of the rate con-

stants for the two kinetic processes:  and ,

respectively. The parameter Y2 is thus a measure of the

equilibrium constant (growth rate/destruction rate), eval-

uated at the imposed stress of the system . Thus later,

as we conside  = 0 for non-zero Y, Re, and W, this just

means that the timescale for structural build-up is fast, rel-

ative to viscous and elastic timescales, but there is still a

rate equilibrium balance between build-up and destruction

processes.
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Ĥ
------̂̂

Ĥ
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3. Visco-plastic flows: W = Λ = 0

We first look at the visco-plastic flow (VP) limit of the

BMP model in which W =  = 0. Equation (10) implies that

=  ,  (15)

from which we see the stress is inelastic and that ≥0.

Provided  is finite, as expected, we see that the strain

rate vanishes as . On the other hand, assuming that

 and  vanish at the same rate it is possible to have non-

zero stress as . Turning to the kinetic equation, we

have steady fluidity,  = s: 

, (16)

where by virtue of Eq. (15), = 2 =  = /, where

we have written  and .

In other words,  is interpreted as having evolved rap-

idly to s which is slaved to the stress (or the strain rate,

or the dissipation rate). Using the stress we may write: 

. (17)

Provided , the only solution of this equation is s =

0. For , there are 2 solutions: s = 0 and s = 1(Y/

)2. The latter of these is the stable branch for the kinetic

equation. If the stress ( ) was held constant, then

(t) = 0 would be unstable for small  > 0, resulting in

.

We may express s in various ways, for convenience: 

(18)

, (19)

. (20)

3.1. BMP and Bingham models
As discussed above, if s = 0 then = 0. Assuming the

stable branch, we see that , and from

this perspective, Y “is as good a yield stress as the Bing-

ham one” as stated by Bautista et al. (1999). Indeed, we

may compare the BMP and Bingham models directly for

any steady flow in this limit.

For example, for a plane Poiseuille flow with the scaling

adopted we would solve: 

.  (21)

The region  is a plug for both fluids: . In

the yielded regions ( ) we have for the Bingham

fluid:  and for the BMP model, ,

leading to: . In both cases we may inte-

grate to find the velocity U(y). Thus, for the same pressure

gradient and associated scaling the yield surfaces are iden-

tical, the velocity gradient vanishes at the yield surface

and the second derivative is discontinuous. However, the

BMP model is less dissipative and this leads to significant

differences in the velocity profile and mean velocity

(effectively flow rate) as Y is varied, as illustrated in

Fig. 1.

3.2. Critical Y
We now address another aspect of a simple yield stress

fluid, which is the defining feature of its dynamics: the

critical yield number. Briefly, for a given flow there is a

critical Yc such that if  then the velocity is u = 0, i.e.,

under imposed forcing for sufficiently large yield stress

the flow will be static. This feature is evident in the above

Poiseuille flow example, where simply taking 
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Fig. 1. (Color online) Comparison of the BMP and Bingham

models for plane Poiseuille flow. (a) Velocity profile in half chan-

nel for several yield numbers. (b) Mean velocity vs yield number

from (a).
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results in U(y) = 0.

For a more general steady flow we formulate the

mechanical energy balance from the momentum equation

by taking the dot product with u and integrating over .

The inertial contribution vanishes if either u = 0 on the

walls  (e.g., interior flow driven by f), or if the net flux

of kinetic energy into  is zero (e.g., common in a steady

duct flow), or some combination of these. This results in: 

0 = L(u)   = L(u)  , (22)

where  denotes the integral over  and where L(u)

gives the net work input from the different driving mech-

anisms of the flow. Let us suppose that = ∪ ,

with u = 0 on  and the traction specified on 

(inflow and outflow boundaries). Then we have: 

, (23)

where δ is the Kronecker delta and n the outward normal

on . Specific examples are as follows.

Example 1: Interior flow

Here =  and = , so that 

, on using common vector identities and

the divergence theorem. Here energy is generated by

alignment of A with the vorticity, .

Example 2: Fully developed duct flow

Here typically A = 0, the irrotational component  (e.g.,

gravity) is incorporated into the modified pressure and the

tractions are given at inflow and outflow in the form of an

imposed pressure drop. With a uniform duct of dimen-

sionless length l in direction x1 (unit vector e1), the mod-

ified pressure difference imposed in our scaled system is

equal to l and hence: 

. (24)

where X denotes the duct cross-section.

In both above examples, we see that L(u) is a linear

operator involving the dot product with a specified vector

field, which is of order 1 in magnitude, due to the scaling.

For the visco-plastic dissipation term in (22) we can write:

, (25)

and from analyzing (20) we see that: 

,

, (26)

which means that the dissipation term behaves qualita-

tively as a Bingham (or Cassson) fluid in the 2 limits. We

can subtract the plastic dissipation term:  +

, and the last term, which represents the viscous

dissipation is positive, bounded below by  for all

, and asymptotes to  from below, for large ; see

Fig. 2.

Analysis now proceeds identically to the case of a Bing-

ham fluid (or any other simple yield stress fluid). Assum-

ing that , 

,

, (27)

. (28)

This definition of Yc is identical to that for a Bingham

fluid under the same flow conditions and the function

space V of the solution is also identical. From Eq. (27) we

see that  ensures that u = 0.

A number of theoretical results could now be proven

regarding existence and uniqueness of steady solutions,

continuity of the solutions with respect to forcing and Y,

convergence as , velocity minimization and stress

maximization principles (for non-inertial flows). These

use standard methods from convex analysis and varia-

tional inequalities. There appears to be no qualitative dif-

ference to the same results for a Bingham fluid, but some

work would need to be done to develop these rigorously.

Examples of such results can be found in e.g., chapter 6 of

Duvaut and Lions (1976), or Frigaard (2019b).

3.3. Energy stability
This visco-plastic limit of the BMP model will also be

globally energy stable under similar conditions to the anal-

ogous Bingham fluid flows. The energy equation is: 
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Fig. 2. (Color online) Dissipation of the BMP and Bingham

models at Y = 0.5. The broken line denotes the lower bound:

.Y· + 0.5·2
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, (29)

, (30)

with the same definition of Yc. Physically the left hand

side represents the growth in kinetic energy of a distur-

bance from zero, which is governed by the balance

between energy input from forcing L(u) and dissipation.

We may then follow the analytical procedure in Karimfa-

zli and Frigaard (2016), resulting in the following state-

ment.

Provided Y > Yc, as defined in Eq. (28), the BMP model

with Λ = W = 0 is globally energy stable. 

More explicitly, the kinetic energy  decays mono-

tonically to zero as  for any Re and any initial con-

dition. There is a technical distinction between 2D and

3D, in that for 2D flows we can prove that the energy

decay occurs in a finite time. The stopping time estimate

can be estimated as in Karimfazli and Frigaard (2016),

and will be very similar to that for the Bingham fluid,

except noting that the viscous dissipation in the inequality

following Eq. (29) is 0.5 times that for the Bingham fluid,

i.e., slightly slower decay for the BMP. For both fluids, if

Y >> 1 the stopping time is inversely proportional to Y.

For Y < Yc we would expect there to be a steady flow.

Energy stability methods can be used here, e.g., resulting

in something like a Reynolds-Orr equation for shear

flows. These methods would also lead to an energy sta-

bility bound, but not independent of Re as we now have

a transfer of kinetic energy from the base flow to the per-

turbation. Depending on the flow, this type of stability

analysis might not be the most appropriate.

3.4. An alternate definition of Y
c
 

In many respects we have seen that the BMP model with

Λ = W = 0 is analogous to the Bingham model in its

behaviour. The slaving of the steady state fluidity to the

strain rate (or dissipation, or stress) makes the above anal-

ysis relatively easy. It also allows for an alternate defini-

tion of Yc. Using Eq. (19) we have: 

. (31)

This suggest that an alternative definition of Yc could

come through the fluidity, i.e., 

. (32)

For the BMP model with Λ = W = 0, the relationship

of ϕs to any velocity test function is well-defined and

it seems that this definition of Yc,a would equivalently

yield Yc, but when we relax Λ = 0 or W = 0, this is less

clear.

3.5. 1D Examples
We now present some 1D examples of the main points

of the analysis, based on the plane Poiseuille flow of Fig.

1. With Λ = W = 0, we solve the transient problem: 

. (33)

We commence with a stopping flow, for which the initial

conditions are , which is the solution of the

plane Poiseuille flow in § 3.1 (the steady state of Eq. (33)

with f = 1). For t > 0 we set f = 0, removing the driving

pressure gradient and the velocity u(y, t) decays to zero.

Numerically, we discretize using finite differences, sec-

ond order in space and first order, fully implicit in time.

Here we set mesh size ∆y = 0.01 and use ∆t = ∆y to com-

pute. We use the augmented Lagrangian method to rep-

resent the unyielded regions correctly and iterate at each

time step using an Uzawa algorithm. This is a standard

method for solving Bingham fluid flows. For the BMP

model we need to use ϕs(|uy|/Y) to eliminate τxy. This

Re

2
------

d

dt
---- u

2   = L u  − · u  

 
1

2
---– ·

2
u    − Y Yc–  · u  

u
2 

t 

· = Y
2

·+ s = Y
2
s + ·

2

Yc a  = sup
v 0 ,v v

L v 
Ys v  

---------------------
 
 
 

Re
u

t
------ = f + 


y
-----xy, y 1– ,1  , u ±1,t  = 0

u y, 0  = U y 

Fig. 3. (Color online) Stopping flow for: (a) Bingham fluid. (b)

BMP with Λ = W = 0, both with Y = 0.25, and Re = 1. Initial con-

dition (black) and profiles at intervals Dt = 0.05. 
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results in a nonlinear problem for the relaxed strain rate

that is solved (numerically) at each step of the Uzawa loop

(as opposed to the linear equation for the Bingham

model), and hence a slower algorithm, but robust.

The results are shown in Fig. 3 comparing Bingham and

BMP models at the same Y = 0.25. As expected, both con-

verge monotonically to zero with the plug region widen-

ing progressively towards the walls. The Bingham fluid is

more dissipative, has smaller initial velocity and con-

verges to zero faster. Both decay in finite time, all as

expected.

A second example shows startup flows, and only for the

BMP model. Here an initial condition u(y, 0) is set and for

t > 0 we impose f = 1. Figure 4a illustrates the evolution

from a random initial condition towards steady state, for

Y = 0.25. Since here Y < Yc = 1, there is a non-zero steady

Poiseuille solution. The initial high frequencies are

damped very quickly and we see convergence to the

steady state. The time interval between velocity profiles is

the same here as in the stopping flow of Fig. 3b. We see

that convergence to the flowing steady state is slower than

to the static state; the former decays exponentially. A dif-

ferent startup example is given in Fig. 4b which uses a

cubic initial condition combined with Y = 1.5. The flow

starts, but because Y > Yc it must converge to zero, which

we observe.

4. Thixo-visco-plastic flows: W = 0

 We now consider Λ > 0, but retain W = 0, i.e., we con-

sider thixo-visco-plastic (TVP) flows. We interpret these

in the sense that the elastic timescale is much faster than

the thixotropic and viscous timescales. As the flow is

inelastic, Eq. (15) holds, from which we can eliminate

either stress or strain rate tensors, and we may assume that

. The kinetic equation, Eq. (11) measures time

evolution of ϕ along a streamline. Therefore, approaching

ϕ = 0 from above, the right-hand side of Eq. (15) is pos-

itive, and approaching ϕ = 1 from below, the right-hand

side of Eq. (15) is negative. It follows that ϕ remains in

[0,1].

The fluidity ϕ is no longer slaved to the local dissipation

rate, but satisfies Eq. (11). Equation (11) requires bound-

ary conditions for ϕ at any inflow. The velocity is non-

zero only on , on which the traction is specified. For

example, in a duct flow we might specify the pressure

drop. Although jumps in traction naturally occur in driv-

ing the flow, if we want to consider stability questions that

involve ϕ, we would not expect any systematic input of

fluidity. We thus restrict attention here to flows for which: 

, (34)

i.e., there is no net flux of fluidity into the flow region.

Equation (34) is reasonable for example, in a steady Poi-

seuille flow where ϕ is constant in the stream wise direc-

tion. Alternatively, one might consider a periodically

wavy channel in which ϕ also varies periodically between

inflow and outflow.

4.1. Is Y still a yield stress?
Let us first consider to what extent this model remains

viscoplastic, in the sense of a simple visco-plastic fluid.

First suppose that the flow is steady: 

. (35)

The term  is the evolution of ϕ along the stream-

line. We see that ϕ = 0 is one solution to Eq. (35). How-

ever, if  then we see that ϕ evolves towards ϕs, as

defined in the previous section by Eq. (17). If  then

 along the streamline. If  then 

along the streamline, i.e., again ϕ = 0 is not a stable solu-

tion for . Of course the flow is more complicated

      0

s

 


s

 

 u n ds = 0

u   =  1 – 


2

Y
2

----- 1–

u  

 0
 Y

 s = 0  Y  1 Y/ 2–

 Y

Fig. 4. (Color online) BMP flow with Λ = W = 0, Re = 1: (a)

Y = 0.25 and startup flow from a random initial condition (black),

profiles at intervals Dt = 0.05. (b) Y = 1.5 and startup flow from

a cubic initial condition (black), profiles at intervals Dt = 0.01.
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now, as τ varies in the flow and hence also ϕs.

In this local analysis we see that Y is no longer a yield

stress in the sense of a simple yield stress fluid. Instead Y

is a threshold value that changes the limiting steady ϕs to

fully structured for . However, the fluidity ϕ contin-

ually chases ϕs along a streamline. If , then ϕs = 0,

but it not necessary that ϕ = 0 and hence  for  is

perfectly possible.

Let’s now integrate Eq. (11) over Ω and use Eq. (15) to

replace the dissipation rate with τ2ϕ: 

,

. (36)

Suppose now that  everywhere in Ω. We see from

Eq. (36) that the only way this may occur is if ϕ = 0

everywhere. In turn this implies that , using Eq. (15)

and since the stress is finite. Thus,  everywhere in Ω

is sufficient to ensure the fluid is unyielded. Thus, to some

extent Y acts as yield stress globally, in being a stress

threshold below which the entire flow is unyielded.

However, in reverse order let us first suppose that .

Using Eq. (15) we have ϕ = 0. We can infer that τ is at

least bounded, but not directly that . As argued pre-

viously, having τ > Y for ϕ = 0 is an unstable steady state

for the kinetic equation.

If instead we suppose that the flow is not fully structured

everywhere, Eq. (36) has an alternate interpretation. If we

denote those regions where ϕ = 0 by Ω0, we see that for

the rest of the domain: 

. (37)

Since ϕ > 0 in , we see there is a (weighted) bal-

ance of regions with  and with , in order for the

above equation to hold. In other words, if  we must

have a combination of regions in which ϕ is evolving

towards ϕs = 0 and those in which ϕ evolves towards

ϕs > 0.

Including the time derivative of ϕ we see that  is

constantly evolving (over a timescale ~ Λ) towards a solu-

tion for which the right-hand-side of Eq. (36) is zero.

Defining ϕs by using the local dissipation rate: ,

as in Eq. (19), and then subtracting off the steady state

shows this explicitly: 

. (38)

Again ϕ chases ϕs in the above integral sense. This chas-

ing of the steady state is common to many thixotropic

models; see e.g., the analysis and characterization in de

Souza Mendes and Thompson (2012).

4.2. Static stability and Y
c

Although the yield stress interpretation is different for

the TVP flow, formally at least we can still derive a type

of critical yield value, relevant to stability.

Steady flows:

First let’s consider a steady flow for which the total

stress is bounded: . Using the mechanical energy

balance we write: 

. (39)

From Eq. (36) and Eq. (15): , so that

. (40)

At this point it seems that we might use Eq. (32) and the

alternate critical value Yc,a that we have discussed. How-

ever, ϕ is no longer slaved to  and τ via the steady

kinetic equation, so it is unclear if even .

Instead we use Eq. (15) to give =τϕ, and hence: 

. (41)

with the definition of Yc as before in Eq. (28). Therefore,

for 

(42)

we guarantee that u = 0 for the steady flow.

The format of the bound Eq. (42) is quite different to Eq.

(28). Calculation of Yc for simple yield stress fluids in

general is dependent only on the distribution of the dimen-

sionless forcing and/or boundary conditions, and on the

shape of the flow domain Ω. It is not solution-dependent.

We have also seen that in general the Yc for the BMP

model with Λ = W = 0 is identical with that of the Bing-

ham fluid (or any other simple yield stress fluid).

The appearance of τmax in Eq. (42) means that the exis-

tence of the static steady state, u = 0, depends on the stress

distribution of the solution. However, in the case that the

flow is static the stress distribution is indeterminate: Eq.

(15) is satisfied but non-zero stress is possible where

ϕ = 0. It is only necessary that the steady momentum bal-

ance is satisfied, which at most suggests that τmax = O(1)

unless there are other flow constraints, e.g., symmetry.

Transient flows:

To consider transients, we start first with the mean flu-

idity, which satisfies 

, (43)

. (44)

Using Eq. (43) in the energy equation: 

 Y
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, (45)

,

. (46)

We focus mostly on the case , since if 

then  assures the steady state is static.

Before proceeding, note that  should now be con-

sidered as the supremum of τ over both Ω and temporally,

from zero up to some end time tend. As explained, the

stress is not always determinate so we are making essen-

tially a physical assumption that the stress is bounded. We

brush past this point, noting that the aim here is to explain

what we may expect in terms of stability rather than prove

rigorous results.

Suppose now that  and therefore .

We consider the 3 different possibilities.

(i) If  there is no guarantee at all that we have

a static steady state. Indeed if  we see no mechanism

for there to be a static steady state: we may of course have

a flowing steady state. For , it is plausible that

a steady state could be static or flowing. If the steady state

were static,  and hence ϕ = 0, but since 

there will be some regions where ϕ = 0 and .

As discussed previously, such steady solutions are on

the unstable branch of the kinetic equation, i.e., ϕ grows

when perturbed from zero. Although we neglected such

transients previously (when ), now we must allow a

transient. These solutions correspond to flow with an ava-

lanche effect, i.e., a small perturbation will lead to increas-

ing ϕ, which means non-zero  and hence onset of

motion. Since the right-hand side of Eq. (46) is not guar-

anteed to be negative, there is no decay of the kinetic

energy, nor any other stability implied (under this analysis).

(ii) Suppose that , in which case we

have a static steady state: u = 0, with  and hence

ϕ = 0, for the steady state. Again since  there will

be some regions where ϕ = 0 and , and the kinetic

equation is on the unstable branch. Thus, in parts of the

flow domain we may see ϕ grow and an onset of motion.

However, unlike (i), the energy equation is stable and Eq.

(46) implies that the solution decays. Using Eq. (44) and

the Poincaré inequality, we can write 

, (47)

where CP is a constant in the Poincaré inequality. We see

that the kinetic energy plus a linear multiple of  will

decay exponentially to zero. If we write: 

, (48)

it becomes straightforward to derive the following condi-

tions.

If , then  and 

. (49)

If , then  and 

. (50)

Note that for the first case the decay timescale has t ~

O(Re) and for the second t ~ O(Λ), with  for larger

Λ, i.e., the slowest timescale governs. Similar energy

bounds can be obtained by other means (with slightly dif-

ferent constants), but have in common this switch in

timescales.

This decay is monotone but allows for transient growth

locally as has been described. Qualitatively, this corre-

sponds to an energetically repressed avalanche effect in

which any flow onset is short-lived and the flow returns to

a fully structured static state. Since the dissipation rate

remains positive throughout, the motion dissipates energy.

Physically, we might expect the new state to have smaller

stress, but we cannot prove this.

(iii) Finally, suppose that Y > τmax. Then we again have

a static solution with ϕ = 0. However, if now there is any

perturbation then ϕ decays monotonically to 0, both

locally Eq. (11), and in the mean - rearranging Eq. (43).

Thus, the avalanche effect behaviour is not found: the

fluid becomes structured everywhere for large enough Y.

The same energy inequalities as above can be used.

Remarks:

An interesting point for (ii) and (iii) is that although the

flow is energy stable, we lose the finite time decay as soon

as . To see this, suppose that u = 0 after a finite time.

Since then , we see that also ϕ = 0. However, this

contradicts Eq. (43), which has at most exponential decay,

i.e., the right-hand side is always positive. Thus, even if

the kinetic energy wants to decay faster, the structure

build-up inherent in the fluidity equation will retard it.

Although the decay bounds are exponential, these are con-

servative bounds. Viewed naively, the term  leads

to a stabilizing viscous diffusion, with diffusivity 1/ϕ.

Thus, we expect the stability to accelerate as .

We have also lost the global stability, although this may

not be explicitly obvious. Since our stability criteria on Y

now involve τmax there will be dependence on the initial

state of stress, even assuming that the stresses decay with
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the velocity. It is interesting to reflect that all the distinc-

tions above in (i) - (iii) arise from the state of stress, i.e.,

τmax. In a simple yield stress fluid τ would be indetermi-

nate below the yield stress. Here, we have not actually

removed the indeterminacy (for W = 0). It is frustrating

that we only can discuss and describe stability via τmax, but

have no means of estimating τmax in a static fluid.

Pragmatically then, what can we say? If the flow

domain gives you no reason to expect any stress singu-

larity, it could be reasonable to assume a bound such as

τmax. Although the bound might be unknown, knowledge

of the driving forces of the flow may help to estimate rea-

sonably. Then taking Y large enough, i.e., satisfying Eq.

(42), should result in a exponential decay to zero of both

the kinetic energy and the mean fluidity. The fluidity

decay is no faster than exponential but kinetic energy

decay is probably faster. Depending on whether viscous or

kinetic timescale is faster, we have different exponential

decay rates.

For the TVP problem with Λ > 0, the value τ = Y does

not represent a yield stress in the same local way as in a

simple yield stress fluid. Instead Y is a threshold stress

value that changes the limiting steady ϕs from zero to pos-

itive as τ increases through Y. The simple yield stress fluid

interpretation is recovered only as  when 

rapidly.

4.3. 1D Examples
We again present some 1D examples of the main points

of the analysis, based on the plane Poiseuille flow.

Throughout we fix Re = 1, so that we can compare solu-

tions in which the kinetics of the fluidity evolve fast (Λ <

1) or slow (Λ > 1), i.e., relative to the viscous timescale.

We may eliminate the stress in both momentum and

kinetic equations. However, the divide through by ϕ is

problematic as . It might be possible to use an aug-

mented Lagrangian technique again to circumvent this,

but here we simply regularize the viscosity terms. The

system of equations to be solved is 

, (51)

, (52)

where  and ε << 1. This regularization

affects only the plug regions. The equations are now

solved numerically, discretized using finite differences,

fully implicit in time and second order in y.

The first example repeats the stopping problem of the

VP flow, for Y = 0.25. The initial condition is the BMP

Poiseuille flow velocity profile ( f = 1) and associated

steady state fluidity ϕs. For t > 0 we set f = 0 so that the

flow decays. For Λ = 10 (see Fig. 5), the fluidity kinetics

are slow and the velocity decays to zero faster. We

observe that the velocity is practically zero when the flu-

idity has hardly changed from its initial profile. The com-

putation is repeated for various ε and we found little

change for ε < 10−3 and this value essentially only influ-

ences the low fluidity threshold within the plug region. We

have used ε < 10−4 for all computations thereafter.

In contrast, Fig. 6 shows the same flow except Λ = 0.1.

We show solution profiles initially with time spacing

Dt = 0.005 (red) and then later Dt = 0.05 (blue). We

observe a very rapid decay in ϕ away from the initial con-

dition. The fluidity then appears to track the steady state

fluidity ϕs, as defined by the slowly evolving velocity gra-

dient. Decay of the velocity is the controlling rate. Note

however that the velocity decay is still faster than that of

Fig. 5, since the decaying fluidity contributes to accelerate

the kinetic energy decay. It almost seems that the decay is

in finite time, although on close inspection we have a vis-

cous decay controlled by the regularized minimum fluid-

ity ε.

For Λ < 1, we observe that ϕ remains largest at y = ±1

and decays monotonically. As the dissipation becomes

very small we might expect that the first term in the

kinetic equation dominates, so that  ~ 

exp . In this case we might expect that u(y, t) decays

 0  s
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Fig. 5. (Color online) Stopping flow for an inelastic BMP fluid

with Y = 0.25, Re = 1, W = 0, and Λ = 10: (a) velocity and (b) flu-

idity. Initial profiles in black, profiles at intervals Dt = 0.05. 

Fig. 6. (Color online) Stopping flow for an inelastic BMP fluid

with Y = 0.25, Re = 1, W = 0, and Λ = 0.1: (a) velocity and (b)

fluidity. Initial profiles in black, profiles at intervals Dt = 0.005

(red) and Dt = 0.05 (blue). 
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faster than the solution v(y, t) of: 

. (53)

For this problem, as it is separable, we can find series

solutions. The slowest modes decay like: 

, (54)

as . Thus, we see that (doubly) exponential decay

might be expected for stopping flows with small Λ.

Next we consider starting flows. As an initial state we

take a fully developed Newtonian Poiseuille flow velocity,

(for f = 1), and as fluidity, ϕ(y, t) = 1. For Y = 0.25 there

is a non-zero steady Poiseuille solution with a central

plug, as we have seen earlier in the paper. The solutions

converge to this steady state velocity and associated

steady fluidity ϕs(y). The convergence is again controlled

by the slower timescale. For Λ = 10 (Fig. 7), the velocity

converges quickly and the fluidity retards this. For Λ = 0.1

(Fig. 8), the fluidity converges quickly and the velocity

retards convergence. Because neither final state is zero,

the convergence appears to remain on the exponential

timescales suggested by our analysis.

Figure 9a shows the convergence of the mean velocity

to the steady state in the two cases, converging for t ~ 10

for Λ = 10 (structure controls: t ~ Λ), and converging for

t ~ 1 for Λ = 0.1 (viscosity controls: t ~ Re = 1). On setting

Y = 1.5 > Yc there is only the static steady solution. Both

cases decay rapidly to zero, again controlled by the slow-

est timescale; see Fig. 9b. Particularly for Λ = 0.1 the

decay appears very rapid compared to the (high shear) vis-

cous timescale, t ~ Re. Since for small ϕ we have regu-

larised to limit the viscosity to ε
−1 the final decay of the

velocity is exponential.

Lastly we explore whether we can have a super-stressed

initial profile when static and fully structured. Here we

impose an initial stress: τxy = −1−y, which gives τmax = 2,

we have Yc = 1 and set Y = 1.5. Therefore, we find y > 

= . We also set ϕ = u = 0 initially. Theoretically,

these initial conditions should admit a steady state, albeit

unstable to small perturbations for . The difficulty

numerically is that although setting ϕ = u = 0 is fine, the

stress would not then be defined. To circumvent this, we

have regularized the fluidity expression where it might be

singular, but this itself leads to a rapid change from the

Re
v

t
----- = 

e
t/

 ±1, 0 
---------------------

2
v
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2

-------, y 1, 1–  , v ±1, t  = 0

v y, t  ~ e
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xy Y

Fig. 7. (Color online) Convergence to Poiseuille flow for an

inelastic BMP fluid with Y = 0.25, Re = 1, W = 0, and Λ = 10: (a)

velocity and (b) fluidity. Initial profiles in black, (Newtonian par-

abolic velocity profile and fluidity ϕ = 1). Profiles at intervals

Dt = 1.

Fig. 8. (Color online) Convergence to Poiseuille flow for an

inelastic BMP fluid with Y = 0.25, Re = 1, W = 0, and Λ = 0.1:

(a) velocity and (b) fluidity. Initial profiles in black, (Newtonian

parabolic velocity profile and fluidity ϕ = 1). Profiles at intervals

Dt = 0.05.

Fig. 9. (Color online) Convergence of mean velocity for: (a)

Y = 0.25, results of Figs. 7 and 8. (b) Y = 1.5, other parameters as

in Figs. 7 and 8.
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initial state. In other words, the regularization provides an

initial perturbation from the steady state. Figure 10 shows

evolution of the stress and fluidity from these initial con-

ditions. There is a rapid change in the stress near y = −1,

dropping below the symmetric steady state value and then

rebounding and converging. The fluidity (and velocity)

also have a brief transient but then converge to zero

(meaning to very small equilibrium values determined by

the regularization).

For smaller Y, i.e., Y < 1 here, the restart process con-

tinues and the flows converge to a steady flow. There is

some initial asymmetry in the flow due to the initial stress

but short lived. The convergence of the mean velocity and

mean fluidity are illustrated in Fig. 11. Unfortunately,

within the scope of a simple 1D example with the regu-

larization used, it does not easy to explore the different

possibilities we have discussed.

5. Elasto-visco-plastic flows: Λ = 0

In the elasto-visco-plastic (EVP) limit we assume thixo-

tropic evolution is faster than elastic, with the interpreta-

tion that W >> Λ ~ 0. Thus, Eqs. (8) and (10) are satisfied

and Eq. (11) is replaced by: 

ϕ = (1 − ϕ) . (55)

Although by definition the fluidity should remain

bounded between 0 and 1, in a viscoelastic fluid there is

no guarantee that the dissipation above is positive. Indeed,

in classical oscillatory shear, the elastic and viscous

responses are out of phase. If the dissipation term is neg-

ative then ϕ < 0, which is unphysical. To remedy this, we

might either consider only a part of the total stress, such

that the dissipation is semi-positive, or alternately we may

take the absolute value above: 

ϕ = (1 − ϕ) , (56)

which on rearranging gives us: 

= . (57)

Note that the upper convected derivative term in Eq.

(10), for , prevents us from switching to using the

stress or strain rate as alternatives in defining ϕ.

5.1. Local yielding behaviour
Local yielding behaviour in the BMP model comes from

the kinetic equation, which is in steady state here. On

rewriting Eq. (56) as:

, (58)

we see that if /  then the only solution is ϕ = 0.

For  we cannot use Eq. (10) to switch this into a

condition on the stress. Lets then look at the implications.
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Fig. 10. (Color online) Effects of an super-stressed initial profile

when static and fully structured: inelastic BMP fluid with

Y = 1.5, Re = 1, W = 0, and Λ = 0.1 Early time evolution: (a)

stress and (b) fluidity. Initial profiles in black, (τxy = −1−y, ϕ =

u = 0; profiles at intervals Dt = 10−5 (red) and Dt = 10−4 (blue).

Fig. 11. (Color online) Variations in: (a) mean velocity; (b) mean

fluidity, for flow of Fig. 10 with Y = 0.25 (restart) and Y = 1.5 (no

restart).
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First, returning to Eq. (56) we see that ϕ = 0 implies that

= 0. Assuming that /  means we consider

a limit in which = O(ϕ) as . We also see from

Eq. (57) that ϕ = 0( ) as  .

It follows that the yield condition /  can be

satisfied with finite τ and allowing ~ ϕ = 0. This dis-

tinguished limit gives rise to a type of yield stress

behaviour, except that the limiting stress is not determined

in this limit. Indeed, other possibilities are not refuted. For

example = 0 can be satisfied with non-zero stress

and strain rate.

5.2. Static steady states
Let us now consider steady flows for which we will

decompose: , where for  we simply take the

viscous part of the stress, i.e., 

. (59)

To start with we will assume that = 0.

Note we can always write  in this way, but there is no

guarantee that = 0. This assumption does hold for an

important class of flows: uniform duct flows. For exam-

ple, in a fully developed flow along a duct with uniform

cross-section in the (y, z)-plane, we have a single velocity

component u(y, z) and: 

, (60)

with  otherwise. We can then construct the steady

components of : 

, (61)

and  otherwise.

With the above assumption that = 0, we find that 

(62)

and the condition /  is simply , i.e., a

yield criterion based on the viscous part of the stress. Fur-

thermore, the above identities are analogous to those in §

3 for the steady ϕs: slaved to the stress, dissipation or

strain rate (except here using τv).

It follows that when = 0, we may construct the

steady mechanical energy balance as before, substitute for

the dissipation and conclude that for , as defined by

Eq. (28), we have u = 0. In other words we have the same

critical yield limit for the steady EVP flow, provided that

= 0, e.g., for uniform duct flows. Additionally, in the

previous subsection we can readily see that Y plays the

local role of a yield stress, i.e.,  implies that = 0.

5.3. Flows with 

Now let’s examine if we can remove the constraint

= 0. From Eq. (10) for a steady flow, we find ,

which is given componentwise by: 

. (63)

Thus, we see that ~ O(W) and for bounded stress

fields:

 ~ . (64)

For small W we may expand  in terms of

W, i.e.,

 = . (65)

We now formulate the steady mechanical energy bal-

ance, retaining 

 
. (66)

We now denote by  the function defined by (62).

We can write , and

then expand in a series, assuming ( / ) << 1: 

(67)

Combining with Eq. (66) and ignoring second order

terms we have: 

, (68)

as in Eq. (25).

The first two terms are exactly as in our analysis of the

viscoplastic limit (Λ = W = 0). These may be combined

and bounded above by: .

These terms are linear in the velocity and strain rate as

. The third term, for bounded stress is also linear in

W times the velocity or the strain rate.

In order to preserve a static steady state, it seems that we

need to balance these convective stress contributions with

increased plastic dissipation. In other words, if ,

a steady state will be static (u = 0), provided that: 

, (69)

where Cs > 0 will depend linearly on assumed bounds for

the total stress and stress gradients. In other words there

can be an additional elastic component to the critical Yc

that needs to be exceeded. This component scales linearly

with W for small W. There are likely classes of flows e.g.,

slowly varying wavy channels, for which the elastic con-
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tribution Cs could be estimated. On the other hand, there

are possibly elastic flows with singularities that would not

be admissible and violate Eq. (69).

5.4. Comments
The bound Eq. (69) is really only intended to highlight

some of the difficulties in establishing even a steady flow

result. Compared to the VP limit we have lost the sharp-

ness of the bound Yc and still need bounds on the stress

and gradients. We have not succeeded to derive any sta-

bility results for the transient problem. If such a result

were established, it appears that it would also not be

global.

5.5. 1D Examples
We again present some examples based on the plane

Poiseuille flow. The flow is 1D and the system solved is: 

, (70)

, (71)

. (72)

We use a staggered mesh, with τxy and ϕ approximated

at half-meshpoints and u at full meshpoints. The time

advance is done with a predictor-corrector scheme. The

timestep is selected to satisfy a CFL constraint for the

underlying hyperbolic problem, i.e., .

We commence with two stopping flows for Λ = 0 and

Re = 1. Initial conditions are the plane Poiseuille flow

solution with Y = 0.25. We solve for both W = 0.1 and

W = 10, to contrast the near inelastic with the strongly

elastic. Since for t > 0 we set f = 0, there is no driving

force for the flow. Evidently u = 0 is now a steady solu-

tion, but the question is how the solution variables con-

verge.

In Fig. 12 we see the solution for W = 0.1. The velocity

drops from its initial condition, but not monotonically.

Near the wall the initially concave velocity profile becomes

convex and the velocity overshoots, becoming negative

before again accelerating. Similarly, the stress gradient

changes from negative to positive, away from the walls,

and oscillates.

The oscillations are significantly larger for W = 10; see

Fig. 13. Here the velocity oscillations dwarf the initial

velocity. They are driven by the oscillating stress. In both

cases these are damped elastic waves, as can be seen by

eliminating the stress equation: 

. (73)

On using Eq. (70) we can see that the final term contains

a damping term: .

Figure 14 shows the decay of the mean velocity with

time for the results of Figs. 12 and 13. The wave speed of

the undamped system is , which corresponds to

the timescale we observe for the oscillations, travelling

over distance 1. Strangely the damping term is less active

as , which has the effect of prolonging the oscilla-

tions. An interpretation of this is that for zero fluidity, the

yield stress limit is wholly elastic, i.e., the damping would

vanish. This suggests that a stopping flow may be a useful

viscometric flow with which to test materials that one

expects to represent with the BMP model.

We now explore the starting flows, in which the fluids

are initially stationary and then f = 1 is applied for t > 0.

Again we fix Λ = 0, Re = 1, and Y = 0.25 and solve for

W = 0.1 and W = 10. The relatively inelastic flow is

observed to converge rapidly and monotonically to the

Poiseuille profile; see Fig. 15. Initially the core of the fluid

is accelerated uniformly by the pressure gradient, with vis-

cous effects diffusing in from the walls (red profiles). This

then fills out as the Poiseuille profile is approached.

In contrast, for W = 10 we again see large scale elastic

oscillations in positive and negative directions, as illus-

trated in Fig. 16. These oscillations are damped and even-

tually this flow also converges to the plane Poiseuille
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Fig. 12. (Color online) Stopping flow for non-thixotropic BMP

fluid with Y = 0.25, Re = 1, Λ = 0, and W = 0.1: (a) velocity; (b)

stress. Initial profiles in black; profiles at intervals Dt = 0.0158. 

Fig. 13. (Color online) Stopping flow for non-thixotropic BMP

fluid with Y = 0.25, Re = 1, Λ = 0, and W = 10: (a) velocity; (b)

stress. Initial profiles in black; profiles at intervals Dt = 0.158.
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flow.

The convergence of the mean velocity for the two cases

is shown in Fig. 17. The main noticeable difference is for

W = 0.1 where the convergence is monotone. Compared to

the earlier stopping flow, the steady profile is now non-

zero, hence the fluidity does not vanish and damping of

the transient is more effective. This is also true for W = 10,

Fig. 14. Variations in mean velocity with time for: (a) Fig. 12; (b)

Fig. 13. 

Fig. 15. (Color online) Startup flow for non-thixotropic BMP

fluid with Y = 0.25, Re = 1, Λ = 0, and W = 0.1: (a) Velocity; (b)

Stress. Initial profiles in black; profiles at intervals Dt = 0.0158

(blue) and Dt = 0.00158 (red).

Fig. 16. (Color online) Startup flow for non-thixotropic BMP

fluid with Y = 0.25, Re = 1, Λ = 0, and W = 10: (a) and (c) veloc-

ity; (b) and (d) stress. Figures (a) and (b) ; fig-

ures (c) and (d) .

t 0, 2 ReW 
t 2 ReW, 4 ReW 

Fig. 17. Variations in mean velocity with time for: (a) Fig. 15; (b)

Fig. 16.
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except less visible since the initial elastic oscillations are

much more significant. However, comparing Fig. 17b

with Fig. 14b the convergence is faster for the non-zero

steady flow.

Lastly, we consider the same elastic restart of Fig. 16,

except now with Y = 1.5. The flow again restarts with a

large elastic oscillation in both velocity and stress; see Fig.

18. However, now Y > Yc = 1 and the underlying steady

Poiseuille flow is u = 0. Thus, the restart is short lived and

the flow eventually decays to zero.

Comparing decay of the mean velocity in Fig. 18 to that

of Fig. 16, the decay is significantly slower; see Fig. 19.

This is slightly paradoxical if we think of Y as the yield

stress, which for simple yield stress fluid models viscos-

ifies. Here increasing Y makes the fluid more gel-like,

suppressing the mean fluidity which suppresses the effect

of damping.

6. Conclusions

In this short paper we have studied the various limits of

the classical BMP model when eliminating either elastic-

ity or thixotropy. The aim has been to study how the

energy stability of the underlying visco-plastic system (for

) is affected. The key results are that for the VP

system with Λ = W = 0 the flow behaves qualitatively as

does any simple yield stress fluid, e.g., Bingham, Casson

etc.. The main point is that the dissipation , eval-

uated for the steady kinetic and constitutive models should

increase monotonically with the strain rate and approach

zero linearly, when expressed as a function of the strain

rate. Loss of the monotonicity might not affect critical

yield number behaviour, but would affect uniqueness of

steady solutions and potentially the stability, e.g., shear-

banding.

Thus, this analysis gives some general guidelines for the

construction of constitutive models that preserve features

of yield stress behaviour with respect to static stability. In

fact there is considerable flexibility in how such models

could be constructed while retaining this behaviour. For

example, the steady kinetic equation could be varied, or

the stress could be split into solvent and polymeric parts,

or adapted to model suspensions as with Calderas et al.

(2013). Alternately, when splitting into solvent and poly-

meric parts, one might consider to include the yield stress

behaviour directly as part of the solvent stress. Mathemat-

ically, this makes little difference within the BMP frame-

work insofar as VP flows are concerned. Additionally, we

remark that our focus on the BMP model is somewhat

arbitrary. Others have developed kinetic models that have

a stronger focus on rheological aspects of yielding, e.g.,

Leonov (1990), and there are many other thixotropy mod-

els included in the reviews of Mujumdar et al. (2002),

Mewis and Wagner (2009), that deserve more analysis.

The BMP model of Bautista et al. (1999) was a straight-

forward elastic extension of the earlier model of Fredrick-

son (1970). In many studies since the flows considered

have been viscometric, for which the precise format of the

model is not particularly important since ϕ remains

bounded. However, for more complex flows this is not the

case, due to the dissipation term. It is only in more recent

computational studies such as López-Aguillar et al. (2018)

that the positivity of the dissipation has been fixed by

using , which keeps the fluidity bounded.

An alternative to this treatment is to replace the dissi-

pation with e.g., ϕτ
2 or . Either option would ensure

positivity and produce the same results for 1D steady

flows. Consideration of kinetic equations that model

destruction via either strain rate or stress is discussed by

de Souza Mendes and Thompson (2012), who advocate

use of the stress. We agree entirely with this. As well as

the physical arguments raised by de Souza Mendes and

Thompson, we see that using the stress in the kinetic equa-

tion here gives a much clearer interpretation of Y. For

example, for the EVP flows we have  so that

 implies directly that ϕ = 0. For TVP flows we have

the same physical interpretation of Y as a threshold value

̂ 0 = 0

         

        

·
2
/

 = s /Y 
 Y

Fig. 18. (Color online) Startup flow for non-thixotropic BMP

fluid with Y = 1.5, Re = 1, Λ = 0, and W = 10: (a) Velocity; (b)

Stress. Initial profiles in black; profiles at intervals Dt = 0.158.

Fig. 19. Variation in mean velocity for flow of Fig. 18.
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for the steady fluidity. This does not affect critical Y for

either system and stability results appear the same for the

TVP flows. 

A last remark concerns the EVP flows, which we have

seen can exhibit significant elastic waves in some of our

simple examples. The disappearance of damping in the

model is a bit peculiar. This could be rectified by splitting

the stress into a solvent and polymer part, i.e., retaining

viscous damping, or by looking at non-vanishing .

There are also many other ways in which to make the

underlying Fredrickson model elastic. A number of such

methods have already been considered within the BMP

framework in the literature for either analytical, experi-

mental or computational reasons, e.g., Tabatabaei et al.

(2015). Whether elastic modelling can be considered sep-

arately from the yield stress behaviour remains unclear

and depends on the origin of the yield stress in the system

under investigation.
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