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Laminar flow of a viscoelastic fluid obeying the linear simplified Phan-Thien/Tanner model (LPTT) is
numerically studied in a planar channel partially obstructed by a cosinusoidal constriction. Based on pub-
lished data (Tammadon-Jahromi et al., 2011) there is no excess pressure drop for this particular fluid when
flowing through an orifice-plate. Numerical results obtained using OpenFoam software at a typically low
Reynolds number suggest that there exists a strong competition between the fluid’s strain-hardening/shear-
thinning behavior on the one side with its first normal-stress difference in extension, on the other side, in
controlling the pressure drop caused by the presence of the constriction. It is shown that, an excess-pressure-
drop (epd) can correctly be predicted provided that use is made of a proper (inelastic) baseline in the defi-
nition of the “epd”. At moderate Reynolds numbers a flow-reversal is predicted to occur at the lee side of
the constriction ruling out this technique as an extensional rheometer. It is argued that such vortices can be
very useful in high-throughput microfluidic systems for mixing enhancement. To reduce the excessive pres-
sure drop experienced by the fluid when working at high Reynolds numbers, it is shown that the Deborah
number of the flow should be increased.

Keywords: Phan-Thien/Tanner model, constricted channel, Deborah number, extensional viscosity, Open-

Foam, retardation parameter

1. Introduction

The flows of viscous fluids through constricted channels

are frequently encountered in physiological systems and

certain industrial applications. While in physiological sys-

tems they are troublesome in the sense that they can gen-

erate regions of excessive shear (Anderson et al., 2000), in

polymer industry the pressure drop incurred this way turns

out to be useful for the measurement of the fluid’s exten-

sional viscosity (James et al., 1990; Wang and James,

2011). The latter application works on the idea that for

viscoelastic fluids there exists a large excess pressure drop

(epd) in comparison with its Newtonian counterpart. In

fact, for highly elastic fluids called Boger fluids, the

experimental epd obtained in an axisymmetric channel

(Perez-Camacho et al., 2015) has been shown to correlate

well with the extensional viscosity data (Lopez-Aguilar et

al., 2017). With the viscosity of Boger fluids being

(nearly) constant (James, 2009), the excess pressure drop

is rightly attributed to the fluid’s elasticity, as manifested

by its first normal-stress-difference in extension. In planar

channels, the epd has been realized to be smaller than the

axisymmetric channels (Aguayo et al., 2008; Tammadon-

Jahromi et al., 2016). Nevertheless, it is still very attrac-

tive simply because “microfluidic extensional rheometers”

appear to be the future of extensional rheometry (Rodd et

al., 2005; Rodd et al., 2010; Wang and James, 2011;

Sousa et al. 2011, Ober et al., 2013; Lee and Muller,

2017).

Thanks to its application in extensional rheometry,

extensive efforts were made in the past to predict the epd

using viscoelastic fluids models such as Oldroyd-B. Here

we briefly review the knowledge gathered over the years

in this area. The focus would be on planar channels as

noted above. One can particularly mention the creeping-

flow numerical results obtained by Binding et al. (2006)

in a planar channel equipped with a rounded-corner ori-

fice-plate. They showed that depending on the Deborah

number and the solute viscosity ratio, the Oldroyd-B

model (commonly used to represent Boger fluids) may fail

to predict epd. In an ensuing work, Walters et al. (2009)

argued that the failure of this fluid model in predicting epd

can be attributed to its excessive (quadratic) first normal-

stress-difference (N1) which eclipses the favorable effect

of the fluid’s extensional viscosity in producing an excess

pressure drop. The favourable role played by the exten-

sional viscosity on epd has been beautifully demonstrated

by Nyström et al. (2016). They resorted to the White-

Metzner variation of the FENE-CR model called WM-

FENE-CR (White and Metzner, 1963) and showed that for

this particular constant-viscosity viscoelastic fluid model

an excess pressure drop can indeed be predicted in creep-*Corresponding author; E-mail: sadeghy@ut.ac.ir



Taha Rezaee, Mostafa Esmaeili, Solmaz Bazargan and Kayvan Sadeghy

150 Korea-Australia Rheology J., 31(3), 2019

ing flow through a constricted channel (This fluid model

exhibits a much stronger strain-hardening behavior as

compared with the FENE-CR model while their N1

behavior is virtually the same). Their success in predicting

epd suggests that for the excess pressure drop to be pre-

dicted correctly for Boger fluids use should be made of

rheological models for which the extensional viscosity is

high but the first-normal-stress difference in shear is low.

None of these rheological models can predict a non-zero

second-normal-stress difference in shear (N2). In fact,

Boger fluids are known to exhibit a negative N2 which is

much smaller than N1 (Magda et al., 1991).

To investigate the role played by N2 on the pressure

drop in flow through constricted channels, Wapperom and

Keunings (2000; 2001) resorted to two different visco-

elastic fluid models, i.e., the Pom-Pom model (Lee et al.,

2002), and the MGI model (Marrucci et al., 2001). While

for Pom-Pom model N2 is zero, for the MGI model it is

non-zero and negative. Both models exhibit virtually the

same viscous and N1 behavior in simple shear. Wapperom

and Keunings (2000; 2001) showed that in creeping flow

through a planar 4:1:4 constriction, both fluids experience

virtually the same pressure drop, which was found to be a

decreasing function of the Deborah number. Their results

suggest that N2 plays no role on the pressure drop in pla-

nar constricted channels (For the axisymmetric version of

such channels, however, it is easy to show that N2 plays

an important role; see James et al. (1990)). They did not

plot any epd results but from their pressure drop data it is

obvious that for both fluid models, the epd is a decreasing

function of the Deborah number. Since in extensional

flows, the Pom-Pom model predicts a weak strain-hard-

ening behavior followed by a weak strain-softening

behavior whereas the MGI model is good only for strain-

softening materials, these results again signify the impor-

tance of the extensional viscosity on the excess pressure

drop. Moreover, by fitting the purely-viscous Carreau-

Yasuda model to the viscosity data of the MGI model,

Wapperom and Keunings (2000; 2001) showed that the

pressure drop decreases by an increase in the degree of

fluid’s shear-thinning behavior.

To further explore the role played by shear-thinning,

Tammadon-Jahromi et al. (2011) resorted to the Phan-

Thien/Tanner model in their numerical study (Phan-Thien

and Tanner, 1977). This fluid model is often regarded as

one of the best rheological models when it comes to rep-

resenting polymeric liquids (Peters et al., 1999). In its

most general form, a fluid obeying this model exhibits a

strong shear-thinning behavior accompanied by a positive

N1 which is non-quadratic and a negative N2 which is

much smaller than N1. In extension, it can represent both

strain-hardening and strain-softening materials depending

on its parameter settings. In fact, there are variations of the

model which can represent fluids showing a bounded

value for the extensional viscosity and also fluids exhib-

iting a maximum in their extensional viscosity (Phan-

Thien, 1978). In certain polymer processing operations

such as extrusion, a knowledge about their extensional

viscosity might be needed for design purposes. To that

end, Tammadon-Jahromi et al. (2011) tried to investigate

the applicability of epd-method for assessing the exten-

sional viscosity of the linear form of this fluid model

(LPTT). They resorted to a 4:1:4 contraction-expansion

geometry - in the form of a rounded-corner orifice plate -

but could not predict any excess pressure drop (see Figs.

14 and 15 in their work) inferring that perhaps this tech-

nique is not so viable for measuring the extensional vis-

cosity of all viscoelastic fluids. They have concluded that

perhaps the over-strong effect of shear-thinning is domi-

nating over the effect of the first normal-stress-difference.

No shear stress and/or first-normal-stress difference data

were presented by them to support their conclusion (Actu-

ally, such data have been provided by them in simple

shear flow, but data obtained in simple shear are of no

consequence in constricted-channel flows where the rate

of deformation is non-homogeneous in the constricted

area).

The present work can be regarded as an extension of the

work carried out by Tammadon-Jahromi et al. (2011)

albeit admittedly the two geometries are not exactly the

same. We show that for a Phan-Thien/Tanner fluid flow-

ing through a constricted channel of cosinusoidal shape,

an excess pressure drop can indeed be recorded as a func-

tion of the Deborah number provided that instead of the

Newtonian baseline, epd is judged based on the fluid’s

inelastic analogue. To that end, a major part of our results

has been devoted to low-Reynolds number flows (but

without dropping the weak inertia terms). Still, thanks to

the application of constricted-channel in stenosed arteries

and also in high-throughput microfluidics systems, we

intend to present numerical results at moderate Reynolds

numbers typical of the aforementioned applications.

The paper is organized as follows: We start by present-

ing the governing equations for steady, laminar, incom-

pressible, and isothermal flow of Phan-Thien/Tanner fluids

between two parallel plates partially obstructed by a sym-

metric cosinusoidal constriction. We then proceed with

briefly describing the finite volume method (OpenFoam)

used for numerical solution of these equations. Typical

numerical results are presented next depicting the role

played by different model parameters on the flow charac-

teristics. The paper is concluded by highlighting its major

findings.

2. Mathematical Formulation

We consider laminar flow of an incompressible visco-

elastic fluid obeying the Phan-Thien/Tanner model in a
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planar partially-constricted symmetric channel of height

2H, as shown schematically in Fig. 1. This figure also

shows the Cartesian coordinate system used for the math-

ematical development. The height of the minimum area of

the constriction (say, the throat) is equal to 2H0. The con-

striction has a length equal to Lc which is arbitrarily set

equal to “one”. Like Cheng (1972) and Mahapatra et al.

(2002) the constriction is assumed to be the following

cosinusoidal shape:

 (1)

where  is the height of the minimum area of the channel.

It is worth-mentioning that in current converging-channel

extensional rheometers, the profile of the constriction is

not trigonometric. In fact, it is shaped in such a way that

the rate of extension is virtually constant along the chan-

nel (Wang and James, 2011). The simple geometry chosen

for the analysis in the present work (see Eq. (1)) is quite

easy to fabricate/implement in current microfluidic sys-

tems in future experimental studies. There is also no doubt

that it better represents stenosed arteriesy in human body

as compared with the orifice plate used by Tamaddon-

Jahromi et al. (2011). This geometry is also good for

code-verification purpose noting, the fact that published

data are available for Newtonian fluids in this particular

geometry (Cheng, 1972; Mahapatra et al., 2002). To that

end, like Cheng (1972) and Mahapatra et al. (2002), the

flow is assumed to be steady, laminar, incompressible, iso-

thermal, two-directional, and two-dimensional; gravity

effects are also neglected.

2.1. Equations of motion
Excluding any gravitational and thermal effects, in vec-

torial form, the momentum equations together with the

continuity equation can be written as,

·τ,  (2a)

 (2b)

where D/Dt is the material derivative, ρ is the fluid’s den-

sity, p is the isotropic pressure, u is the velocity vector,

and τ is the stress tensor. For polymeric liquids, the stress

tensor can be divided into solvent contribution and poly-

mer contribution; that τ = τs + τp where the first part is the

viscous stress contributed by the solvent (say, water) and

the second parts is that contributed by the constituent (say,

polymer chains). For Newtonian solvent, we have: τs =

sD where s is the solvent viscosity, and 

is the rate-of-deformation tensor with  being

the velocity gradient tensor. As to the elastic stress con-

tributed by the polymer chains, we assume that it can be

calculated using the Phan-Thien/Tanner (PTT) model.

This fluid model has been derived originally for polymeric

melts based on the idea that polymer chains can interact

with each other in such a way that they can form transient

networks giving rise to the fluid’s viscoelasticity. The con-

stitutive equation for this fluid model reads as (Phan-

Thien and Tanner, 1977; Phan-Thien, 1978),

 = pD  (3)

where  is the relaxation time, and p is the viscosity con-

tributed by the solute (say, polymer chains) to the total

zero-shear viscosity of the solution: 0 = s + p, with s

being the viscosity contributed by the solvent. In Eq. (3),

 is the Gordon-Schowalter convected derivative which is

defined as (Bird et al., 1987; Larson, 1988):

 (4)

where D/Dt is the material derivative,  is the slip param-

eter (representing the non-affine deformation of polymer

chains in the continuum) which is related to the effective

velocity gradient tensor as: L =  with u being the

velocity vector and D the rate-of-deformation tensor. As

noted by Saramito (1995) the Gordon-Schowalter deriva-

tive suffers from the problem that it can give rise to a

maximum in the flow-curve of the fluid. This maximum

has never been observed experimentally for any polymeric

liquid and results in a discontinuity in the velocity profile

in Poiseuille flow. As such, we have decided to set  = 0

in this work. By so-doing the Gordon-Schowalter con-

vected derivative is reduced to the upper-convected deriv-

ative. Also, the reduced model (which is called the

simplified Phan-Thien/Tanner model or SPTT) cannot

predict a non-zero second normal stress difference (N2).

The failure of the model in predicting N2 cannot be

regarded as a drawback in this work because, as earlier

mentioned, N2 plays no role on the pressure drop in con-

stricted-channel flows.

As to the stress coefficient function, g(τ), in Eq. (3) it

must be said that it has a linear form and an exponential

form (Phan-Thien and Tanner, 1977). The linear form

allows the extensional viscosity to be bounded whereas

h x  = H


2
---– 1 cos– 2 x Lu–   


Du

Dt
------- = p–  + 

 u = 0

D = u + u
T

u = uj/xi

g τ τ +  τ
 

τ

 

τ

 

= 
D

Dt
------ τ  τ u u

T
+ τ – + τ D D+ τ 

u D–

Fig. 1. (Color online) Schematic showing a typical planar, cosi-

nusoidal constricted channel (diagram not to scale).
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the exponential form is good for fluids exhibiting a max-

imum in their extensional viscosity followed by strain-

softening at larger extension rates. Both forms have been

realized to fit the data for certain polymeric materials and

concentrated polymer solutions (Phan-Thien and Tanner,

1977). In the present work, we are primarily interested in

the linear version of the model as it is the same model

used by Tamaddon-Jahromi et al. (2011); it reads as:

g(τ) = 1 + trace(τ).  (5)

It is worth-mentioning that, the linear SPTT model is

often referred to as LPTT. In this model,  is called the

extensional parameter - simply because it has a strong

effect on the extensional-flow behavior of the material.

Although, in principle, this parameter lies in the range of

[0,1], for the model to represent strain-hardening fluids,

this dimensionless parameter should be smaller than

roughly 0.5 (Grillet et al., 2002). In fact, for most poly-

meric melts and concentrated polymer solutions it is real-

ized to be less than 0.25; see Phan-thien and Tanner

(1977), Xue et al. (1998), and Oliveira and Pinho (1999).

The rheological behavior of the LPTT model is obviously

controlled by three material properties: (, , p). For a

given zero-shear viscosity (say, one) an increase in the sol-

ute contribution means a decrease in the solvent contri-

bution, and vice versa. With the zero-shear-viscosity being

fixed, the retardation parameter,  = p/0 (also called the

solute viscosity ratio) can be used as an independent

parameter to represent the solution (Xue et al., 1998).

Based on this definition,  = 0 means pure solvent and 

= 1 means a polymer melt. So, all in all, our fluid mechan-

ics problem involves three material parameters: , , and

. While the last two are dimensionless by default, the

first one can be expressed as a dimensionless number (say,

the Deborah number). In the present work, the separate

effects of these three material properties are investigated

on the excess pressure drop for a LPTT fluid.

To close the problem, we need appropriate boundary

conditions at the inlet, outlet, the symmetry plane, and

also at the walls of the channel. As to boundary condi-

tions, at the inlet we can prescribe the analytical solution

obtained recently by Alves et al. (2001) for plane Poi-

seuille flow of LPTT fluids - that solution was for  = 1

but it could easily be extended to any other  albeit semi-

analytically (not shown here). The stress tensor corre-

sponding to these fully-developed velocity profiles can be

used as the stress boundary conditions at the inlet. At the

outlet, the transverse velocity is set equal to zero together

with the gradient of the axial velocity and all stress terms.

Along the symmetry plane, the gradient of the axial veloc-

ity (u) in the y-direction is set equal to zero while the

cross-stream velocity component (v) is forced to be equal

to zero. At all solid walls, no-slip and no-penetration con-

ditions are imposed on both velocity components (u, v).

Also, the gradients of all stress terms are set equal to zero

at the walls. As to the pressure, it is set equal to zero at the

inlet section of the channel in all simulations. The pressure

at the outlet is what we compute in the course of the com-

putations.

A solution of the equations of motion subject to these

boundary conditions can provide us with the pressure vari-

ation along the channel from which we can determine the

“excess pressure drop” (epd), if needed. For Boger fluids,

Nyström et al. (2016) and Tammadon-Jahromi et al.

(2016) defined it as:

 (6a)

where the subscripts “B” and “N” represent the contribu-

tion by the Boger fluid and its Newtonian baseline,

respectively. In this relationship p is the total pressure

drop (i.e., the pressure difference between the inlet and

outlet sections of the channel (say, far upstream and far

downstream of the constriction; see Fig. 1), and

 is the pressure drop associated with

the fully-developed sections of the channel at each side of

the constriction. As previously mentioned, based on

experimental observations, this ratio is larger than one for

Boger fluids.

The above definition for epd is definitely a legitimate

one for Boger fluids. But, it fails to predict an epd for cer-

tain other types of viscoelastic fluids. In our opinion, for

shear-thinning viscoelastic fluids the definition of epd

needs to be revised. This is because for such fluids the

pressure drop associated with the constriction consists of

the pressure drop due to shearing (psh) and that due to

stretching (pext). Unlike pext which can be determined

either experimentally or numerically (Wang and James,

2011), the pressure drop associated with shearing, psh,

can only be determined through a numerical analysis

(James et al., 1990). This is because to determine psh, we

need a fluid which is inelastic but shows a shear-thinning

behavior similar to that of the original viscoelastic fluid.

No such a fluid does exist in the real world simply

because the same mechanism which gives rise to shear-

thinning also gives rise to the fluid’s elastic behavior. To

circumvent this problem, the best we can do is to fit a

power-law curve to the viscosity data of the viscoelastic

fluid at hand (say, LPTT fluid), and then redo the simu-

lation for this inelastic analogue. A proper definition for

excess-pressure-drop valid for shear-thinning viscoelastic

fluids appears to be the following relationship:

 (6b)

where  is the pressure drop due to stretching and

 is that due to shearing. In the above definition, the



p

------

epd = 
p pfd– B
p pfd– N

----------------------------- = 
pB

pN

---------

pfd = puLu + pdLd

epd = 
p pfd– PTT

p pfd– in
--------------------------------- = 

pext psh+

psh

---------------------------- > 1

pext

psh
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subscript “in” refers to the inelastic analogue of the orig-

inal viscoelastic fluid. This definition guarantees that, as

long as the fluid is strain-hardening/shear-thinning epd

always stays above one. With this in mind, the numerical

results reported by Tammadon-Jahromi et al. (2011)

showing that LPTT fluids the excess-pressure-drop is

lower than its Newtonian counterpart can be attributed to

an unwarranted use of Eq. (6a) which is based on New-

tonian baseline. That is to say that, while use should have

been made of Eq. (6b) for this purpose which is based on

power-law baseline. At this stage, we would like to stress

that in the present work, we do not intend to get involved

with measuring/predicting the extensional viscosity of any

viscoelastic fluid using epd data. We only wanted to show

that the LPTT model can correctly predict epd provided

that an appropriate baseline is implemented in its defini-

tion. For completeness, however, in Appendix A we have

briefly explained how excess-pressure-drop and pressure-

drop data can be used to extract a fluid’s extensional vis-

cosity.

In the next section we briefly describe the numerical

method employed to compute the pressure drop for the

LPTT fluid. But, to reduce the number of parameters

involved in the problem, first the governing equations are

made dimensionless through invoking appropriate mea-

sures for length, velocity, pressure, and stress terms. To

that end, we substitute:

(7)

where U is the average velocity. It is worth mentioning

that, the way by which stress terms have been made

dimensionless is different from that used for the pressure

terms. This cannot be regarded as a drawback of our

dimensional analysis simply because no true scaling is

actually involved in the present work. That is to say that,

no approximate theory such as creeping-flow theory or

boundary-layer theory is invoked in this work in order to

ignore any term(s) in the equations of motion in compar-

ison with other terms. All in all, the problem is governed

by the following dimensionless parameters: The Reynolds

number (Re), the Deborah number (De), the retardation

parameter (), and the blockage ratio (). They are

defined as follows:

,  (8a)

,  (8b)

 (8c)

where the Deborah number (De) can be deemed as the

dimensionless relaxation time. Another dimensionless

number involved is the extensional parameter, , as earlier

mentioned. In the next section, the numerical method

adopted for carrying out the simulation is briefly described.

For convenience, the asterisks above all dimensionless

parameters would be dropped henceforth.

3. Numerical Method

In the present study, an open-source software called

OpenFoam has been used to solve the governing equations

for our LPTT fluid. In a stimulating work, Favero et al.

(2010) have developed a robust module called Viscoelas-

ticFluidFoam solver which has enabled OpenFOAM soft-

ware to handle a variety of viscoelastic fluid models such

as LPTT (see also Pimenta and Alves (2017) and Fer-

nandes et al. (2019)). The solver has been shown to accu-

rately reproduce the numerical data for this fluid model in

several benchmark problems including the 4:1 contraction

flow (Favero et al., 2010). OpenFOAM is a finite-volume

software in which the second-order central difference

(CDS) scheme is used to discretize the diffusion and

divergence terms. The same scheme is also used for dis-

cretizing the pressure-gradient terms in the momentum

equations. In this robust scheme the flux value for any

quantity on the surface of a control volume is calculated

from a linear interpolation of its value on the center of the

cells located on each side of that particular surface.

A major challenge when dealing with viscoelastic fluid

flows is the discretization of the advection terms, and this

is particularly so at high Deborah numbers. To avoid

numerical instability at high Deborah numbers, in the lit-

erature, use is often made of the the upwind method for

discretizing the advection terms. In practice, this simple

method discretizes the advection terms in a direction cor-

responding to the characteristic velocity for information

propagation. (That is to say that, the advection terms are

discretized by using a difference which is biased towards

the direction determined by the sign of its coefficient mul-

tiplied by the advection term.) The disadvantage of this

simple upwind scheme is that it is a first-order order

scheme and this might give rise to false diffusion. To cir-

cumvent this problem, the ViscoelasticFluidFoam solver

of the OpenFoam relies on the MINMOD method (Harten,

1983) for discretizing the advection terms for viscoelastic

fluid models. This scheme combines the advantages of the

CDS with that of the upwind scheme and works fine at

moderate Deborah numbers. MINMOD is a flux limiter

method in which the discritization direction is determined

by the magnitude of the flux. This means that we dicretize

the advection terms in such a way that the flux becomes

smaller in that direction.

As the first task, we had to ensure that the numerical

x
*
, y

*
, 

*
  = 

x, y,  

H
-------------------; u

*
, v

*
  = 

u, v 

U
-------------; p

*
 = 

p

U
2

---------; 

ij
*
 = 

ij
0U/H 

---------------------

Re = 
UH

0

------------

De = 


H/U 
---------------


*
 = 



H
----
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results are grid-independent. To that end, four different

grids of 380×60, 420×80, 460×90, and 500×100 have

been tried. Figure 2 shows the effect of the grid size on the

dimensionless velocity profile computed obtained at the

largest Reynolds number tried in this work (i.e., Re = 50)

at the throat. As can be seen in this figure, grid-indepen-

dent results can be achieved for this demanding test case

(which exhibits flow reversal) using the 460×90 mesh. To

be on the safe side, we have decided to rely on a 500×100

mesh for the rest of the work. As earlier mentioned, our

main concern is to determine the pressure variation along

the channel in order to see if there exists any “excess pres-

sure drop” as compared with its Newtonian counterpart.

3.1. Code verification
To verify the numerical scheme, OpenFoam is used to

reproduce the analytical velocity profiles long established

in the literature for LPTT fluids in plane Poiseuille flow at

 = 1. As can be seen in Fig. 3, the numerical results are

in good agreement with the analytical data reported in the

literature; see Oliveira and Pinho (1999). We have easily

extended their results to other β values using a semi-ana-

lytical approach (not shown here). Figure 4 shows such

velocity profiles.

To further verify the numerical scheme, we have tried to

reproduce the axial velocity profiles reported by Azaeiz et

al. (1996) for LPTT fluids in a 4:1 plane contraction flow,

shown schematically in Fig. 5. Their finite-element (FEM)

results have been compared with our FVM results

obtained using OpenFoam in Fig. 6. As can be seen in this

figure, the two sets of results are virtually the same con-

firming that OpenFoam is well capable of dealing with

LPTT fluid flows in contracted channels.

As a more demanding test, we have tried to reproduce

Fig. 2. Effect of the grid size on the velocity profile of LPTT

fluid flowing through the channel shown in Fig. 1 (x = 15, Re =

50, De = 1, ε = 0.25,  = 0.7, and δ = 0.5).

Fig. 3. (Color online) A comparison between numerical results

obtained using OpenFoam (shown by lines) with the analytical

solution reported by Oliveira and Pinho (1999) (shown by sym-

bols) for the velocity profiles in plane Poiseuille flow of LSPTT

fluids (Re = 1,  = 1).

Fig. 4. Effect of the retardation parameter, , on the velocity pro-

files of LPTT fluids in plane Poiseuille flow ( = 0.25, De = 2).

Fig. 5. Schematic showing the 4:1 planar contraction flow used

by Azaiez et al. (1996).
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Newtonian results obtained by Cheng (1972), and Maha-

patra et al. (2002) in a constricted channel of cosinusoidal

shape. As can be seen Fig. 7, the performance of Open-

Foam is very good in reproducing Newtonian results in

this challenging fluid mechanics problem.

In the next section, we present the numerical results

obtained using OpenFoam for LPTT fluids in the con-

stricted channel depicted schematically in Fig. 1. We are

primarily interested in investigating the effect of the mate-

rial properties on the pressure drop. To that end, we are

going to fix the Reynolds number and also the blockage

ratio and obtain numerical results for different values of

De, , and . To proceed with the numerical simulation,

we have to decide on the geometrical parameters of the

channel. To that end, we typically set: Lu = 13.5H, Lc = H,

and Ld = 25.5H so that the total length of the channel is

equal to 40H. With no loss of generality, like Cheng

(1972), we arbitrarily set H = 1 in our analysis even

though. Thus the minimum area is located at x0 = 14.

Thanks to the symmetry assumption, it suffices to con-

sider only half of the channel (say, the upper half) as the

computational domain. As the first task, we have to draw

Fig. 6. (Color online) A comparison between our OpenFoam (shown by lines) with the FEM results (shown by symbols) obtained by

Azaiez et al. (1996) for LPTT fluid flowing through a 4:1 contraction: (a) The axial velocity profiles at different cross-sections, (b) vari-

ation of the axial velocity along the channel at different distances from the centerline (Re = 0.56, De = 1.45,  = 1, and  = 0.25).

Fig. 7. (Color online) A comparison between the numerical results obtained using OpenFoam for Newtonian fluids (shown by line) with

the numerical results reported in Mahapatra et al. (2002) (show by symbol) for the variation of wall vorticity for a 40% blockage ratio

obtained for Lu = Ld = 2.5, and Lc = 1: (a) Re = 10, and (b) Re = 25.
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a baseline with which to assess the size of the elastic

effects. For Boger fluids, use can be made of Newtonian

baseline for calculating the epd (Tammadon-Jahromi et

al., 2011). Figure 8 shows typical pressure-drop profiles

obtained at different Reynolds numbers to be used as

Newtonian baseline. For LPTT fluids, because of their

shear-thinning behavior, a purely-viscous power-law base-

line appears to be a better idea. Figure 9 shows a typical

pressure drop baseline obtained using power-law curve-

fitting to the viscosity profile of LPTT fluids.

4. Results and Discussion

In this section, we present our numerical results

obtained for LPTT fluids in their flow through the con-

stricted channel depicted schematically in Fig. 1. As ear-

lier mentioned, our main interest lies in investigating the

effect of the material properties (, , and ) on the pres-

sure drop experienced by the fluid. In dimensionless form,

this means that we have to study the effect of Deborah

number (De), the extensional parameter (), and the retar-

dation parameter (). For curiosity, the effect of the con-

Fig. 8. (Color online) Dimensionless pressure variation along the

centerline of the channel at different Reynolds numbers obtained

for a Newtonian fluids in the channel shown schematically in

Fig. 1 ( = 0.2, δ = 0.5).

Fig. 9. (Color online) Effect of the power-law index on the pres-

sure variation along the centerline of the channel shown sche-

matically in Fig. 1 (Re = 50, δ = 0.5).

Fig. 10. (Color online) Effect of the Deborah number on the dimensionless centerline axial velocity and pressure variations for LPTT fluids.

The pressure is minimum at the throat (x0 = 14) and is decreased when Deborah number is increased (Re = 1, ε = 0.25, β = 0.7, and δ = 0.3).
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striction’s dimensionless geometrical parameters ( and

Lc) is also investigated in Appendix C. It needs to be

stressed from this point onward all parameters to be used

in the numerical results are dimensionless.

4.1. Effect of the Deborah number
Figure 10 shows the effect of the Deborah number on

the dimensionless velocity and pressure variation along

the centerline of the channel obtained at Re = 1. This fig-

ure shows that the axial velocity and pressure are both

decreased when the Deborah number is increased. These

predictions are consistent with the notion that by an

increase in the Deborah number, the fluid becomes

slightly more shear-thinning which starts at lower shear

rates (see Appendix B). This makes the velocity profile

flatter with its value dropped at the centerline. On the

other hand, the drop in viscosity is sufficient to lower the

wall shear stress, as can be seen in Fig. 11. A drop in the

wall shear stress means that the fluids need a lower pres-

sure drop to pass through the constriction. But, shear

stress is not the only influential parameter involved in this

problem. Another parameter which has a decisive role is

the first normal-stress-difference in extension (xxyy)ext
which is directly proportional to the fluid’s extensional

viscosity. Figure 12 shows the variation of the two normal

stress components (xx and yy) along the centerline of the

channel where there is no shear stress. This figure shows

that while xx is an increasing function of the Deborah

number, yy is decreasing with De number. More impor-

tantly, (xxyy)ext is predicted to increase when the Deb-

orah number is increased. The effect of extensional

viscosity is known to increase the pressure drop. The two

effects (i.e., shear-thinning and strain-hardening) obvi-

ously work in the opposite directions. The prediction that

the net pressure drop is decreased by an increase in the

Deborah number (see Fig. 10) suggests that the effect of

shear-thinning is stronger than the effect of the fluids

strain-hardening, at least for this set of parameters.

From the pressure-drop data presented in Fig. 10, we

can easily extract the “epd” data for LPTT fluids. Figure

13a shows that the epd data obtained using Eq. (6a). It

shows that by an increase in the Deborah number, epd

drops, as previously noted by Tammadon-Jahromi et al.

(2011). In their paper, they have argued that the over-

strong effect of shear-thinning is dominating the effect of

the first-normal-stress difference giving rise to a drop in

epd. No shear stress and/or first-normal-stress difference

data have been provided by them in the constriction region

to support their argument. It is not even clear if by first

Fig. 11. (Color online) Effect of the Deborah number on the

shear stress experienced by the fluid at the wall (Re = 1, ε = 0.25,

β = 0.7, and δ = 0.3).

Fig. 12. (Color online) Effect of Deborah number on the normal stresses developed in the fluid along the channel’s centerline (Re =

1, ε = 0.25, β = 0.7, and δ = 0.3).
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normal-stress-difference they have meant (xx  yy)ext or

N1. We have already argued that for shear-thinning vis-

coelastic fluids such as LPTT, the correct baseline is the

one based on an inelastic analogue of the original fluid

(say, obtained, using the power-law fit to the viscosity data

of LPTT fluids); see Eq. (6b). As can be seen in Fig. 13b,

such a power-law baseline guarantees that an excess pres-

sure drop can indeed be predicted for LPTT fluid albeit it

is still a decreasing function of the Deborah number again,

demonstrating the strong role played by the shear-thinning

aspect of the LPTT fluids on the pressure drop, as noted

by Tammadon-Jahromi et al. (2011).

All in all, the effect of the Deborah number is as fol-

lows: i) The axial velocity is decreased, ii) the pressure

drop is decreased, iii) the wall shear stress is decreased,

and iv) the first normal stress difference (in extension) is

increased.

4.2. Effect of the extensional parameter
Figure 14 shows the effect of extensional parameter on

the centerline velocity and centerline pressure variation.

The effect of  is seen to be qualitatively similar to the

effect of the Deborah number. That is to say that both are

decreased when this parameter is increased. This is not

Fig. 13. (Color online) Variation of the normalized excess-pressure-drop with Deborah number (ε = 0.25, β = 0.7, and δ = 0.3), (a) based

on Eq. (6a) and (b) based on Eq. (6b).

Fig. 14. (Color online) Effect of the extensional parameter on the dimensionless velocity profile and centerline pressure variation (De

= 0.5, Re = 1, ε = 0.25, β = 0.7, and δ = 0.3).
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surprising in realizing the fact that by an increase in 

shear-thinning starts at lower shear rate. So, for a given

shear rate, viscosity and therefore the wall shear stress is

lower (see Fig. 15). Thus, the velocity becomes flatter so

that its value at the centerline is lowered. This by itself

lowers the pressure drop. A further recovery in pressure is

caused by (xxyy)ext  which is dropped by an increase in

the extensional parameter (see Fig. 16). Both effects work

in the same direction, and so the pressure is recovered by

an increase in this parameter. Still, the pressure recovery

is not as much when compared with the effect of Deborah

number. This is because the effect of  on shear-thinning

is weaker than the effect of Deborah number.

All in all, the effect of the extensional parameter is as

follows: i) The axial velocity is decreased, ii) the pressure

drop is decreased, iii) the wall shear stress is decreased,

and iv) the first normal stress difference (in extension) is

increased.

4.3. Effect of the retardation parameter
Figure 17 shows the strong effect of the retardation

parameter on the centerline velocity profile and pressure

variation along the channel. The effect of  is seen to be

quite similar to the effect of the Deborah number and also

the extensional parameter. That is to say that, as far as

pressure drop is concerned, by an increase in  the pres-

sure drop is decreased. This is not surprising in realizing

the fact that for a given s by an increase in  the fluid

becomes progressively more shear-thinning. Therefore,

the wall shear stress should decrease, as can be seen in

Fig. 18. As mentioned above, this has an accelerating

effect on the fluid elements near the wall so that the pres-

sure drop is decreased. But, as can be seen in Fig. 19, (xx
yy)ext is increased when  is increased which increases

the pressure drop. The net effect is predicted to be that of

acceleration so much so that the pressure drop is overall

decreased (see Fig. 18).

All in all, the effect of the retardation parameter is as

follows: i) The axial velocity is decreased, ii) the pressure

drop is decreased, iii) the wall shear stress is decreased,

and iv) the first normal stress difference (in extension) is

increased.

4.4. High Reynolds-number results
The above results have been obtained at a typically low

Reynolds number of “one”. Working at low Reynolds

number has the advantage that no end effects are involved.

It also means that viscous stresses are as important as the

Fig. 15. (Color online) Effect of the extensional parameter on the

dimensionless wall shear stress (De = 0.5, Re = 1, ε = 0.25, β =

0.7, and δ = 0.3).

Fig. 16. (Color online) Effect of the extensional parameter on the dimensionless centerline normal stress (De = 0.5, Re = 1, ε = 0.25,

β = 0.7, and δ = 0.3).
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elastic stresses is giving rise to excess pressure drop. This

is perhaps why virtually all extensional rheometers in cur-

rent use work at low Reynolds numbers (see, for example,

Wang and James (2011)) while in the past the perception

was to operate such devices at high Reynolds numbers -

not a good idea because the instrument was dependent on

the pressure-drop data obtained numerically for an equiv-

alent power-law analogue of the viscoelastic fluid at hand.

As previously mentioned, in the present work we are not

actually concerned with the measurement of the exten-

sional viscosity for any fluid. Still, we have tried to obtain

results at medium Reynolds numbers due mainly to their

application in physiological systems (for example, when

blood has to flow through stenosed arteries; see, Giddens

Fig. 17. (Color online) Effect of the retardation parameter, β, on the dimensionless centerline velocity and centerline pressure variation

(Re = 1, De = 0.5,  = 0.25, and δ = 0.3).

Fig. 18. (Color online) Effect of the retardation parameter, β, on

the dimensionless wall shear stress distribution (Re = 1, De = 0.5,

 = 0.25, and δ = 0.3).

Fig. 19. (Color online) Effect of the retardation parameter, β, on

the dimensionless centerline normal stress components (Re = 1,

De = 0.5,  = 0.25, and δ = 0.3).
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et al. (1993)). Higher Reynolds-number results are also

useful in high-throughput microfluidic systems equipped

with constricted channels as a passive means for mixing

enhancement and/or cell separation (Zhang et al., 2019).

With this in mind, we have tried to obtain results at mod-

erate Reynolds numbers typical of such applications. The

problem is that it is very demanding for current numerical

schemes to obtain converged results when the Deborah

and Reynolds numbers are simultaneously large. We have

been fortunate enough to obtain converged results for

Reynolds number up to 50, which happened to be large

enough to cause flow separation - which is deemed to be

a useful effect in microfluidic systems if not in physio-

logical systems (Rodd et al., 2005). To increase the like-

lihood of flow separation, simulations are carried out for

a larger blockage ratio of δ = 0.5. Figure 20 presents typ-

ical results obtained for Re = 50 at several Deborah num-

bers. This figure shows that a flow reversal is occurring

downstream of the throat which is aggravated by an

increase in the Deborah number. No such flow reversal

could be detected at Re = 1, and so the results obtained at

Re = 50 is a clear manifestation of the importance of iner-

tia effects, as previously noted by Perera and Walters

(1977). The prediction that elastic effects give rise to an

enlargement of the separated zone (see Fig. 20) is also

nothing new and has been previously reported in the lit-

erature (Aguayo et al., 2008). The same is true as to the

effect of the shear-thinning which has been shown to play

a key role in such flows (Fernandes et al., 2019). Obvi-

ously, as far as the size of the separated zone is concerned

(see Fig. 21), there is a strong competition between elas-

ticity, shear-thinning, and inertia effects all trying to con-

trol the vortex structure. For LPTT fluids, the net effect

appears to be an enlargement of the vortex size, at least for

this set of parameters. The experimental data reported in

Rodd et al. (2005) for a 5% PEO solution support this pre-

diction although under creeping-flow condition, it is

known that the Deborah number reduces the size of the

separated zone in sudden-expansion flow (Poole et al.,

2009).

Figure 22 shows the effect of Deborah number on the

Fig. 20. (Color online) Effect of Deborah number on the velocity

profile downstream of the throat. The flow reversal is evident in

this figure (x = 14, Re = 50, ε = 0.4, β = 0.7, and δ = 0.5).

Fig. 21. Effect of the Deborah number, De, on the size of the re-

circulatory zone downstream of throat (Re = 50, ε = 0.4, β = 0.7,

and δ = 0.5).

Fig. 22. (Color online) Effect of the Deborah number on the wall

pressure variation. The region in which the pressure gradient is

positive has been roughly marked (Re = 50, ε = 0.4, β = 0.7, and

δ = 0.5).
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pressure variation along the channel. The pressure is min-

imum at the throat which is then increased with its max-

imum occurring somewhere between x = 12 to x = 16

depending on the Deborah number. This suggests that

there exists a region of positive pressure gradient right

after the throat which might be strong enough to cause

flow reversal. This figure clearly shows that the region of

positive pressure gradient is extended in the x-direction

when the Deborah number is increased. It also becomes

more severe this way which is why the size of the re-cir-

culatory region is enlarged when the Deborah number is

increased.

5. Concluding Remarks

Flow through constricted channels has been proposed in

the past as an efficient means for measuring the exten-

sional viscosity of viscoelastic fluids. The technique, how-

ever, is based on the premise that for strain-hardening

fluids there exists an excess pressure drop as compared

with its Newtonian counterpart. Although an excess pres-

sure drop has indeed be recorded for constant-viscosity

Boger fluids, for shear-thinning viscoelastic fluids such as

LPTT recent numerical results obtained in flow of shear-

thinning viscoelastic fluids such as LPTT (through orifice

plates) could not record any excess pressure drop. We

have relied on the OpenFoam software for simulating the

flow of this particular fluid through a cosinusoidal con-

striction at a typically small Reynolds number of “one”

and reached the conclusion that the pressure drop incurred

is indeed in excess of the baseline provided that instead of

Newtonian baseline use is made of an equivalent power-

law baseline. We have also obtained numerical results at

Reynolds numbers as high as 50 and found out that a flow

reversal might be witnessed at the lee side of the channel

even at such a moderate Reynolds numbers inferring that

this technique of assessing extensional viscosity cannot be

used at large Reynolds numbers due to the limitations

posed by the nontrivial end effects. The high-Reynolds-

number results, however, might be very useful in high-

throughput microfluidic systems where a constriction can

be used to enhance mixing through flow separation down-

stream of the throat. Our numerical results also suggest

that in microfluidic application of constrictions the Deb-

orah number should be as large as possible as it lowers the

pressure drop induced by the constriction.
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Appendix A: Determining extensional viscosity using
pressure-drop data

As mentioned in the main body of the text, in this work

we are not directly involved with predicting the exten-

sional viscosity of LPTT fluids using the pressure-drop

data. But, for completeness, we briefly describe how epd

can be used for this purpose. Based on their comprehen-

sive analysis, Nyström et al. (2016) proposed the follow-

ing relationship to correlate epd with extensional viscosity:

 (A1)

where  is called the dissipation function which

depends on the fluid under investigation. For example, for

E ·  epd  · ·

( ) �

Fig. B1. (Color online) Effect of the viscosity ratio, , on the shear viscosity profiles of the LPTT fluid (= 0.25). The power-law index

is obtained through curve-fitting to the viscosity data in the range of 1< De < 10.
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WM-FENE-CR fluids they proposed the following equa-

tion for this function:

 (A2)

where D is the material’s diffusion time. Another idea is

to correlate the pressure drop due to extension  with

the first normal stress difference in extension, 

(Cogswell, 1972; James et al., 1990). An apparent exten-

sional viscosity can then be defined as:

 (A3)

where  is the apparent rate of extension. On the other

hand, we have: 

where the subscript “in” stands for the pressure drop asso-

ciated with the inelastic analogue of the LPTT fluid,

which is obtained by fitting a purely-elastic, shear-thin-

ning model such as power-law to the viscosity profile of

the LPTT fluid. To estimate , the axial velocity is esti-

mated as:  where the width of the channel

has been set equal to 1. In this relationship, h(x) stands for

the shape of the constriction, and Q is the flow rate (which

can be obtained knowing the Poiseuille-flow velocity pro-

files at the inlet section of the channel). The extension rate

can then be obtained as  which is obviously

inhomogeneous for the cosinusoidal profile chosen in this

work. An apparent extension rate can be defined as an

average between its values at the inlet section of the con-

striction and that at its throat; that is:

.  (A4)

The apparent extensional viscosity obtained this way

can be useful for quality control purposes.

Appendix B: Power-law index of LPTT fluids
To find the power-law index of LPTT fluids, as the first

task, we have to obtain the viscosity profiles for this fluid.

The required formulations have already been worked in

the literature (Xue et al. (1998), Ngamaramvaranggul and

Webster (2002), and Oliveira and Pinho (1999)). Figure

B1a shows typical viscosity profiles for this fluid at dif-

ferent retardation parameters. In Figure B1b we have also

shown the power-law exponent and its variation with the

retardation parameters for two different extensional

parameters. We have also obtained the viscosity profiles

for different Deborah numbers (see Fig. B2), and reached

to the conclusion that, the power-law exponent for all of

them is roughly 0.75 (i.e., independent of De) as long as

the Deborah number is between 1 and 10.

E ·  epd 1 D
· 

2
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Fig. B2. Effect of the Deborah number (De) on the shear vis-

cosity profile of the LPTT model ( = 0.25).

Fig. C1. (Color online) Effect of the stenosis height on the axial velocity profile (Re = 70, De = 0, = 0, and Lc = 1), (a) velocity profile

at x = 15 and (b) velocity distribution along the centerline.
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Appendix C: Effect of the geometrical parameters
Flow through constricted channels are frequently

encountered in the circulation system of human body

where stenosis is realized to be a common problem in

aged people. The blockage ratio and the span of the con-

striction are key parameters which may affect normal

blood flow (say, the pressure drop). Thus, it would be a

good idea to investigate their effects in this work. The

effect of these two parameters has not been investigated

by Tammadon-Jahromi et al. (2011) - perhaps because

their effects looked trivial - and so can be regarded as an

extension of their results. Figures C1 and C2 show the role

played by the height of the constriction on the flow char-

acteristics for a given set of parameters. The strong effect

of “ ” on the flow characteristics is evident in these fig-

ures. As can be seen in Fig. C1a, an increase in the height

of the constriction may give rise to flow reversal. The

velocity at the throat is also dramatically increased when

 increased. The same is true as to its effect on the wall

shear stress and pressure drop, i.e., both are an increasing

function of the blockage ratio, as expected.

Figures C3 and C4 show the effect the constriction’s

length (Lc) on the flow characteristics for a given set of

parameters (The orifice plate is an extreme case of our

constriction where the length of the constriction is very

small). Qualitatively, the effect of Lc on the flow charac-

teristics is predicted to be the same as the effect of . But,

quantitatively, its effect is less significant than . Obvi-

ously, an increase in Lc diminishes the severity of any

adverse effects. For example, the size of the vortex down-

stream of the constriction shrinks when Lc is increased

(see Fig. C1a). On the other hand, the centerline velocity

Fig. C2. (Color online) Effect of the stenosis height on flow characteristics (Re = 70, De = 0,  = 0, and Lc = 1), (a) shear stress variation

at the wall and (b) pressure variation along the centerline.

Fig. C3. (Color online) Effect of the stenosis length on the axial velocity profile (Re = 70, De = 0, = 0, and = 0.5), (a) velocity

profile at x = 15 and (b) velocity distribution along the centerline.
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is slightly increased (see Fig. C3b). The distribution of the

shear stress at the wall becomes smoother the larger the

length of the constriction, but, in general, its magnitude is

predicted not to be affected that much. The same is true as

to its effect on the pressure drop unless the Lc is too

extended so that the converging section gives rise to a

larger pressure drop (see Fig. C4).
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