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Aqueous foams are dispersions of gas bubbles in water, stabilized by surfactant, and sometimes particles.
This multiphasic composition gives rise to complex rheological behavior under deformation. Understanding
this behavior is important in many applications. Foam shows nonlinear rheological behavior at high defor-
mation, which can be investigated by the large amplitude oscillatory shear (LAOS) experiments. In the pres-
ent work, we have performed a systematic LAOS study of foam stabilized by 0.1 mol m−3 hexadecyl-
trimethylammonium bromide and 0.5 wt.% silica nanoparticles. The Lissajous-Bowditch curves and stress
waveforms were analyzed at various strain amplitudes. These curves were fitted by Fourier transform rhe-
ology and Chebyshev polynomials to understand the contribution of the higher harmonic terms in LAOS.
The intracycle LAOS behavior was explained based on the sequence of physical processes. The foam exhib-
ited intracycle strain-hardening and shear-thinning at high deformation. Shear-thickening behavior was
observed at moderate deformations. 
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1. Introduction

Aqueous foams are soft complex materials, which show

viscoelastic behavior and possess an apparent yield stress.

The rheology of these foams is of great interest in the pro-

duction of cosmetics and foods, oil recovery, and minerals

separation (Ahmadi et al., 2015; Denkov et al., 2009;

Dickinson, 2015; Höhler and Cohen-Addad, 2005; Labi-

ausse et al., 2007). When an oscillatory shear strain is

imposed below its yield value, foams exhibit solid-like

behavior as the storage modulus (G') is greater than the

loss modulus (G'') (Balmforth et al., 2014). Upon increas-

ing the strain amplitude (γ0), a nonlinear viscoelastic

response sets in. A detailed study of a linear viscoelastic

behavior of foams has been reported elsewhere (Rouyer et

al., 2005; Saint-Jalmes and Durian, 1999). Princen (1982)

and Khan and Armstrong (1986) have correlated the

stress-response with the morphology of the foams by con-

sidering a two-dimensional network model. This can also

be studied by simulating the foams based on their geom-

etry using a two- or three-dimensional model (Tammaro et

al., 2016). Various methods have been proposed to study

nonlinear viscoelastic properties of foams. Steady shear

flow has been used to study the nonlinear behavior of

foams (Denkov et al., 2008). When the foam is sheared

below its yield value, the angle between the foam films

still remains 2π/3 rad, as per the Plateau’s law. Therefore,

the static force between the foam films is balanced. The

balance of force is lost if the stress is above its yield point,

and the foam bubbles start sliding along each other in the

flow direction. This type of flow is generally characterized

by using the three-parameter Herschel-Bulkley model.

Another method involves shearing the foam under oscil-

latory deformation. By analyzing G' and G'' as a function

of γ0 (i.e., amplitude sweep experiment), the large ampli-

tude oscillatory shear (LAOS) behavior is divided into

four categories, i.e., shear-thinning, strain-hardening, weak

strain overshoot, and strong strain overshoot (Hyun et al.,

2002). It has been found that two materials having the

same type of amplitude sweep graph may show different

nonlinear stress waveforms (Ewoldt et al., 2007; Sugimoto

et al., 2006).

Fourier transform (FT) rheology is a sensitive method to

deal with nonlinear viscoelastic behavior because it can

detect very small oscillatory signals that arise during

LAOS (Hyun et al., 2011; Hoyle et al., 2014; Rouyer et

al., 2008; Wilhelm et al., 1998; Wilhelm, 2002). Investi-

gating foams by the FT-rheology is challenging because

its constituents (i.e., water and air) are Newtonian fluids

and have low viscosity. Therefore, amplitude oscillatory

tests alone may not be adequate in describing the response

under LAOS by means of FT-rheology. Rouyer et al.

(2008) studied the LAOS behavior of aqueous foams in

the full-stress harmonic spectrum to characterize the tran-

sition from linear to nonlinear viscoelastic behavior.

Ewoldt et al. (2008) and Khandavalli and Rothstein (2015)

studied the nonlinear viscoelastic properties by analyzing

the stress response and the Lissajous-Bowditch curves.

These curves are helpful in distinguishing the behavior of*Corresponding author; E-mail: badri@iitg.ernet.in
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foams under deformation. For instance, in a stress vs.

strain curve, an ellipsoidal shape characterizes viscous dis-

sipation, while a parallelogram indicates plastic dissipa-

tion. Hyun et al. (2011) have reviewed the LAOS behavior

in detail. Recently, the study of LAOS behavior of food

foams stabilized by proteins has been studied (Ptaszek,

2015). Several authors (D'Avino et al., 2013; Gurnon and

Wagner, 2012; Jacob et al., 2014; Khair, 2016; Phan-

Thien et al., 2000; Rogers and Lettinga, 2012; Wapperom

et al., 2005) have developed nonlinear models based on

the Giesekus constitutive equation (Giesekus, 1982) and

determined nonlinear parameters (Calin et al., 2010;

Thompson et al., 2015) to deal with LAOS. Rogers et al.

(2011a) have proposed an approach, known as a sequence

of physical processes, in an intracycle Lissajous-Bowditch

curve to a yield stress fluid. The same approach was fur-

ther used in many more LAOS studies (Kim et al., 2014;

Radhakrishnan and Fielding, 2018; Rogers, 2017; Stickel

et al., 2013). A great deal of research has been conducted

on the linear viscoelastic behavior of foams stabilized by

nanoparticles and surfactants (Blanco et al., 2013; Marze

et al., 2009; Vishal and Ghosh, 2018), but its nonlinear

behavior (i.e. LAOS) has hardly been reported. Neither the

complex shear dynamic modulus nor the steady flow anal-

ysis at the high shear rates have been able to provide phys-

ically-meaningful information about the foams.

In this work, we have systematically studied the non-

linear viscoelastic behavior of foam, which was stabilized

by a mixture of 0.1 mol m
−3 hexadecyltrymethylammo-

nium bromide (HTAB) and 0.5% (by weight) silica nano-

particles. The LAOS behavior of foam was described by

the stress-response waveforms and Lissajous-Bowditch

plots, obtained by shearing the foam at different ampli-

tudes of oscillation. The contributions of higher harmonic

oscillatory terms were found by using FT-rheology and the

Chebyshev polynomials. Finally, the interpretation of the

LAOS behavior of foam was described based on a

sequence of physical processes. 

2. Theoretical Background

In dynamic oscillatory shear rheology, a material is

allowed to flow by imposing a sinusoidal strain in a strain-

controlled rheometer. The strain is given by

(1)

and the corresponding strain rate is given by

(2)

where γ0 and ω are strain amplitude and frequency of

oscillation, respectively. When the γ0 is in the linear vis-

coelastic regime, the stress response is also sinusoidal

with the same ω. It is given by 

(3)

where σ0 is the stress amplitude and δ is the phase angle

between the stress response and the imposed strain. Eq.

(3) can be decomposed into two parts corresponding to the

in- and out-of-phase to strain inputs as follows.

(4a)

(4b)

where σ' and σ'' are the components of the stress response

for in- and out-of-phase, respectively.

Two well-defined material functions (i.e.,  and

) are used to characterize the linear viscoelastic

behavior of a material.  describes the elastic behavior

and  describes the viscous behavior of materials. Eq.

(4b) can be written as Macosko (1994)

. (5)

In a typical amplitude sweep measurement, both these

moduli remain constant up to a certain limiting value of γ0.

The measurement of viscoelastic behavior below and

above this limit are termed linear and nonlinear visco-

elastic regime, respectively. In the linear regime, only the

first harmonic oscillation is considered for the viscoelastic

properties of the materials. However, when a material is

deformed in the nonlinear regime, the contribution of

higher harmonic terms also becomes significant. There-

fore, higher harmonic terms are incorporated into the total

stress. Unlike small amplitude oscillatory shear, decom-

position of resulting stress into the elastic and viscous

components is not very clear under LAOS. Cho et al.

(2005) suggested a method of decomposing the stress

response under LAOS. Their method is based on the sym-

metrical geometry of the Lissajous-Bowditch curves. It

was further improved by Yu et al. (2009). It can be

expressed by a Fourier series (Wilhelm et al., 1998), given

by

(6)

where  is the angular frequency, and a
n
 and b

n

are the Fourier coefficients of the nth harmonic, which

relate the applied strain deformation to the stress response

as,

(7)

Eq. (6) suggests that only the odd harmonics are included

in describing the stress response. Therefore, the nonlinear

contributions are captured in the higher-order odd har-

monics. This occurs because the resulting stress has odd

symmetry with respect to the directionality of shear strain

or strain rate (Bird et al., 1987). FT-rheology is a powerful
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tool for studying the nonlinear viscoelastic properties of

the materials because it can detect even a small signal of

higher harmonics. The main advantage of using FT-rhe-

ology is that the stress response in LAOS can be expressed

as a linear combination of and . It is a linear alge-

braic analysis method in which  and  can be

expressed as the orthogonal set of sines and cosines of dif-

ferent frequencies. For the first harmonic (i.e., n = 1), Eq.

(6) reduces to the linear viscoelastic regime [i.e., Eq. (5)]

with  and . The intensity of the nth har-

monic is defined as

. (8)

In addition to I
n
, the relative intensity with respect to the

first harmonic is an important parameter that provides use-

ful information about the contribution of the higher har-

monics in the nonlinear regime. It is defined as

. (9)

When foam is deformed at sufficiently high amplitudes,

higher harmonic terms are observed. This makes the sys-

tem complex. To avoid such complexity, the time-domain

stress-response is converted into frequency-domain by

using the FT method. The discrete FT of stress data can be

computed as

(10)

where k = 0, 1, 2, …, (N−1), N is the total number of

experimental data points of the shear stress response, and

i is the imaginary unit. F
n
 represents a signal of the nth har-

monic term in the frequency domain of the stress-response.

Since F
n
 is a complex number, it can be expressed by its

amplitude.

FT-rheology is a sensitive approach, which determines

the amplitude and phase difference of higher harmonics,

and may provide useful insights about the progressive

transition from linear to nonlinear viscoelastic responses

(Wilhelm et al., 1998). However, this approach is not able

to elucidate the clear physical interpretation of all the

higher harmonic coefficients except the fundamental har-

monic (Poulos et al., 2013). Therefore, to avoid these

ambiguities, a cycle-by-cycle measurement of the stress

response as a function of shear strain (or strain rate) is pre-

ferred. A graphical representation of a closed-loop plot of

the stress response  vs.  [or ] is termed

as elastic (or viscous) Lissajous-Bowditch curve. This rep-

resentation is more convenient for the qualitative analysis

of the viscoelastic behavior under LAOS. The elastic and

viscous Lissajous-Bowditch curves can be used for

decomposing the total shear stress into their elastic and

viscous counterparts, respectively, as shown below (Cho

et al., 2005; Yu et al., 2009).

. (11)

 at a fixed  is given by the average of the stress

responses obtained during positive and negative strain

rates. Similarly,  at a fixed  is obtained by taking the

average of the shear stress responses at equal magnitude

(but opposite signs) of .

Ewoldt et al. (2008) used the Chebyshev polynomials of

the first kind, T
m
, to decompose the total stress response in

a cycle into their elastic and viscous components. Cheby-

shev polynomials are defined as , where

. The recurrence relation of the Chebyshev poly-

nomials is given by Mason and Handscomb (2002)

, . (12)

This, together with the initial conditions, T0(x) = 1 and

T1(x) = x, recursively generates all the polynomials {T
m
(x)}

easily. These polynomials are orthogonal over the interval

[−1, 1]. Like the FT-rheology approach, the Chebyshev

polynomial approach can be utilized in finding the elastic

and viscous components of the stress response, given by

 

, . (13)

where e
m
 and v

m
 are the elastic and viscous Chebyshev

coefficients of order m. Based on these coefficients, the

materials can be characterized as intracycle strain-harden-

ing (e3 > 1), strain-softening (e3 < 1), shear-thickening (v3

> 1), and shear-thinning (v3 < 1). The Chebyshev coeffi-

cients can be utilized to derive the following geometri-

cally-motivated moduli.

, (14)

(15)

where  is the minimum-strain amplitude at , and

 is the large-strain amplitude at . For the linear

viscoelastic regime, both  and  are equivalent to .

Therefore, this approach of characterizing materials can

be considered as more general. However, like FT-rheol-

ogy, the Chebyshev approach also has limitations when it

includes the contribution of the higher harmonic terms

above the third. This limitation arises due to the symmetry

assumptions for decomposing the total nonlinear stress

response into the superposition of an elastic stress and a

viscous stress (Poulos et al., 2013; Renou et al., 2010)
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[see Eq. (11)]. Rogers and Lettinga (2012) have shown

that the physical interpretation of these approaches may

vary from one material to another, although they are valu-

able approaches mathematically.

To interpret the LAOS behavior of a material by using

a Lissajous-Bowditch curve, Rogers et al. (2011a) have

proposed an approach based on a sequence of physical

processes. It includes elastic straining, yielding behavior,

and flow behavior. The elastic straining during intracycle

shearing can be described by the apparent cage modulus

(Gcage), which can be defined as the derivative of the stress

with respect to strain at zero stress.

. (16)

It is the instantaneous slope of the elastic Lissajous-

Bowditch curve at zero stress.

3. Materials and Methods

The cationic surfactant, HTAB, was purchased from

Merck (Germany, 97% assay). Negatively-charged silicon

dioxide nanoparticles were purchased from Plasmachem

(Germany, 92.7% assay). The mean diameter of these par-

ticles was ~185 nm. All samples were prepared using

water, purified by a Millipore system (France, model: Elix

plus Milli-Q). Its resistivity and surface tension were 18.2

MΩ cm and 72.5 mN m−1, respectively.

An aqueous dispersion containing 0.1 mol m−3 HTAB

and 0.5% (by weight) silica nanoparticles was prepared by

mixing the materials using a magnetic stirrer (Tarsons,

India, model: MC 02). Higher concentrations of HTAB

were not taken because the foams were less stable in the

presence of the nanoparticles when the concentration of

HTAB was above its critical micelle concentration (CMC)

(Vishal and Ghosh, 2018). The aqueous dispersion (200

cm3) was poured into the jar of a blender (Morphy Rich-

ards, India, model: Divo Essentials), and the dispersion

was mixed at a speed of 15000 rpm for 30 s. The foam

prepared in this manner was used for the rheological stud-

ies. Rheological behavior of the foam was studied by

using a rotational rheometer (Anton Paar, Germany,

model: Physica MCR 301) with a parallel-plate geometry

(diameter of plate = 25 mm). Both the plates were rough-

ened by sand blasting to avoid any slip during the exper-

iments. Despite the heterogeneous deformation, the

parallel-plate geometry was selected because the gap

between the plates could be adjusted easily. The foam was

placed between the two plates, and the gap between the

plates was fixed at 1 mm during the measurements. The

upper plate was moved with the motor connected to the

rheometer, and the lower plate remained stationary. The

temperature was set to 298 K, and it was controlled within

± 0.1 K using a standard Peltier device. The sensitivity of

the rheometer of detecting torque in the rotational mode

was 0.1 µNm, and the same for the oscillation mode was

0.02 µNm. The torque resolution was 0.001 µNm. To

ensure a perfect sinusoidal strain input, the rheological

measurements were carried out by using an electronically-

commutated motor in a direct strain oscillation mode

(Läuger et al., 2002). To understand the LAOS behavior

of foam, we performed the stress analyses at four oscil-

lation frequencies (ω), i.e., 0.1, 1, 10, and 15 rad s−1, and

nine strain amplitudes (γ0), i.e., 1, 6.31, 10, 15.9, 25.1,

39.8, 63.1, 100, and 159%. For each ω and γ0, the stress

was measured as a function of input oscillatory strain (or

strain rate) in a complete cycle to produce the Lissajous-

Bowditch curves. These curves can be shown in a three-

dimensional coordinate system, where strain, strain rate,

and stress are the orthogonal coordinate axes. The projec-

tions of this curve onto the stress vs. strain and stress vs.

strain-rate planes are known as elastic and viscous Lissa-

jous-Bowditch curve, respectively (Ewoldt and McKinley,

2010). Each measurement was repeated three times to ver-

ify the repeatability. The slip condition was checked by

measuring the shear stress as a function of shear rate at

different gaps between the parallel plates (Fig. S1 in the

supporting information) (Graham, 1995; Habibi et al.,

2016; Mooney, 1931). It was observed that the data points

almost superposed for all gaps, which confirmed the

absence of slip. We have also compared our experimental

results with the oscillatory stress response derived for the

cone-and-plate geometry (Giacomin et al., 2015), where

homogeneous deformation can be achieved (Fig. S2 in the

supporting information).

A Fourier series was used to fit the non-sinusoidal stress

response obtained from the LAOS experiment. From the

stress data points, Fourier coefficients were computed.

These coefficients are the in- and out-of-phase stress com-

ponents of the shear deformation. The relative intensity of

the third and the fifth harmonics was determined with

respect to the first harmonic term. To study the contribu-

tion of the higher harmonic terms to LAOS, the time

domain of Fourier series was converted into the frequency

domain. Additionally, Chebyshev polynomials were used

to fit the Lissajous-Bowditch curves obtained under LAOS.

4. Results and Discussion

Before probing the nonlinear viscoelastic behavior of

foam, we performed a few other fundamental experiments

on foam as shown in Fig. 1. The results from a typical

amplitude sweep experiment on foam are shown in Fig.

1a. This experiment can be used for determining the linear

and nonlinear viscoelastic regimes under oscillatory shear.

At low strain up to 1%, both  and  were independent

of γ0. This is known as the linear viscoelastic regime.

Upon increasing γ0 further (i.e. above critical strain ampli-

0
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d
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σ

γ
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=
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tude), the foam started yielding.  decreased continu-

ously, indicating strain-softening.  initially increased,

reached a local maximum at a certain value of γ0, and then

started decreasing. This characteristic is known as weak

strain overshoot. The overshoot (i.e. the local maximum

of ) may be considered as the balance between the for-

mation and destruction of the structure of foams (Hyun et

al., 2002). The yield strain is usually considered at the

crossover point of  and  (Moller et al., 2009). As the

strain amplitude exceeded the yield point, both the moduli

decreased (with > ) indicating the liquid-like

behavior. Therefore, yielding can be considered as the

transition of a material from solid-like to liquid-like

behavior. The response of foam after 1% γ0 is known as

the nonlinear viscoelastic regime, where the LAOS exper-

iment was performed.

 and  are suitable rheological parameters for

explaining the viscoelastic behavior in the linear visco-

elastic regime, as they contain only the first harmonic con-

tributions to the stress response. The intensities of other

odd higher harmonics in medium amplitude oscillatory

shear regions are very small. However, higher harmonic

contributions must be added to distinguish and investigate

the viscoelastic behavior at large γ0. The linear viscoelastic

moduli of the foam were plotted as a function of fre-

quency in Fig. 1b. These moduli were obtained at the con-

stant strain amplitude of 0.5% because at this amplitude

foam exhibited linear viscoelastic behavior (see Fig. 1a).

Additionally,  was one order of magnitude higher than

, and both the moduli were independent of the fre-

G′

G″

G″

G′ G″

G″ G′

G′ G″

G′

G″

Fig. 1. (Color online) (a) Results from a typical amplitude sweep

experiment at ω = 1 rad s−1. (b) Frequency sweep experiment on

foam at the constant strain amplitude of 0.5%. (c) Steady state

flow curve of the foam.

Fig. 2. The waveform of the shear stress as a function of phase

angle in a complete cycle. The shear stress results were obtained

by imposing oscillatory shear strain at different amplitudes rang-

ing from 1 to 159%.
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quency of oscillation, which is a typical gel-like behavior.

The steady state flow curve of the foam is shown in Fig.

1c. The shear rate was measured by varying the shear

stress. We observed that there was no flow below ~15 Pa

shear stress because the shear rate was almost zero, which

implies that the foam showed yield stress.

Because of the non-sinusoidal shape of the stress wave-

form, the complex shear modulus alone is not sufficient to

characterize the foam behavior. Therefore, to investigate

the nonlinear viscoelastic behavior of the foam, analysis

of the stress response waveform can be useful. The wave-

form depends on the structure of foam. When foam was

deformed under LAOS, the stress response was still peri-

odic, and the stress curves changed their shape from sinu-

soidal to non-sinusoidal with increasing strain amplitude

as shown in Fig. 2. The asymmetry of the stress response

was significant with increasing γ0. A shape signifying

“backward tilted stress” was observed under LAOS. The

third harmonic term is mainly responsible for the non-

sinusoidal shape of the waveform. The other higher har-

monic terms typically decay rapidly. The effects of higher

harmonic terms were also studied by using Fourier series,

which are reported later in this section.

The elastic Lissajous-Bowditch curves of foam are shown

in Fig. 3. In the linear viscoelastic regime, the Lissajous-

Bowditch curves were elliptic. The slope of the major axis

of the ellipse represents the magnitude of the complex

shear modulus. With increasing γ0, the width of the minor

axis of the ellipse became wider, which can be attributed

to the phase angle between input strain and output stress

(Erni and Parker, 2012). Additionally, the shape of the

Lissajous-Bowditch curves became increasingly rectangu-

lar with highly-rounded corners. This can be seen clearly

in Fig. 3 for γ0 > 39.8%. This shape implies that the great-

est increase in stress occurred when the strain was max-

imum in a cycle. These increasingly rectangular elastic

Lissajous-Bowditch curves confirm the intracycle strain-

hardening process associated with the foam under LAOS.

In the nonlinear viscoelastic regime, however, the shape of

the Lissajous-Bowditch curves was more complex and

Fig. 3. (Color online) Elastic Lissajous-Bowditch curves [nor-

malized stress, σ(t)/σ0 vs. normalized strain, γ (t)/γ0]. The ampli-

tude of shear stress (σ0) is indicated in each curve. All curves are

two-dimensional projections of the three-dimensional curves on

the stress-strain plane.

Fig. 4. (Color online) Viscous Lissajous-Bowditch curves [nor-

malized stress, σ(t)/σ0 vs. normalized strain rate, γ (t)/γ0]. The

amplitude of shear stress (σ0) is indicated in each curve. All

curves are two-dimensional projections of the three-dimensional

curves on the stress-strain rate plane.
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non-ellipsoidal. Therefore, the simple viscoelastic moduli

may not be appropriate to explain the real shape, and they

may mislead much of the structural and physical informa-

tion. The area enclosed by the elastic Lissajous-Bowditch

curves increased with γ0, which indicates an increase in

the energy dissipated during the LAOS test.

The data suffered from noise in the right bottom por-

tions in Figs. 3 and 4. This may be due to the fact that at

high ω, the experimental time was less than the time

required for the foam to relax. The stress amplitude

increased with increasing ω. However, the shape of the

Lissajous-Bowditch curves remained almost unchanged.

A progressive transition from linear to nonlinear behavior

can be observed from the elastic Lissajous-Bowditch

curves. The onset of nonlinearity of the foam can be visu-

ally observed for strain above 10%, as the shape of the

Lissajous-Bowditch curve (or stress response waveform)

started changing at this point onward. The corresponding

viscous Lissajous-Bowditch curves have been shown in

Fig. 4. These curves showed sigmoid shape under LAOS,

which confirmed the intracycle shear-thinning behavior

(López-Barrón et al., 2015). The instantaneous viscosity

of the foam can be found from the slope of the viscous

Lissajous-Bowditch curves. The instantaneous viscosity

decreased with increasing deformation rate. Therefore, the

foam showed intracycle shear-thinning behavior. The 3D

curves of the Lissajous-Bowditch plots are shown at dif-

ferent projection angles in Fig. S3 in the supporting infor-

mation.

The elastic component of the total stress showed the lin-

ear dependency on strain at low γ0. The stress-strain curve

was bent upward at large strains, as shown in Fig. 5. This

shape is often considered as an indication of strain-hard-

ening (Papon et al., 2010). In contrary, the amplitude

sweep experiment showed strain-softening of the foam

(Fig. 1). This paradox has been reported recently by Mer-

met-Guyennet et al. (2015). They concluded that the

Fig. 5. (Color online) The elastic components of the shear stress

response (obtained from Fig. 3) as a function of strain in one

period of oscillation. The experiment was performed at ω = 1 rad

s−
1
 for different strain amplitudes (γ0) ranging from 1 to 159%.

Fig. 6. (Color online) (a) Storage modulus (G') and apparent

cage modulus (Gcage) as a function of strain amplitude (γ0). (b)

The elastic Lissajous-Bowditch curves of the foam at the

selected strain amplitudes under LAOS. The empty circles indi-

cate the lower reversal point, triangles represent maximum elas-

tic points (i.e. stress overshoot), and filled circles indicate the

point of maximum total stress. (c) The strain required from the

lower reversal point to the point of maximum total stress (circles)

and maximum elastic stress (triangles) as a function of strain

amplitude. Idealized behavior of elastic solid and viscous liquid

are represented by solid and dashed lines, respectively. The strain

required to reach the maximum elastic point follows power law

with index 0.4 (dashed line).
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strain-hardening was due to the use of . However, the

overall LAOS behavior indicated strain-softening. To

investigate further the nonlinear viscoelastic behavior of

foam, we adopted the approach of sequence of physical

processes proposed by Rogers et al. (2011a). This approach

provides a framework to analyze the intracycle response

of the elastic Lissajous-Bowditch curves by decomposing

it into the sequence of physical processes, i.e., elastic strain-

ing, yielding behavior, and flow behavior. Fig. 6a shows

the Gcage (determined from Eq. (16)) and  (see Fig. 1a)

as a function of γ0. Both the moduli overlap in the linear

viscoelastic regime indicating that the foam extended in a

linear fashion. The  decreased with increasing strain

amplitude, but Gcage did not change significantly and

remained significantly above the , even at the higher

amplitudes. This indicates that the foam exhibited an elas-

tic deformation. It also suggests that the foam behaved

according to the sequence of physical processes (Rogers et

al., 2011b).

In addition, the elastic straining can be illustrated more

clearly from the elastic Lissajous-Bowditch curves as

shown in Fig. 6b. At the strain reversion point (i.e. max-

imum strain or zero strain rate), the stress increased almost

linearly with strain up to the critical strain, which implies

the elastic behavior of foam. Further increasing the strain

above the critical point, the stress continued to increase

until a yield stress was achieved, where it showed an over-

shoot (or a local maxima) (see the top left curves of Fig.

3). The yielding behavior can be characterized by deter-

mining the total strain required from the lower reversal

point (unfilled circles) to the point of maximum elastic

stress (triangle) and maximum total stress (filled circles)

from Fig 6b. These accumulated strains are shown in Fig.

6c as a function of γ0. For an ideal elastic solid, the

amount of strain required to achieve the maximum total

stress is 2γ0, whereas this value is γ0 for the ideal viscous

liquid. The idealized behavior of elastic solid and viscous

liquid is represented by the solid and dashed lines, respec-

tively (see Fig. 6c). The data points corresponding to the

maximum total stress followed a straight line with slope 2.

This implies that the maximum total stress was caused by

an elastic process. Therefore, the foam structure reformed

after the strain corresponding to the maximum total stress

by releasing the elastic stress. On the other hand, the max-

imum elastic stress initially followed a straight line with

slope 1, indicating that the stress was caused by a viscous

process. The data points deviated at large amplitudes, and

they followed the power-law behavior with flow index

0.4. This confirms the shear-thinning flow behavior of

foam above the yield stress. van der Vaart et al. (2013)

observed similar kind of results for a concentrated soft-

sphere suspension. However, for hard-sphere suspension,

the acquired strain to maximum total stress followed per-

fect solid-like behavior at low γ0 and perfect liquid-like

behavior at high γ0 (Rogers et al., 2011a; van der Vaart et

al., 2013). The flow behavior above the yield strain can be

initially characterized as viscoplastic because the stress

remained almost constant, and then it increased abruptly

with strain indicating strain-hardening behavior. This

sequence of physical processes was repeated in the

remaining half-cycle of the oscillation.

One aspect of studying the yielding behavior is the

appearance of significant non-linearity. From the elastic

Lissajous-Bowditch curves under LAOS at higher fre-

quency (see the top right curves of Fig. 3), it appears that

the foam exhibited plastic and/or elastoplastic flow

beyond the yield strain. To deal with such flow behavior

in a cyclic deformation, the concept of kinematic harden-

ing is widely used (Dimitriou and McKinley, 2014;

Fraggedakis et al., 2016). This concept describes the

stress-strain relationship for yielding materials. Dimitriou

et al. (2013) have developed a method to understand the

kinematic hardening from the Lissajous-Bowditch curves.

Their method is based on the elastic Herschel-Bulkley

model. In this method, the strain at a point on the elastic

Lissajous-Bowditch curve can be decomposed into elastic

 and plastic  components as

. (17)

The stress is related to γ e through the Young’s modulus

(G) as σ = Gγ e, and the elastic strain retain beyond the

yield point. The contribution to the stress due to plastic

flow is called back stress (σback). The plastic flow rate 

is related to the effective stress (i.e. ), which is

the driving force for the plastic flow. It is given by (Dim-

itriou et al., 2013), 

(18)

where np is the direction of plastic flow, and k and q are

the consistency index and the flow index, respectively.

Below the yield strain, it is assumed that  is zero, and

the foam undergoes only elastic deformation. However,

above the yield strain, the rate-independent plastic flow

begins to occur. This is immediately followed by strain-

hardening at low frequency and kinematic hardening at

high frequency. At the strain reversal point, the elastic

strain is recovered and the cycle is repeated by dropping

the stress below their yield value.

Eqs. (6) and (13) show the relation between the FT-rhe-

ology and the Chebyshev polynomial approaches. Both

the approaches are based on linear algebraic analysis,

where elastic and viscous components of the total stress

response can be expressed as a linear combination of the

finite orthogonal basis sets. In the FT-rheology approach,

 and  are expressed as the linear combination of the

orthogonal sets of sines and cosines, respectively, of dif-
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ferent higher odd harmonic frequencies. In the Chebyshev

polynomial approach,  and  are expressed as the lin-

ear combination of the orthogonal sets of Chebyshev poly-

nomials of different higher odd orders. The FT-rheology

approach is not able to elucidate the physical interpreta-

tion of all the higher harmonic coefficients except the fun-

damental harmonic. However, the Chebyshev approach

can be used to interpret the LAOS results within a cycle

by using the first and third Chebyshev coefficients. Like

the FT approach, the first Chebyshev coefficient explains

the linear viscoelastic behavior. The elastic and viscous

components of the total shear stress obtained from the cor-

responding Lissajous-Bowditch curves are shown in Fig.

7. These stress components were obtained by taking the

average of the shear stresses during positive and negative

 (or γ) at a fixed γ (or ). This method of decomposing

the stress response was proposed by Cho et al. (2005), and

it is useful for analyzing the viscoelastic properties of

foam under LAOS. Furthermore, these stress components

were fitted by Chebyshev polynomials. As can be seen

from Fig. 7a, when foam was deformed in the linear vis-

coelastic regime (i.e. at 1% γ0), σ' increased linearly with

γ, and σ'' was almost independent of . This implies that

the foam showed a predominantly elastic behavior. Also,

due to the linear viscoelastic properties, the first-degree

Chebyshev polynomial was alone sufficient to fit the

stress components. The linearity can also be confirmed

from the Chebyshev coefficients, inasmuch as both e3 and

v3 were zero. Upon further increasing γ0 to 25%, it was

found that the σ' and σ'' components were not linearly

dependent on γ and , respectively. Therefore, third-

order Chebyshev polynomials were used to fit the stress

components. Both e3 and v3 were positive, which implies

that the foam showed strain-hardening and shear-thicken-

σ ′ σ ″

γ� γ�

γ�

γ�

Fig. 7. (Color online) Decomposition of the normal-

ized stress response  into their elastic

 and viscous  components,

based on the geometrical method [i.e. Eq. (11)]. These

components were fitted by the Chebyshev polynomi-

als of odd orders. The elastic (i.e. em) and viscous (i.e.

vm) Chebyshev coefficients are shown corresponding

to the order of the Chebyshev polynomial: (a) γ0 =

1%, (b) γ0 = 25%, and (c) γ0 = 100%. The geometrical

decomposition method is depicted in the figure.

σ t( )/σ 0[ ]

σ ′ t( )/σ 0[ ] σ ″ t( )/σ 0[ ]
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ing behavior. At very high γ0 (e.g. 100%), a sudden rise in

σ' was observed at large γ, which reflects that the foam

was stiff. A positive value of e3 confirms the intracycle

strain-hardening behavior. In contrast, the slope of the σ''

vs.  curve decreased, and v3 was negative. Therefore,

the foam showed an intracycle shear-thinning behavior.

Fig. S4 in the supporting information clearly shows the

contribution of the higher harmonic terms under the

LAOS response. The solid line shows the experimental

stress response, and the dashed line depicts the stress

obtained from the Fourier series [i.e., Eq. (6)]. The Fourier

coefficients (i.e., an and bn) were computed from Eq. (7).

These are shown in the corresponding figures. When foam

was deformed at low γ0 (up to ~6.31%), only the first har-

monic term was sufficient to fit the stress response wave-

forms. With increasing γ0, higher odd harmonic terms

were required. Therefore, the third harmonic term, along

with the first term, fitted the stress waveform (up to

25.1%). Further increasing γ0, the fifth-term was required,

and it was added to fit the stress response waveforms. It

was observed that the even terms did not make any con-

tribution to LAOS. It reconfirmed the absence of the slip

condition between the two parallel plates, where the foam

was placed. Each peak in Fig. S1 in the supporting infor-

mation in the first column represents the magnitude of the

corresponding harmonic terms. This is known as the FT-

rheology spectrum. These peaks were determined by dis-

crete FT of stress data using Eq. (10). From the figure, it

is clearly seen that the number of higher harmonic con-

tributions and the magnitude of the peaks at odd harmon-

ics increased with applied γ0.

The nonlinearity was quantified by determining the rel-

ative intensities of higher harmonic terms with respect to

the first (i.e., fundamental) harmonic (e.g., I3/1 and I5/1), as

shown in Fig. 8. I3/1 increased linearly with increasing γ0
(up to ~25%). With further increase in γ0, I3/1 increased

slowly. This may be due to the presence of the third har-

monic term. I3/1 increased linearly up to 100% γ0. The con-

tribution of the higher harmonic terms became significant

when the foam was deformed at high γ0. When ln(I3/1) was

plotted against ln(γ0), a straight line with slope ~2 was

obtained in the low-to-medium γ0 range, as shown in Fig.

8b. This indicates a scaling relationship between I3/1 and γ0
(Hyun and Wilhelm, 2008; Wagner et al., 2011). At low-

to-medium shear deformation, I3/1 of the foam varied qua-

dratically with γ0. A similar result was observed for beer

foams (Wilhelm et al., 2012). The third harmonic is the

best corresponding to the scaling theory at the small

amplitude. An asymptotic behavior to a plateau value was

observed at high γ0. Therefore, the scaling theory was not

suitable for the relative intensity higher than the third har-

monic. However, an attempt was made to extend the scal-

ing law for I5/1. It was found that it varied linearly over a

wide range of γ0, as shown in Fig. 8.

5. Conclusions 

Nonlinear viscoelastic behavior of foam stabilized by

HTAB and silica nanoparticles was systematically studied

under LAOS by using Lissajous-Bowditch curves, FT-rhe-

ology analysis, and the Chebyshev polynomial technique.

The LAOS results were interpreted based on the sequence

of physical processes. With increasing γ0, the shape of the

waveforms and the Lissajous-Bowditch curves changed.

Elastic Lissajous-Bowditch curves changed from ellipsoi-

dal to rectangular, which shows the strain-hardening

behavior of foam. However, the overall behavior was

shear-thinning. Flow under LAOS was periodic, and it

involved the contributions of the higher odd harmonic

terms to the stress response. The peaks corresponding to

the even harmonic oscillatory terms were not observed,

which may be due to the “no slip” condition between the

parallel plates, where the foam was placed during the

LAOS test. The foam showed linear elastic response in the

linear viscoelastic regime as e3 was zero. Intracycle strain-

hardening behavior was observed in the nonlinear visco-

γ�

Fig. 8. (Color online) (a) Relative intensity of the third harmonic

(I3/1) and fifth harmonic (I5/1) expressed as a function of the shear

strain amplitude (γ0) (i.e., Eq. (9)). (b) Relative intensity (I3/1 and

I5/1) computed by taking logarithm of the data in Fig. 8a. The

experiment was performed by applying an oscillatory shear at

ω = 1 rad s−
1.



Nonlinear viscoelastic behavior of aqueous foam under large amplitude oscillatory shear flow

Korea-Australia Rheology J., 30(3), 2018 157

elastic regime as e3 was positive. Furthermore, it showed

linear viscous response in the linear viscoelastic regime

(as v3 was zero), intracycle shear-thickening at moderate γ0
(as v3 was positive), and intracycle shear-thinning at high

γ0 (as v3 was negative). It was also observed that I3/1 was

quadratically dependent on γ0 at low-to-intermediate shear

deformation. However, I5/1 varied linearly over a wide

range of γ0.  was greater than  in the entire range of

amplitude and frequency of oscillation under LAOS, which

also confirmed the strain-hardening behavior of foam. The

sequence of physical processes revealed that the foam

exhibited elastic straining at the strain reversion point and

showed yielding above the critical strain, which was fol-

lowed by strain-hardening. It also showed kinematic hard-

ening at high frequency under LAOS flow. 

List of Symbols

an : Fourier cosine coefficient of the nth harmonic

[Pa]

bn : Fourier sine coefficient of the nth harmonic [Pa]

em : Elastic Chebyshev coefficient of order m [-]

Fn : Discrete FT of the nth harmonic [-]

G : Young’s modulus [-]

G' : Storage modulus [Pa]

G'' : Loss modulus [Pa]

Gcage : Cage modulus [Pa]

: Large-strain amplitude [Pa]

: Minimum-strain amplitude [Pa]

In : Intensity of nth harmonic [Pa]

In/1 : Relative intensity of nth harmonic [-]

i : Imaginary unit [-]

k : Consistency index [-]

m : Order of Chebyshev polynomial of the first kind

[-]

N : Total number of data points [-]

n : Harmonic [-]

np : Direction of plastic flow [-]

q : Flow index [-]

T : Time period [s]

Tm : Chebyshev polynomial of the first kind [-]

t : Time [s]

vm : Viscous Chebyshev coefficient of order m [-]

Greek Symbols

γ : Shear strain [-]

: Strain rate [s−1]

: Plastic flow rate [s−1] 

γ 0 : Strain amplitude [-]

γ e : Elastic strain [-]

γ p : Plastic strain [-]

δ : Phase angle [rad]

σ : Shear stress [Pa]

: In-phase shear stress component [Pa]

: Out-of-phase shear stress component [Pa]

σback : Back stress [Pa]

σ0 : Stress amplitude [Pa]

ω : Angular frequency [rad s−1]

Abbreviations 

CMC : Critical micelle concentration

FT : Fourier transform

HTAB : Hexadecyltrymethylammonium bromide

LAOS : Large amplitude oscillatory shear
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