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Abstract
We study the relation between some successive and mean radii of a convex body and
its Steiner, Schwarz, and Minkowski symmetral. In particular, we are interested in the
mean radii. Based on the convexity of some of the radii of a (particular) parallel chord
movement of convex bodies, we prove that the Steiner symmetral does not increase
the mean outer radii. Results of the same type hold for the Schwarz and Minkowski
symmetrals.
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1 Introduction

Let Kn be the set of convex bodies in the n-dimensional Euclidean space R
n , i.e.,

compact and convex sets inRn . Let 〈·, ·〉 and | · | be the standard inner product and the
Euclidean norm in Rn , respectively.

We denote by Bn the n-dimensional unit ball and by S
n−1 its boundary, the unit

sphere. The volume of a measurable set M ⊆ R
n , i.e., its n-dimensional Lebesgue

measure, is denoted by vol(M), or voln(M) if the distinction of the dimension is
needed. In particular, we write κn = vol(Bn).
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The set of all i-dimensional linear subspaces of Rn is denoted by Ln
i and by L⊥ ∈

Ln
n−i we designate the orthogonal complement of L ∈ Ln

i . In the case i = n − 1, we
denote L ∈ Ln

n−1 by L = u⊥, for some u ∈ S
n−1.

Moreover, if K ∈ Kn and L ∈ Ln
i , we denote the orthogonal projection of K onto

L by K |L . We denote by νn,i the unique Haar probability measure on Ln
i , which is

rotation invariant.
The mean inner and mean outer radii of a convex body K , introduced in Abardia-

Evéquoz et al. (2018), are geometrical extensions of the classical circumradius and
inradius, R(K ) and r(K ), which are well-known notions associated to a convex body.
We use the notation r(K ; A) to denote that the calculation of the inradius of K is made
with respect to an affine subspace A, which contains K .

Definition 1.1 For K ∈ Kn and i = 1, . . . , n, the i-th mean projection outer and inner
radii of K are defined as

˜Rπ
i (K ) =

∫

Ln
i

R(K |L) dνn,i (L), r̃πi (K ) =
∫

Ln
i

r(K |L; L) dνn,i (L). (1.1)

In the same manner we define the mean inner and outer radii with respect to sections.

Definition 1.2 For K ∈ Kn and i = 1, . . . , n, the i-th mean section outer and inner
radii of K are defined as

˜Rσ
i (K ) =

∫

Ln
i

max
x∈L⊥

R(K ∩ (x + L))dνn,i (L),

r̃σi (K ) =
∫

Ln
i

max
x∈L⊥

r(K ∩ (x + L); x + L)dνn,i (L). (1.2)

From Definitions 1.1 and 1.2 follows that ˜Rπ
n (K ) = ˜Rσ

n (K ) = R(K ) and r̃πn (K ) =
r̃σn (K ) = r(K ), and thus, we can see the mean radii as generalizations of the classical
inradius and circumradius. Indeed, they belong to a larger family containing inradius
and circumradius called successive radii. Let K ∈ Kn , and i ∈ {1, . . . , n}, then the
following eight families of successive radii can be found in the literature.

Ri
π (K ) = min

L∈Ln
i

R(K |L), rπi (K ) = max
L∈Ln

i

r(K |L; L); (1.3)

and

Ri
σ (K ) = min

L∈Ln
i

max
x∈L⊥

R
(

K ∩ (x + L)
)

, rσi (K ) = max
L∈Ln

i

max
x∈L⊥

r
(

K ∩ (x + L); x + L
)

.

(1.4)

When replacing the min-condition over Ln
i by a max-condition in the definition of Ri

π

and Ri
σ , and the max-condition over Ln

i by a min-condition in the definition of rπi and

123



Beitr Algebra Geom (2024) 65:415–440 417

rσi , one obtains four more series of successive outer and inner radii:

Rπ
i (K ) = max

L∈Ln
i

R(K |L), riπ (K ) = min
L∈Ln

i

r(K |L; L); (1.5)

and

Rσ
i (K ) = max

L∈Ln
i

max
x∈L⊥

R
(

K ∩ (x + L)
)

, riσ (K ) = min
L∈Ln

i

max
x∈L⊥

r
(

K ∩ (x + L); x + L
)

.

(1.6)

Again, directly from the definition follows that

Rn
π (K ) = Rπ

n (K ) = Rn
σ (K ) = Rσ

n (K ) = R(K ), and

rnπ (K ) = rπn (K ) = rσn (K ) = rnσ (K ) = r(K ). (1.7)

We observe that the mean radii are natural extensions of the above introduced
radii. Indeed, considering the functions L �→ R(K |L), L �→ r(K |L; L), L �→
maxx∈L⊥ R

(

K ∩ (x + L)
)

, and L �→ maxx∈L⊥ r
(

K ∩ (x + L); x + L
)

, defined
on Ln

i , the i-th successive radii are defined by taking the maximum and the minimum
over Ln

i of those. From this point of view, the mean radii are a natural average over
Ln
i .
We refer to Alonso Gutiérrez et al. (2014); Betke and Henk (1992, 1993); Bran-

denberg and König (2011); González Merino (2013a, b, 2014); González Merino and
Hernández Cifre (2012, 2014); González et al. (2015); Gritzmann and Klee (1992);
Henk (1992); Henk and Hernández Cifre (2008); Pukhov (1979) and the references
inside for more informations and applications on the topic, including generalizations
of the classical Jung’s and Steinhagen’s inequalities; their interplay with different
sums of convex bodies; inequalities relating them to other geometrical magnitudes,
like the intrinsic volumes; connections to the theory of random polytopes; or, beyond
geometry, their connection to finite dimensional Banach space theory and approxima-
tion theory via the Gelfand and Kolmogorov numbers; their connection to dimension
reduction for “big data”; and computational complexity, within the realm of computer
science and linear programming.

The main purpose of this paper is to analyse certain geometrical behaviour of the
mean radii, and some successive radii, especially with respect to symmetrizations
and, as a necessary byproduct, to parallel chord movement. In particular, we will
consider Steiner, Schwarz and Minkowski symmetrizations, along with parallel chord
movement. Although we put a special focus on mean radii, our target lies on the
interplay of radii and various geometrical issues.

In Sect. 4 we prove the following result.

Theorem A (Theorem 4.8) Let K[0,1] := {K (t) : t ∈ [0, 1]} ⊂ Kn be a family of
convex bodies.

(i) If K[0,1] is a convex family of convex bodies, then t �→ ˜Rπ
i (K (t)) and t �→

Rπ
i (K (t)) are convex functions for t ∈ [0, 1].
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(ii) If K[0,1] is a concave family of convex bodies, then t �→ r̃πi (K (t)), t �→ r̃σi (K (t))
and t �→ riσ (K (t)) and t �→ riπ (K (t)) are concave functions for t ∈ [0, 1].
The main goal of Sect. 5 is to understand different aspects of the relation between

the radii and geometric symmetrizations. First, we establish the following result in
relation to Steiner symmetrization.

Theorem B (Theorem 5.6) Let K ∈ Kn, u ∈ S
n−1, and let 1 ≤ i ≤ n. We denote by

Su⊥(K ) the Steiner symmetrization of K in the direction u. Then,

(i) ˜Rπ
i (Su⊥(K )) ≤ ˜Rπ

i (K ),

(ii) Rπ
i (Su⊥(K )) ≤ Rπ

i (K ),

with equality for euclidean balls.

For the Minkowski symmetral, we prove the following.

Theorem C (Theorem 5.9) Let K ∈ Kn, 1 ≤ k ≤ n, and let L ∈ Ln
k . If we denote by

ML(K ) the Minkowski symmetrization of K with respect to the subspace L, then for
all 1 ≤ i ≤ n, we have

˜Rπ
i (ML(K )) ≤ ˜Rπ

i (K ), r̃πi (K ) ≤ r̃πi (ML(K )),

and

r̃σi (K ) ≤ r̃σi (ML(K )),

with equality for euclidean balls.

The paper is organized as follows. In Sect. 2 we state some basic notions, mostly
within Convex Geometry. In Sect. 3 we collect some known results on successive and
mean radii. Sections4 and 5 are devoted to our main results, containing, in particular,
the proofs of Theorems A, B and C.

2 Preliminaries

The support function of a convex body K ∈ Kn in the direction u ∈ S
n−1 is defined

as h(K , u) = max{〈x, u〉 : x ∈ K } (see Schneider 2014 [Sect. 1.7]). The width of
K in the direction u ∈ S

n−1 is the sum of the support function of K in the directions
u and −u, i.e., ω(K , u) = h(K , u) + h(K ,−u). If we denote by D(K ) the diameter
of K , then the maximum of the widths of K coincides with the diameter itself, i.e,
D(K ) = maxu∈Sn−1 w(K , u), and the minimal width of K , denoted by ω(K ), is given
by ω(K ) = minu∈Sn−1 w(K , u). By considering the widths of K in all directions, the
so-called mean width is introduced:

b(K ) = 1

nκn

∫

Sn−1
ω(K , u) du = 2

nκn

∫

Sn−1
h(K , u) du,
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where du stands for the usual Lebesgue measure on the sphere Sn−1, and nκn is the
surface area of the sphere. The radial function of a convex body K containing the
origin is defined as

ρ(K , u) = max{λ ≥ 0 : λu ∈ K }.

Then, the average length of chords (see e.g. Bonnesen and Fenchel (1987)) of a convex
body K (containing the origin) through the origin is given by

	(K ) = 2

nκn

∫

Sn−1
ρ(K , u) du.

The Minkowski sum of K , L ∈ Kn is defined as K + L := {x + y : x ∈ K , y ∈
L} ∈ Kn , and the difference body of K ∈ Kn is defined as K − K := K + (−K ),
where −K = {−x : x ∈ K } is the reflection of K on the origin.

For K ∈ Kn , its dimension is the dimension of its affine hull, i.e., dim K =
dim aff(K ). We will denote by Kn

n the set of all convex bodies with dimension n,
which we will refer to as full-dimensional convex bodies.

The space of convex bodies Kn is endowed with the Hausdorff metric Schnei-
der (2014) [Sect. 1.8], which makes it a complete metric space. From now on, any
topological notion inKn is implicitly considered with respect to the Hausdorff metric.

As stated in the introduction, the mean inner and mean outer radii of a convex
body K , given by (1.1), and (1.2), happen to be geometrical extensions of the classical
circumradius and inradius, R(K ) and r(K ), i.e.,

R(K ) := inf{R ≥ 0 : ∃ x ∈ R
n with K ⊆ x + RBn}

and

r(K ) := sup{r ≥ 0 : ∃ x ∈ R
n with x + r Bn ⊆ K }.

From the definition of inradius follows that r(K ) > 0 if and only if K is full-
dimensional. This justifies the advantage of the notation r(K ; A) we have introduced
for an affine subspace A containing K . Indeed, if L ∈ Ln

i , 1 ≤ i ≤ n, and x ∈ L⊥
is such that A = x + L , then r(K ; x + L) is the inradius of K relative to the affine
subspace x + L , i.e.,

r(K ; x + L) := sup{r ≥ 0 : ∃y ∈ L with y + x + r BL,i ⊆ K },

where BL,i denotes the unit ball in L , that is BL,i = Bn ∩ L . Since the classical
circumradius does not depend on the space where the body is embedded, we do not
need to use the notation depending on a subspace for R(K ).

As an immediate consequence of the definitions of inradius and circumradius, we
have that r and R are (positively) 1-homogeneous, i.e., r(λK ) = λr(K ) and R(λK ) =
λR(K ), for every K ∈ Kn and λ ≥ 0. Indeed, it follows from the latter that all
successive and mean radii are 1-homogeneous. Moreover, as the inradius and the
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circumradius are also invariant with respect to translations, so are all the successive
and mean radii too.

In the following, for completeness, we recall very briefly some aspects of the Haar
(probability) measure, as it is an essential part in the definition of the mean radii. We
refer to Hug and Weil (2020) [Section 5.1], and the references therein, for a detailed
study.

For 0 ≤ i ≤ n ∈ N, there is a natural measure on the space of Ln
i , of i-dimensional

linear subspaces of Rn , endowed with a suitable topology via the operation of the
topological group SO(n).

Let ν be the uniqueHaar probabilitymeasure, invariantwith respect to translation, in
SO(n)Hug andWeil (2020) [Lemma 5.1]. If L0 ∈ Ln

i is an i-dimensional subspace of
R
n , using themapβi : SO(n) −→ Ln

i ,ρ �→ ρL0, the spaceLn
i becomes a topological

space,which happens to be compact, and the operation SO(n)×Ln
i −→ Ln

i , (ρ, L) �→
ρL is continuous and transitive. Although there is a general construction, we have the
following in Ln

i . Let G ⊆ SO(n), we denote by 1G : SO(n) → {0, 1} the indicator
function of the set G.

Proposition 2.1 Hug andWeil (2020) [Corollary 5.1] Let i ∈ {0, . . . , n} and L0 ∈ Ln
i .

Then

νn,i (·) :=
∫

SO(n)

1{ρ∈SO(n): ρL0∈·} ν(dρ)

is the uniquely determined SO(n)-invariant Haar probability measure on Ln
i . In par-

ticular, the definition is independent of the choice of the subspace L0 ∈ Ln
i .

In the following, we will consider some subsets of Ln
i having measure zero, mostly

to deal with lower dimensional convex bodies, i.e., not full-dimensional ones. In order
to do so, we will introduce the following notion.

Definition 2.2 Schneider (2014) [Sect. 4.4] Two linear subspaces L1, L2 ⊆ R
n are

said to be in Special Position (S. P.) if

lin(L1 ∪ L2) = L1 + L2 �= R
n

and

L1 ∩ L2 �= {0}.

We observe that two linear subspaces L1 and L2 are not in S. P. if and only if either the
linear hull of the union of L1 and L2 isRn , i.e., lin(L1 ∪ L2) = R

n , or L1 ∩ L2 = {0}.
Lemma 2.3 Schneider (2014) [Lemma 4.4.1] Let ν be the unique Haar measure on
SO(n), and let L1, L2 ⊆ R

n be linear subspaces. Then,

ν({g ∈ SO(n) : gL1, L2 are in S. P.}) = 0.
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Remark 2.4 Let n ≥ 2, 1 ≤ i ≤ j ≤ n − 1, and let L j ∈ Ln
j . Then,

νn,i ({L ∈ Ln
i : L, L j are in S. P.}) = 0.

We observe that the latter remark is a direct consequence of Lemma 2.3. Indeed, for
L j ∈ Ln

j and L ∈ Ln
i , νn,i ({L ∈ Ln

i : L, L j are in S. P.}) = ν({g ∈ SO(n) :
g(L), L j are in S. P.}) = 0 holds. If {0} �= L ⊆ L j , with L, L j ∈ Ln

j , then L and L j

are in S. P., i.e., in Special Position. Thus, we have

νn,i ({L ∈ Ln
i : L ⊆ L j }) ≤ νn,i ({L ∈ Ln

i : L, L j are in S. P.}) = 0.

Thus, the following remark follows.

Remark 2.5 Let n ≥ 2, 1 ≤ i ≤ j ≤ n − 1. Let L j ∈ Ln
j . Then νn,i ({L ∈ Ln

i : L ⊆
L j }) = 0.

We continue this section with the definition of the Schwarz and Steiner sym-
metrizations. We define first the Schwarz symmetrization, and introduce the Steiner
symmetrization as a particular case of the latter. Indeed, the Steiner symmetrization is
also a particular case of the so-called shadow system of convex bodies. The shadow
system plays a crucial role in our proof of Theorem B, and will be treated in Sect. 5.

Next, we recall the definition of Schwarz symmetrization and collect several prop-
erties of the Schwarz symmetral of a convex body.

Definition 2.6 Gruber (2007) [Sect. 9.3] (Schwarz symmetrization). Let K ∈ Kn ,
1 ≤ k ≤ n − 1, and L ∈ Ln

k . For any y ∈ K |L , let Bk(y, rk) ⊆ y + L⊥ be the
k-dimensional ball centered at y with radius rk such that

voln−k(Bk(y, rk)) = voln−k(K ∩ (y + L⊥)).

Then, the Schwarz symmetral of K , with respect to L , is defined as

SL(K ) =
⋃

y∈K |L⊥
Bk(y, rk).

Lemma 2.7 Bianchi et al. (2017) Let K , K1, K2 ∈ Kn, L ∈ Ln
k , and let 1 ≤ k ≤ n−1.

Then,

(i) SL(K ) is a convex body.
(ii) If K1 ⊆ K2, then SL(K1) ⊆ SL(K2).
(iii) K |L ⊆ SL(K ).

The following basic remark is necessary to introduce the Steiner symmetrization.

Remark 2.8 Let K ∈ Kn and u ∈ S
n−1. There exist two functions fK , gK : K |u⊥ →

R, fK concave, and gK convex, such that

K = {x + λu : x ∈ K |u⊥, gK (x) ≤ λ ≤ fK (x)}. (2.1)
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The defining functions fK and gK can be explicitly provided via the section K ∩ (x +
u⊥).

From now on, we refer to fK , gK as the defining functions associated to a convex
body K in the direction u.

Definition 2.9 Schneider (2014) Let K ∈ Kn , u ∈ S
n−1 and let fK , gK : K |u⊥ → R,

be the defining functions associated to K , namely, K = {x+λu | x ∈ K |u⊥, gK (x) ≤
λ ≤ fK (x)}. Then, the Steiner symmetrization Su⊥(K ) of K , or Steiner symmetral of
K , in the direction u, is defined as follows:

Su⊥(K ) =
{

x + λu : x ∈ K |u⊥, − fK (x) − gK (x)

2
≤ λ ≤ fK (x) − gK (x)

2

}

. (2.2)

We observe that

Su⊥(K ) =
⋃

x∈K |u⊥

[

x + gK (x) − fK (x)

2
u, x + fK (x) − gK (x)

2
u

]

and thus, Su⊥(K ) = SL(K ) for L = u⊥, u ∈ S
n−1, i.e., the Schwarz symmetrization

coincides with the Steiner symmetrization when L is a hyperplane.
If M ⊆ K ∈ Kn , and u ∈ S

n−1, it follows from Lemma 2.7 (ii), and the previous
observation, that Su⊥(M) ⊆ Su⊥(K ). Further, Lemma 2.7 (i) ensures that the Steiner
symmetral of K ∈ Kn in any direction u ∈ S

n−1 is again a convex body (see also
Gruber (2007)), i.e., Su⊥(K ) ∈ Kn , and direct application of Fubini’s theorem yields
voln(K ) = voln(Su⊥(K )).

Indeed, the connection between the Schwarz and Steiner symmetrization goes
beyond the above mentioned observation. Refining the argument that led to the
“Sphericity Theorem of Gross”, see Gruber (2007) [Corollary 9.1], i.e., for every
K ∈ Kn there is a sequence of iterations of Steiner symmetrals converging to a ball,
shows that we can extrapolate a sequence of Steiner symmetrals that converges to the
Schwarz symmetral of the body.

Theorem 2.10 Bianchi et al. (2017); Gruber (2007) Let K ∈ Kn, 1 ≤ k ≤ n − 1,
L ∈ Ln

k , and let SL(K ) be the Schwarz symmetral of K with respect to L. Then, there
exists a sequence (u j ) j∈N ⊆ S

n−1 ∩ L of directions in L, such that the sequence
Su⊥

j
(· · · (Su⊥

1
(K ))) converges to SL(K ), as j → ∞, with respect to Hausdorff metric,

i.e., SL(K ) is the limit of a sequence of Steiner symmetrizations of K .

Since our aim is to understand the relation between the successive and mean radii
of a convex body and its Steiner and Schwarz symmetrals, we first address known
results about the behaviour of the mean width, diameter, inradius and circumradius
with respect to them.

Lemma 2.11 Gruber (2007) [Chapter 9] Let K ∈ Kn, u ∈ S
n−1, 1 ≤ k ≤ n − 1, and

let L ∈ Ln
k . Then,

(i) b(Su⊥(K )) ≤ b(K ) and b(SL(K )) ≤ b(K ).
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(ii) D(Su⊥(K )) ≤ D(K ) and D(SL(K )) ≤ D(K ).
(iii) r(K ) ≤ r(Su⊥(K )) and r(K ) ≤ r(SL(K )).
(iv) R(Su⊥(K )) ≤ R(K ), and R(SL(K )) ≤ R(K ).

For the minimal width, we also remark that it is known that the minimal width of a
set can be both increased and reduced after performing a Steiner symmetrization on
it, see Eggleston (1958) [p. 90–92].

Next we recall the definition and basic properties of theMinkowski symmetrization
(see e.g. Bianchi et al. 2017; Blaschke 1956). We need to deal first with some issues
about reflections of convex bodies on k-planes. Following Schneider (2014) [Sect.
10.3] for the case k = n − 1, we denote by σL(K ) the reflection of K ∈ Kn on L ,
that is the image of K under the linear map x → 2(x |L) − x , where now L ∈ Ln

k ,
1 ≤ k ≤ n. For k = 0, we have L = {0} and then σL(K ) = −K .

The following remark includes some straightforward properties of the reflection
body of a convex body K ∈ Kn with respect to L ∈ Ln

k , 0 ≤ k ≤ n. We denote
indistinctly by σL the map from R

n on itself, and its natural extension to subsets of
R
n .

Remark 2.12 Let K ∈ Kn , 0 ≤ k ≤ n, L ∈ Ln
k , Li ∈ Ln

i for 1 ≤ i ≤ n − 1, and
x ∈ L⊥

i . Then,

(i) σL(K )|Li = σL(K |σL(Li )),
(ii) σL(K ) ∩ (x + Li ) = σL(K ∩ σL(x + Li )).

We observe now that the invariance of balls under reflections implies that the inra-
dius and circumradius of a convex body and its reflection onto a subspace coincide.
More precisely, we have

R(σL (K )) = R(K ), r(σL(K )) = r(K ), R(σL (K )|Li ) = R(σL(K |σL(Li ))),

r(σL(K )|Li ; Li ) = r(σL(K |σL(Li )); Li ),

R (σL(K ) ∩ (x + Li )) = R (σL(K ∩ σL(x + Li ))) ,

r (σL(K ) ∩ (x + Li ); x + Li ) = r (σL(K ∩ σL(x + Li )); x + Li ) ,

The Minkowski symmetrization of a convex body K ∈ Kn is, up to a constant, the
Minkowski sum of K and its reflection onto a linear subspace.

Definition 2.13 Let K ∈ Kn , 0 ≤ k ≤ n, and let L ∈ Ln
k . The Minkoswki symmetral

of K , with respect to L , is defined as

ML(K ) = 1

2
(K + σL(K )).

From the definition follows directly that ML(K ) is a convex body, which is symmetric
with respect to L , and it satisfies K |L ⊂ ML(K ). Further, if k = 0, i.e., when
L = {0}, the Minkowski symmetral of K is, up to 1/2, the difference body of K ,
as ML(K ) = 1

2 (K + (−K )) = 1
2 (K − K ). If k = n − 1, then L = u⊥, for some

u ∈ S
n−1 and in this case, we remark that the Minkowski symmetral contains the

Steiner symmetral, i.e.,
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Su⊥(K ) ⊆ Mu⊥(K ). (2.3)

For the interplay between the inradius and circumradius and theMinkowski symmetral
we refer to Sects. 4 and 5, where we will deal with the behaviour of the radii with
respect to the Minkowski sum.

3 Known results for successive andmean radii

In this sectionwe collect some known results about successive andmean radii. Further,
we aim to settle some open cases for the successive radii and/or establish them for
some of the mean radii. We start recalling the cases i = n and i = 1 for all inner and
outer succesive and mean radii Abardia-Evéquoz et al. (2018) [Lemma 2.1], namely:

Rn
π (K ) = Rπ

n (K ) = Rn
σ (K ) = Rσ

n (K ) = ˜Rπ
n (K ) = ˜Rσ

n (K ) = R(K ),

rnπ (K ) = rπn (K ) = rσn (K ) = rnσ (K ) = r̃πn (K ) = r̃σn (K ) = r(K ),

Rπ
1 (K ) = rπ1 (K ) = Rσ

1 (K ) = rσ1 (K ) = D(K )/2,

R1
π (K ) = r1π (K ) = R1

σ (K ) = r1σ (K ) = ω(K )/2,

˜Rπ
1 (K ) = 1

2
b(K ) = r̃π1 (K ) and ˜Rσ

1 (K ) = 1

4
	(K − K ) = r̃σ1 (K ).

For the latter, note that r(K |L; L) = R(K |L) for any one-dimensional linear subspace
L ∈ Ln

1. The following result establishes the equality of themaximum outer radii, both
section and projection.

Theorem 3.1 Brandenberg and König (2011) [Theorem 2.9] The maximal outer pro-
jection and the maximal outer section radii are equal for any i = 1, . . . , n, and any
convex body K ∈ Kn

Rπ
i (K ) = Rσ

i (K ). (3.1)

We consider now the monotonicity of the radii in the index i , 1 ≤ i ≤ n.

Proposition 3.2 Abardia-Evéquoz et al. (2018); González Merino (2013a) Let K ∈
Kn. Then, all the introduced families of outer radii are increasing in 1 ≤ i ≤ n,
whereas the inner radii are decreasing, in 1 ≤ i ≤ n. In particular,

r(K ) = r̃πn (K ) ≤ · · · ≤ r̃π1 (K ) = 1

2
b(K ) = ˜Rπ

1 (K ) ≤ · · · ≤ ˜Rπ
n (K ) = R(K ),

r(K ) = r̃σn (K ) ≤ · · · ≤ r̃σ1 (K ) = 1

4
	(K − K ) = ˜Rσ

1 (K ) ≤ · · · ≤ ˜Rσ
n (K ) = R(K ).

(3.2)

Furthermore,

Ri
σ (K ) ≤ ˜Rσ

i (K ) ≤ Rσ
i (K ) = Rπ

i (K ), and riσ (K ) ≤ riπ (K ) ≤ r̃πi (K ) ≤ rπi (K ).
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We observe also the straightforward relations Ri
σ (K ) ≤ Ri

π (K ) ≤ ˜Rπ
i (K ) ≤

Rπ
i (K ) = Rσ

i (K ), and their analog for the inner radii riσ (K ) ≤ r̃σi (K ) ≤ rσi (K ) ≤
rπi (K ), which directly enlarge the above chains of inequalities due to monotonicity.

Thus, all types of considered radii are monotonic with respect to the parameter i ,
1 ≤ i ≤ n. The inner radii are decreasing in i , meanwhile the outer ones are increasing,
and this is independent of whether their definition is given by projection or section,
maximum or minimum.

Nowwe focus on the continuity of the successive radii with respect to the Hausdorff
metric.

Proposition 3.3 González Merino (2013a) All the successive radii are continuous in
Kn

n . Moreover, they are all continuous in Kn except for rσi , for all 2 ≤ i ≤ n − 1. The
convergence is with respect to the Hausdorff metric in the appropriate space.

The proof of the continuity of all the successive radii in Kn
n can be found in González

Merino (2013a) [Proposition 1.2.1], as a consequence of the monotonicity of the
inradius and circumradius and their 1-homogeneity. The continuity of all the successive
radii, except for rσi , inKn canbe found inGonzálezMerino (2013a) [Proposition 1.2.2].
In González Merino (2013a) [Remark 4.3.3], the author established a counterexample
for the continuity of rσi in Kn .

The next result provides us with inequalities relating the radii of a convex body K ,
and its difference body.

Lemma 3.4 Abardia-Evéquoz et al. (2018); González Merino (2013a) Let K ∈ Kn

and 1 ≤ i ≤ n. Then

√

2(i + 1)

i
Ri

π (K ) ≤ Ri
π (K − K ) ≤ 2Ri

π (K ) and

2rσi (K ) ≤ rσi (K − K ) < 2(i + 1)rσi (K ) (3.3)
√

2(i + 1)

i
˜Rπ
i (K ) ≤ ˜Rπ

i (K − K ) ≤ 2˜Rπ
i (K ) and

2̃rσi (K ) ≤ r̃σi (K − K ) ≤ c(i )̃rσi (K ) (3.4)

where

c(i) =
{

2
√
i, if i is odd,

2(i+1)√
i+2

, if i is even.

Before we deal with the behaviour of some of the radii of convex bodies without
interior points, we observe that for any K ∈ Kn , dim(K ) ≥ 1, and 1 ≤ i ≤ n, we
have

˜Rπ
i (K ) ≥ ˜Rπ

1 (K ) = r̃π1 (K ) = b(K )

2
> 0,
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hence, ˜Rπ
i is strictly positive for any i . The next proposition, which follows directly

from the definitions, provides us with the fact that several inner radii vanish for lower
dimensional convex bodies.

Proposition 3.5 Let K ∈ Kn be a convex body such that dim(K ) = j < n. Then, for
every j < i ≤ n, we have riπ (K ) = r̃πi (K ) = rπi (K ) = 0 and rσi (K ) = 0.

We remark that by rσi (K ) = 0 follows also r̃σi (K ) = riσ (K ) = 0 for a convex body
K ∈ Kn such that dim(K ) = j < n.

Using (3.2) we can establish the same statement for all 1 ≤ i ≤ n, in the case of
the mean section inner radii, and the minimum section inner radii.

Proposition 3.6 Let K ∈ Kn be a convex body such that dim(K ) = j < n. Then, for
every i ∈ {1, . . . , n}

r̃σi (K ) = riσ (K ) = 0.

Proof Let K ∈ Kn be a convex body such that dim(K ) = j < n. Then, there exists
L j ∈ Ln

j , so that K − K ⊆ L j ∈ Ln
j , and thus, dim(K − K ) = j . By (3.2), we have

r̃σi (K ) ≤ r̃σ1 (K ) = 1

4
	(K − K ) = 1

2nκn

∫

Sn−1
ρ(K − K , u) du.

Hence, we have

1

4
	(K − K ) = 1

2nκn

∫

Sn−1
ρ(K − K , u) du = 1

2nκn

∫

Sn−1∩L j

ρ(K − K , u) du = 0.

��
A similar result is established for ˜Rσ

i , as follows.

Proposition 3.7 Let K ∈ Kn, with 1 ≤ dim(K ) = j < n. Let 1 ≤ i ≤ j be such that
i + j ≤ n. Then, ˜Rσ

i (K ) = 0.

Proof Let K ∈ Kn with 1 ≤ dim(K ) = j < n, and let 1 ≤ i ≤ j with i + j ≤ n.
W.l.o.g. we assume that K ⊆ L j for some L j ∈ Ln

j . By Remark 2.4, we obtain

˜Rσ
i (K ) =

∫

{L∈Ln
i : L,L j are not in S.P.}

max
x∈L⊥

R(K ∩ (x + L))dνn,i (L).

Let now L ∈ Ln
i be such that L ∩ L j = {0}. Then, dim((L + x) ∩ L j ) = 0, for all

x ∈ L⊥. Hence, maxx∈L⊥ R(K ∩ (x + L)) = 0, and we have

˜Rσ
i (K ) =

∫

{L∈Ln
i : L+L j=Rn , 1≤dim(L∩L j )≤i}

max
x∈L⊥

R(K ∩ (x + L))dνn,i (L).
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If {L ∈ Ln
i : L + L j = R

n and 1 ≤ dim(L ∩ L j ) ≤ i} is not the empty set, then

n = dim(L + L j ) = dim(L) + dim(L j ) − dim(L ∩ L j ) = i + j − dim(L ∩ L j ),

and thus, 1 ≤ i + j − n ≤ i . This implies that n + 1 ≤ i + j , which yields a
contradiction, providing us with {L ∈ Ln

i : L + L j = R
n 1 ≤ dim(L ∩ L j ) ≤ i} = ∅

and, finally, with ˜Rσ
i (K ) = 0. ��

Wefinish this section with the following remark on convex bodies of lower dimension.

Remark 3.8 Let K ∈ Kn such that 1 ≤ dim(K ) = j < n. Let 1 ≤ i ≤ j be such that
i + j ≤ n. From Proposition 3.7, together with Ri

σ (K ) ≤ ˜Rσ
i (K ), we directly obtain

that Ri
σ (K ) = 0.

4 Minkowski sums, continuity and convexity & concavity issues
of radii

In this section we will analyse the behaviour of the inner and outer radii with respect
to the Minkowski sum, and address different aspects of the continuity, and concavity
and convexity of those.

We start recalling the following classical inequalities for the inradius, the circum-
radius, the minimal width and the diameter of two convex bodies K , M ∈ Kn :

r(K + M) ≥ r(K ) + r(M), R(K + M) ≤ R(K ) + R(M),

ω(K + M) ≥ ω(K ) + ω(M), D(K + M) ≤ D(K ) + D(M).
(4.1)

We remark that from (4.1) the behaviour of the inradius, circumradius, minimal width
and diameter with respect to the Minkowski symmetrizations follows immediately,
more precisely r(K ) ≤ r(ML(K )), R(ML(K )) ≤ R(K ), ω(K ) ≤ ω(ML(K )), and
D(ML(K )) ≤ D(K ).
Moroever, the linear nature of the Minkowski symmetrization and the mean width
with respect to the Minkowski addition yield

b(ML(K )) = b(K ), (4.2)

which also provides us immediately, together with inequality (2.3), with a proof of the
inequality b(Su⊥(K )) ≤ b(K ).

In the next, we address the analogous relations for some of the other radii. We
beginn with known results.

Proposition 4.1 Abardia-Evéquoz et al. (2018);GonzálezMerino (2013a)Let K , M ∈
Kn be convex bodies. Then,

(i) r̃πi (K ) + r̃πi (M) ≤ r̃πi (K + M) if 2 ≤ i ≤ n. For i = 1 this is an equality.
(ii) 1√

2
(rσi (K ) + rσi (M)) ≤ rσi (K + M). The inequality is best possible.
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(iii)
√
2
2

(

˜Rπ
i (K ) + ˜Rπ

i (M)
) ≤ ˜Rπ

i (K + M) ≤ ˜Rπ
i (K ) + ˜Rπ

i (M), if 2 ≤ i ≤ n. For
i = 1, inequality in the right hand-side is an equality.

(iv) Ri
π (K ) + Ri

π (M) ≤ √
2 Ri

π (K + M), if 2 ≤ i ≤ n. For i = 1 we have R1
π (K +

M) ≥ R1
π (K ) + R1

π (M).

The inequalities (i) and (iii) come from Abardia-Evéquoz et al. (2018) [Proposi-
tion4.3]. We would like to remark, that the upper bound for r̃πi (K + M) stated in
Abardia-Evéquoz et al. (2018) is clearly not true (it is an erratum). The inequalities
in (ii) and (iv) can be found in González Merino (2013a) [Theorems 4.2.1 and 4.1.1].
Notice that when i = 1, as 2R1

π (K ) = ω(K ), the last inequality follows from (4.1).
In the spirit of the result just stated, we analyse the behavior of further radii with

respect to the Minkowski sum.

Proposition 4.2 Let K , M ∈ Kn be convex bodies, and 1 ≤ i ≤ n. Then,

(i) riπ (K ) + riπ (M) ≤ riπ (K + M).
(ii) 1

2 (r
π
i (K ) + rπi (M)) ≤ rπi (K + M).

(iii) r̃σi (K ) + r̃σi (M) ≤ r̃σi (K + M).
(iv) riσ (K ) + riσ (M) ≤ riσ (K + M).
(v) 1

2
√
2
(Rπ

i (K ) + Rπ
i (M)) ≤ Rπ

i (K + M) ≤ Rπ
i (K ) + Rπ

i (M).

Proof (i) Let L ∈ Ln
i , then (K + M)|L = K |L + M |L . Hence,

r((K + M)|L; L) = r(K |L + M |L; L) ≥ r(K |L; L) + r(M |L; L).

This yields

min
L∈Ln

i

r((K + M)|L; L) ≥ min
L∈Ln

i

(r(K |L; L) + r(M |L; L)) ≥ min
L∈Ln

i

r(K |L; L) + min
L∈Ln

i

r(M |L; L),

as (i) states.
(ii) Let L1, L2 ∈ Ln

i be such that rπi (K ) = r(K |L1; L1) and rπi (M) = r(M |L2; L2).
Then, (4.1) yields

r(K |L1; L1) + r(M |L2; L2) ≤ r(K |L1; L1) + r(M |L1; L1) + r(K |L2; L2) + r(M |L2; L2)
≤ r((K + M)|L1; L1) + r((K + M)|L2; L2)
≤ 2rπi (K + M).

(iii) Let 1 ≤ i ≤ n, and let L ∈ Ln
i . Let x1 and x2 ∈ L⊥ be such that

max
x∈L⊥

r(K ∩ (x + L); x + L) = r(K ∩ (x1 + L); x1 + L)

and

max
x∈L⊥

r(M ∩ (x + L); x + L) = r(M ∩ (x2 + L); x2 + L).
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Then, we have

r(K ∩ (x1 + L); x1 + L)+r(M ∩ (x2 + L); x2 + L)

≤ r((K ∩ (x1 + L)) + (M ∩ (x2 + L)); x1 + x2 + L)

≤ r((K + M) ∩ (x1 + x2 + L); x1 + x2 + L)

≤ max
x∈L⊥

r((K + M) ∩ (x + L); x + L).

Thus, for every L ∈ Ln
i ,

max
x∈L⊥

r(K ∩ (x + L); x + L)+ max
x∈L⊥

r(M ∩ (x + L); x + L)

≤ max
x∈L⊥

r((K + M) ∩ (x + L); x + L). (4.3)

From this, it is enough to integrate on Ln
i in (4.3) to obtain the result.

(iv) We follow the steps in (iii) up to (4.3). Now, we can apply the minimum over Ln
i

in (4.3) to obtain (iv).
(v) We observe first that, following González Merino (2013a) [p. 49], we have

R((K + M)|L) ≥ 1√
2
(R(K |L) + R(M |L)).

Let L1, L2 ∈ Ln
i be such that Rπ

i (K ) = R(K |L1; L1) and Rπ
i (M) =

R(M |L2; L2). Then,

Rπ
i (K ) + Rπ

i (M) = R(K |L1) + R(M |L2)

≤ R(K |L1) + R(M |L1) + R(M |L2) + R(K |L2)

≤ √
2
(

R((K + M)|L1) + R((K + M)|L2)
)

≤ 2
√
2Rπ

i (K + M).

In order to prove the right-hand side inequality, we just need to apply (4.1). We
consider Li ∈ Ln

i , so that R
π
i (K + M) = R((K + M)|Li ). Then,

Rπ
i (K + M) = R((K + M)|Li ) ≤ R(K |Li ) + R(M |Li )

≤ Rπ
i (K ) + Rπ

i (M).

��
We observe that euclidean balls provide us with equality in Proposition 4.2 (i), (iii),

(iv), and the right-hand-side of (v). Recalling that rπ1 (K ) = D(K )/2, taking (4.1) into
account, we have rπ1 (K + M) ≤ rπ1 (K ) + rπ1 (M), which is the reverse inequality of
(ii), hence, in general, an improvement of inequality (ii) can not hold.

It is natural to ask, whether there is a constant, such that some of the lower bounds
for the radii of the Minkowski sum, as in Proposition 4.2(i)–(iv), can become upper
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bounds. The following result in that spirit was established inGonzálezMerino (2013a).

Proposition 4.3 González Merino (2013a) [Proposition 4.1.1] Let 1 < i < n. Then,
there is no c > 0 such that Ri

π (K + M) ≤ c(Ri
π (K ) + Ri

π (M)).

With the same ideas of the proof of the latter result in González Merino (2013a),
we can prove the following proposition.

Proposition 4.4 Let n ≥ 3.

(i) Let 1 < i < n be such that n + 1 < 2i . There is no constant c > 0 such that any
of the following inequalities holds for all K , M ∈ Kn:

(a) riπ (K + M) ≤ c(riπ (K ) + riπ (M)).
(b) r̃πi (K + M) ≤ c(̃rπi (K ) + r̃πi (M)).
(c) rπi (K + M) ≤ c(rπi (K ) + rπi (M)).

(ii) For every 1 < i < n, there is no constant c > 0 such that any of the following
inequalities holds for all K , M ∈ Kn:

(a) riσ (K + M) ≤ c(riσ (K ) + riσ (M)),

(b) r̃σi (K + M) ≤ c(̃rσi (K ) + r̃σi (M)),

(c) rσi (K + M) ≤ c(rσi (K ) + rσi (M)).

(iii) Let 1 ≤ i ≤ � n
2 �. There is no constant c > 0 such that any of the following

inequalities holds for all K , M ∈ Kn:

(a) ˜Rσ
i (K + M) ≤ c(˜Rσ

i (K ) + ˜Rσ
i (M)).

(b) Ri
σ (K + M) ≤ c(Ri

σ (K ) + Ri
σ (M)).

Proof The idea of the proof for all inequalities has the same underlying construction,
which follows the ideas in González Merino (2013a)[Theorem 1.1 and Proposition
1.1]. The construction consists on finding two approppriate coordinate cubes and
then, use the properties of the radii applied to bodies of lower dimensions.

In the first case (i), we consider

K =
i−1
∑

k=1

[−ek, ek], M =
n

∑

k=i

[−ek, ek],

where {ei , 1 ≤ i ≤ n}, denote the vectors of the standard orthonormal basis of Rn .
Then, from Proposition 3.5 follows that rπi (K ) = rπi (M) = 0, since n − i + 1 < i .
On the other hand, it is clear that

K + M =
n

∑

k=1

[−ek, ek]

and thus, riπ (K + M) > 0.
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For (ii),we take into consideration K = ∑i
k=1[−ek, ek], andM = ∑n

k=i+1[−ek, ek].
Then, Proposition 3.6 provides us with r̃σi (K ) = r̃σi (M) = 0, whilst

K + M =
n

∑

k=1

[−ek, ek],

and thus, riσ (K + M) > 0.

For the last part (iii), we take the cubes K = ∑ j
k=1[−ek, ek] and M =

∑n
k= j+1[−ek, ek], with i ≤ j ≤ � n

2 �. It is clear that i + j ≤ n and i + n − j ≤ n.

Hence, using Proposition 3.7 we obtain ˜Rσ
i (K ) = ˜Rσ

i (M) = 0. In this case it is
K + M = ∑n

k=1[−ek, ek] and so Ri
σ (K + M) > 0. ��

We consider in the following the continuity of the radii. By Proposition 3.3 we know
that Ri

π ,Rπ
i = Rσ

i ,Ri
σ , rπi , riπ , riσ are all continuous in Kn , for every 1 ≤ i ≤ n,

meanwhile rσi is continous only onKn
n , see González Merino (2013a) [Remark 4.3.3].

We observe that with the same technique as in González Merino (2013a) [Proposi-
tion 1.2.1] it is possible to prove that also the mean section and projection, inner and
outer radii ones, are continuous in the space of convex bodies with non-empty interior.
Next, we prove that the mean projection inner and outer radii are indeed continuous
on the whole Kn .

Proposition 4.5 Let 1 ≤ i ≤ n. Then, the radii ˜Rπ
i and r̃πi are continuous on Kn with

respect to the Hausdorff metric.

Proof Let 1 ≤ i ≤ n, and let (K j ) j∈N, K j ∈ Kn for all j ∈ N, be a sequence of convex
bodies converging to the convex body K ∈ Kn . For every L ∈ Ln

i , the convergence
K j |L → K |L holds, as orthogonal projections are linear maps, thus, continuous.
Indeed, also the following inequalities hold:

r(K j |L; L) ≤ max
L∈Ln

i

r(K |L; L) = rπi (K ), R(K j |L) ≤ max
L∈Ln

i

R(K |L; L) = Rπ
i (K ).

Now, since r and R are also continuous on Kn , the sequences (r(K j |L; L)) j∈N, and
(R(K j |L)) j∈N converge in R, and further,

r(K j |L; L) −→ r(K |L; L), R(K j |L) −→ R(K |L).

Thus, r(K j |L; L) and R(K j |L) are bounded sequences. Finally, the bounded conver-
gence Theorem on (Ln

i ; νn,i ) (see e.g. Bowers and Kalton (2014)[Corollary A.18])
provides us with the convergence:

∫

Ln
i

r(K j |L; L)dνn,i −→
∫

Ln
i

r(K |L; L)dνn,i and

∫

Ln
i

R(K j |L)dνn,i −→
∫

Ln
i

R(K |L)dνn,i .

��
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For the case of section inner radii, we obtain:

Proposition 4.6 Let 1 ≤ i ≤ n. Then, with respect to the Hausdorff metric, the i-th
mean section inner radii r̃σi is continous onKn and˜Rσ

i is continuous on the subspace
of convex bodies origin-symmetric.

Proof The continuity of r̃σi inKn follows from the same steps of the proof of González
Merino (2013a) [Proposition 1.2.2].
To prove the continuity of ˜Rσ

i in the subspace of convex bodies origin-symmetric,
let K be an origin-symmetric convex body, and let (K j ) j∈N be a sequence of origin-
symmetric convex bodies converging to K . Let L ∈ Ln

i . Since K and K j are origin-
symmetric

max
x∈L⊥

R(K ∩ (x + L)) = R(K ∩ L)

and

max
x∈L⊥

R(K j ∩ (x + L)) = R(K j ∩ L).

Using that K j → K , we have K j ∩ L → K ∩ L (see Schneider (2014) [Theorem
1.8.10]) and R(K j ∩ L) → R(K ∩ L). The continuity of the circumradius provides us
with the fact that (R(K j∩L)) j∈N is a bounded sequence.Thefore, again by the bounded
convergence Theorem on (Ln

i ; νn,i ), see e.g. Bowers and Kalton (2014) [Corollary
A.18], we have the required convergence for the continuity. ��

We will focus now on concavity and convexity properties of successive radii on
approppriate families of convex bodies. We first recall the notions of a convex and a
concave family of convex bodies Hadwiger (1955) [Sect. 23].

Definition 4.7 Let 0 ≤ t ≤ 1, and let K[0,1] := {K (t) : t ∈ [0, 1]} ⊂ Kn . If for all
t1, t2 ∈ [0, 1], and λ ∈ [0, 1],
(i) K ((1 − λ)t1 + λt2) ⊂ (1−λ)K (t1)+λK (t2), then the familyK[0,1] is said to be

a convex family.
(ii) (1−λ)K (t1)+λK (t2) ⊂ K ((1 − λ)t1 + λt2), then the familyK[0,1] is said to be

a concave family.

Next we deal with concavity and convexity aspects of radii. Whenever we deal with
convexity or concavity issues of any radii f here, we refer to convexity or concavity
of the real valued function f (K (t)). We prove now that the radii ˜Rπ

i ,Rπ
i and ˜Rσ

i are
convex functions when applied on a convex family of convex bodies. On the other
hand, r̃πi , r̃

σ
i , r

i
σ and riπ are, in the same sense, concave, when applied on a concave

family of convex bodies. This corresponds to Theorem A in the Introduction.

Theorem 4.8 [Theorem A] Let K[0,1] := {K (t) : t ∈ [0, 1]} ⊂ Kn be a family of
convex bodies.

(i) IfK[0,1] is a convex family of convex bodies, then the three functions t �→ ˜Rπ
i (K (t))

and t �→ Rπ
i (K (t)) = Rσ

i (K (t)) are convex functions for t ∈ [0, 1].
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(ii) IfK[0,1] is a concave family of convex bodies, then the four functions t �→ r̃πi (K (t)),
t �→ r̃σi (K (t)), t �→ riσ (K (t)) and t �→ riπ (K (t)) are concave functions for
t ∈ [0, 1].

Proof (Proof of Theorem 4.8) Let {K (t) : t ∈ [0, 1]} ⊂ Kn be a convex family of
convex bodies, let t1, t2 ∈ (0, 1), λ ∈ [0, 1], and let t = (1−λ)t1+λt2. The convexity
of the family K (t) yields

K (t) ⊆ (1 − λ)K (t1) + λK (t2).

Let further L ∈ Ln
i . From

K (t)|L ⊆ (1 − λ)K (t1)|L + λK (t2)|L,

the 1-homogeneity of the circumradius and (4.1) follows

R(K (t)|L) ≤ R((1 − λ)K (t1)|L + λK (t2)|L) ≤ (1 − λ)R(K (t1)|L) + λR(K (t2)|L).

To show the convexity of Rπ
i , it is enough to take the maximum overLn

i , then we have

Rπ
i (K (t)) = max

L∈Ln
i

R(K (t)|L) ≤ max
L∈Ln

i

((1 − λ)R(K (t1)|L) + λR(K (t2)|L))

≤ (1 − λ) max
L∈Ln

i

R(K (t1)|L) + λ max
L∈Ln

i

R(K (t2)|L)

= (1 − λ)Rπ
i (K (t1)) + λRπ

i (K (t2)).

Analogously, passing to the integral over Ln
i , the convexity of ˜Rπ

i is obtained. As an
immediate consequence of Theorem 3.1, i.e., Rσ

i (K (t)) = Rπ
i (K (t)), the convexity

of Rσ
i is obtained for every i and t .

To prove (ii), let again K (t), t ∈ [0, 1], be a concave family of convex bodies,
t1, t2 ∈ (0, 1),λ ∈ [0, 1], and t = (1−λ)t1+λt2. Then, (1−λ)K (t1)+λK (t2) ⊆ K (t).

The concavity of r̃πi and riπ follows from the same argument as above, where now
the inequality (reverse to the previous case) arises from the super-additivity of the
inradius, (4.1), namely,

r(K (t)|L); L) ≥ r((1 − λ)K (t1); L) + r(λK (t2); L)

= (1 − λ)r(K (t1)|L; L) + λr(K (t2)|L; L),

for all L ∈ Ln
i . Thus, just as above, passing to the integral overLn

i yields the concavity
of r̃πi , while taking the minimum over Ln

i provides us with the concavity of riπ .
Finally, the concavity of r̃σi and riσ are consequences of their super-additivity, i.e.,

of Proposition 4.2, (iii) and (iv). ��
With essentially the same proof as in the previous theorem, the following result is

also obtained.
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Proposition 4.9 Let K[0,1] = {K (t) : t ∈ [0, 1]} ⊂ Kn be a concave family of convex
bodies. Let t1, t2 ∈ (0, 1), λ ∈ [0, 1], and let t = (1 − λ)t1 + λt2, then we have

(i)
√
2Ri

π (K (t)) ≥ (1 − λ)Ri
π (K (t1)) + λRi

π (K (t2)),
(ii) 2rπi (K (t)) ≥ (1 − λ)rπi (K (t1)) + λrπi (K (t2)),
(iii)

√
2rσi (K (t)) ≥ (1 − λ)rσi (K (t1)) + λrσi (K (t2)).

In the next section we will apply Theorem 4.8 (i) to the special convex family of
parallel chord movement. The latter will be further applied to obtain results relating
(Steiner) symmetrization and radii.

5 Interplay of radii and symmetrizations

First, we consider briefly the reflection of a convex body with respect to a k-plane,
as it will be useful when dealing with the Steiner symmetrization. Next, we deal with
the shadow system and the Steiner symmetrization. Subsequently, we deal with the
Schwarz symmetrization, and at last, with the Minkowski symmetrization.

Remark 5.1 Let 0 ≤ k ≤ n, L ∈ Ln
k , K ∈ Kn , and let 1 ≤ i ≤ n. Then:

(i) ˜Rπ
i (σL(K )) = ˜Rπ

i (K ), ˜Rσ
i (σL(K )) = ˜Rσ

i (K ), r̃πi (σL(K )) = r̃πi (K ) and
r̃σi (σL(K )) = r̃σi (K ).

(ii) Ri
π (σL(K )) = Ri

π (K ), Rπ
i (σL(K )) = Rπ

i (K ), rπi (σL(K )) = rπi (K ) and
riπ (σL(K )) = riπ (K ).

(iii) Ri
σ (σL(K )) = Ri

σ (K ), Rσ
i (σL(K )) = Rσ

i (K ), rσi (σL(K )) = rσi (K ) and
riσ (σL(K )) = riσ (K ).

The proofs follow directly from the relation between the inradius and circumradius
of a convex body and its reflection onto a subspace and the invariance of the euclidean
ball under reflection.

We recall now the notion of shadow systems, introduced in Rogers and Shephard
(1958). After that, we will concentrate on parallel chord movements of convex bodies,
which happen to be particular cases of shadow systems Schneider (2014) [Sect. 10.4]
(see also Campi et al. (1999) and the references therein).

Definition 5.2 For a compact set A ⊂ R
n , a unit vector u ∈ S

n−1, and a bounded
function α : A −→ R, the one parameter family of convex bodies

K (t) = conv{x + α(x)tu : x ∈ A}, t ∈ [0, 1], (5.1)

is called a shadow system -along the direction u.

This definition is equivalent, by a result of Shephard (1964) (see also Bianchini
and Colesanti (2008)), to the existence of another convex body K̃ ⊂ R

n+1, such that
every convex body K (t), t ∈ [0, 1], of the shadow system is the projection of K̃ onto
e⊥
n+1 along the direction en+1 − t u.
Thus, a shadow system can be viewed as a continuous transformation depending

on the parameter t , which is obtained by providing to every chord in the direction u,
at t , the value α(x)t .
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The analysis of the relations between radii and parallel chord movement is one of
the main purposes of this paper, for which we introduce the latter.

In the particular case in which a shadow system K (t) is defined by the continuous
function β : K |u⊥ → R, such that α(x) = β(x |u⊥) for all x ∈ K , and

K (t) = {x + β(x |u⊥)tu : x ∈ K }, t ∈ [0, 1], (5.2)

the family K (t) is known as parallel chord movement. If K (t) is a parallel chord
movement, then it is clear that K (t)|u⊥ = K |u⊥ for all t ∈ [0, 1].

It is proven in Rogers and Shephard (1958) that the volume of a shadow system is
a convex function of the parameter t ∈ [0, 1]. Moreover, in Shephard (1964) it was
also proven that other magnitudes, like the diameter or the mean width do also share
this convexity.

The following remark provides uswith a direct connection between shadow systems
and symmetrizations, which has been our main motivation to use shadow systems in
this context.

Remark 5.3 Schneider (2014) [Sect. 10.4] Let K ∈ Kn , and u ∈ S
n−1. Further, let

fK , gK : K |u⊥ → R be the defining functions associated to K , that is, fK is concave,
gK is convex, and the convex body K is given by K = {x + λu| x ∈ K |u⊥, gK (x) ≤
λ ≤ fK (x)}, as in Remark 2.8. Then,

K (t) = {x + λu : x ∈ K |u⊥, (1 − t)gK (x) − t fK (x)

≤ λ ≤ (1 − t) fK (x) − tgK (x)}, t ∈ [0, 1], (5.3)

is a parallel chordmovement of K givenby the continuous functionβ(x) = −( fK (x)+
gK (x)) for x ∈ K |u⊥. We observe that K (0) = K .

In the next theorem we gather some aspects of the just introduced parallel chord
movement, given by the defining functions associated to a convex body, which will be
called K defining parallel chord movement, and its connection to the symmetrization
procedures. We refer the reader to Rogers and Shephard (1958); Schneider (2014);
Shephard (1964), and the references therein.

Theorem 5.4 Shephard (1964) Let K ∈ Kn, and let K (t), 0 ≤ t ≤ 1, be the K defining
parallel chord movement in the direction u ∈ S

n−1. Then,

(i) K (t) is a convex body for every t ∈ [0, 1].
(ii) K (t) = ⋃

x∈K |u⊥ [x + ((1 − t)gK (x) − t fK (x))u, x + ((1 − t) fK (x) − tg
K (x))u].

(iii) The lengthof the segment [x + ((1 − t)gK (x) − t fK (x))u, x + ((1 − t) fK (x) − tg
K (x))u] does not depend on t, for t ∈ [0, 1]. Indeed, it coincides with fK (x) −
gK (x) ≥ 0.

(iv) K ( 12 ) = Su⊥(K ),
(v) K (1) = σu⊥(K ).

The items (iv) and (v) in the previous proposition do provide us with the main motiva-
tion to work with shadow systems, as they establish a connection of those with Steiner
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and (implicitly) Minkowski symmetrization. Further, Definition 2.9, and Definition
2.6 allow us to see a connection between the Schwarz symmetrization and shadow
systems via Theorem 5.4 (ii).

The following result will be crucial for our purposes. It establishes the convexity on
the defining parameter of the family of parallel chord movement for any K ∈ Kn and
u ∈ S

n−1, in the spirit of the convexity results in Shephard (1964) for the diameter, or
the mean width.

Proposition 5.5 Let K ∈ Kn, u ∈ S
n−1, and let K (t), 0 ≤ t ≤ 1, be the K defining

parallel chord movement in the direction u. Then, K (t) is convex in t ∈ [0, 1].
Proof Let K ∈ Kn , u ∈ S

n−1, and let K (t), 0 ≤ t ≤ 1, be the K defining parallel
chord movement in the direction u. Further, let t1, t2 ∈ [0, 1] and λ ∈ [0, 1], and
denote by t = (1 − λ)t1 + λt2. We prove that

K (t) ⊆ (1 − λ)K (t1) + λK (t2).

Let fK , gK denote the defining functions associated to K , and let z ∈ K (t). Then,
there exist x ∈ K |u⊥ and y = μu, so that z = x + y, and

(1 − t)gK (x) − t fK (x) ≤ μ ≤ (1 − t) fK (x) − tgK (x).

We construct zi ∈ K (ti ), i ∈ {1, 2}, such that z = (1 − λ)z1 + λz2, by means of
finding x1, x2 ∈ K |u⊥, and y1 = μ1u, y2 = μ2u, such that

(1 − ti )gK (x) − ti fK (x) ≤ λi ≤ (1 − ti ) fK (x) − ti gK (x),

for i = 1, 2, and x + y = (1 − λ)(x1 + y1) + λ(x2 + y2).
Let x1 = x2 = x , and,et d = (1 − t) fK (x) − tgK (x) − μ ≥ 0. Furthermore,

for i = 1, 2 let μi = (1 − ti ) fK (x) − ti gK (x) − d. Then, as d ≥ 0, we have
μi ≤ (1− ti ) fK (x)− ti gK (x). Moreover, sinceμ ≥ (1− t)gK (x)− t fK (x), we have

μi = (1 − ti ) fK (x) − ti gK (x) − (1 − t) fK (x) + tgK (x) + μ ≥
= (1 − ti ) fK (x) − ti gK (x) − (1 − t) fK (x) + tgK (x) + (1 − t)gK (x) − t fK (x)

= (1 − ti ) fK (x) − ti gK (x) + gK (x) − fK (x) = (1 − ti )gK (x) − ti fK (x).

Thus, we have proven that μi ∈ [(1− ti )gK (x) − ti fK (x), (1− ti ) fK (x) − ti gK (x)]
and therefore, we obtain zi = x + μi u ∈ K (ti ).

It remains to prove, that μ = (1 − λ)μ1 + λμ2:

(1 − λ)μ1 + λμ2

= (1 − λ)(1 − t1) fK (x) − (1 − λ)t1gK (x) − (1 − λ)d + λ(1 − t2) fK (x) − λt2gK (x) − λd

= (1 − λ)(1 − t1) fK (x) − (1 − λ)t1gK (x) + λ(1 − t2) fK (x) − λt2gK (x) − d

= fK (x)((1 − λ)(1 − t1) + λ(1 − t2)) − gK (x)((1 − λ)t1 + λt2)

− (1 − t) fK (x) + tgK (x) + μ

= fK (x)((1 − λ)(1 − t1) + λ(1 − t2)) − gK (x)((1 − λ)t1 + λt2)

− (1 − (1 − λ)t1 − λt2) fK (x) + ((1 − λ)t1 + λt2)gK (x) + μ = μ
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Thus, z = x + y ∈ (1 − λ)K (t1) + λK (t2) and the statement follows. ��
As a consequence of the latter result we can prove Theorem 5.6, i.e., that the Steiner

symmetrization does not increase the mean projection outer radii.

Theorem 5.6 [Theorem B] Let K ∈ Kn, u ∈ S
n−1, and let 1 ≤ i ≤ n. Then, we have

(i) ˜Rπ
i (Su⊥(K )) ≤ ˜Rπ

i (K );
(ii) Rσ

i (Su⊥(K )) = Rπ
i (Su⊥(K )) ≤ Rπ

i (K ) = Rσ
i (K );

and equality holds in all of the inequalities for euclidean balls.

Proof Let K ∈ Kn , and u ∈ S
n−1. We consider the one-parameter family of chord

movement of K in the direction u ∈ S
n−1, K (t), t ∈ [0, 1]. By Proposition 5.5, the

family K (t) is convex in t ∈ [0, 1], hence, applying Theorem 4.8, ˜Rπ
i (K (t)) and

Rπ
i (K (t)) are convex in t ∈ [0, 1]. Thus, recalling that K (0) = K , K ( 12 ) = Su⊥(K )

and K (1) = σu⊥(K ), Remark 5.1 yields

˜Rπ
i (Su⊥(K )) ≤ ˜Rπ

i (K )

and

Rπ
i (Su⊥(K )) ≤ Rπ

i (K ).

By Theorem 3.1, the same inequality for Rπ
i holds also for Rσ

i .
Finally, equality holds in all three inequalities with euclidean balls, since the Steiner

symmetrization does not change balls, up to a translation, and thus, all the involved
radii equal the radius of the ball. ��
Remark 5.7 We point out, that as R1

π (K ) = r1π (K ) = R1
σ (K ) = r1σ (K ) = ω(K )/2,

and as it is known that the minimal width of a set can be both increased and reduced
after performing a Steiner symmetrization on it, see Eggleston (1958) [p. 90], the
analog of Theorem 5.6 for Ri

π , riπ ,Ri
σ , riσ can not hold, in general.

Now we can use Theorem 5.6 to prove that the Schwarz symmetrization does not
increase the mean projection outer radii.

Theorem 5.8 Let K ∈ Kn, 1 ≤ k ≤ n − 1, and L ∈ Ln
k , and 1 ≤ i ≤ n. Then, we

have

(i) ˜Rπ
i (SL(K )) ≤ ˜Rπ

i (K );
(ii) Rσ

i (SL(K )) = Rπ
i (SL(K )) ≤ Rπ

i (K ) = Rσ
i (K )

and equality holds in all of the inequalities for euclidean balls.

Proof Let K ∈ Kn , 1 ≤ k ≤ n − 1, and L ∈ Ln
k . The fundamental step in the

proof is Theorem 2.10, i.e., the existence of a sequence of Steiner symmetrizations
of K converging to SL(K ). Then, Theorem 5.6 proves the result. More precisely,
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let u j ∈ S
n−1 ∩ L be the sequence of directions from Theorem 2.10, so that

Su⊥
j
(· · · (Su⊥

1
(K ))) → SL(K ), and let K j := Su⊥

j
(· · · (Su⊥

1
(K ))). Theorem 5.6 yields

˜Rπ
i (K j ) ≤ ˜Rπ

i (K j−1) ≤ · · · ≤ ˜Rπ
i (K1) ≤ ˜Rπ

i (K ).

By the continuity of the mean projection outer radii proven in Proposition 4.5, we
have

˜Rπ
i (SL(K )) = ˜Rπ

i

(

lim
j→+∞ K j

)

= lim
j→+∞

˜Rπ
i (K j ) ≤ ˜Rπ

i (K ).

ByProposition3.3 andTheorem3.1,wehave also thatRσ
i (SL(K )) = Rπ

i (SL(K )) ≤
Rπ
i (K ) = Rσ

i (K ) holds. Equality holds in all three inequalities for the euclidean ball,
for the same reason as in Theorem 5.6. ��
To finish, we address the Minkowski symmetrization and its relation to the successive
andmean radii.We observe first, that (4.2) does already provide us with a first relation,
as˜Rπ

1 (K ) = 1
2b(K ), and thus,˜Rπ

1 (K ) = ˜Rπ
1 (ML(K )). Now, we can extend this result

to some mean radii.

Theorem 5.9 [TheoremC] Let K ∈ Kn, 0 ≤ k ≤ n, and let L ∈ Ln
k . For all 1 ≤ i ≤ n,

we have

˜Rπ
i (ML(K )) ≤ ˜Rπ

i (K ), r̃πi (K ) ≤ r̃πi (ML(K ))

and

r̃σi (K ) ≤ r̃σi (ML(K )),

and equality holds for euclidean balls.
For i = 1, we have ˜Rπ

1 (ML(K )) = ˜Rπ
1 (K ), and r̃π1 (ML(K )) = r̃π1 (K ), that is,

there is equality in the inequalities involving the projection mean radii, when i = 1.

Proof The two first inequalities involving projection radii, namely, ˜Rπ
i (ML(K )) ≤

˜Rπ
i (K ), and r̃πi (K ) ≤ r̃πi (ML(K )) are consequences of Proposition 4.1 (i) and (iii),

while the last inequality, r̃σi (K ) ≤ r̃σi (ML(K )), follows from the super-additivity
property of the mean section inner radii in Proposition 4.2 (iii).

Equality holds in all three inequalities for euclidean balls as the Minkowski sym-
metral of a euclidean ball K is again a euclidean ball having the same radius as K .

For i = 1, the equalities follow from (4.2), and the equality r̃π1 (K ) = 1

2
b(K ),

together with the fact that the mean width is linear with respect to theMinkowski sum,
provides us with the result:

˜Rπ
1 (ML(K )) = ˜Rπ

1 (K ) = 1

2
b(K ) = r̃π1 (K ) = r̃π1 (ML(K )),

for all L ∈ Ln
k , 1 ≤ k ≤ n and K ∈ Kn . ��

123



Beitr Algebra Geom (2024) 65:415–440 439

With essentially the same proof as in the previous theorem, the following result is also
obtained.

Proposition 5.10 Let K ∈ Kn, 0 ≤ k ≤ n, and let L ∈ Ln
k . For all 1 ≤ i ≤ n, we

have

(i) Rσ
i (ML(K )) = Rπ

i (ML(K )) ≤ Rπ
i (K ) = Rσ

i (K );
(ii) Ri

π (K ) ≤ √
2Ri

π (ML(K ));
(iii) rπi (K ) ≤ 2rπi (ML(K )) and rσi (K ) ≤ √

2rσi (ML(K ));
(iv) riπ (K ) ≤ riπ (ML(K )) and riσ (K ) ≤ riσ (ML(K )).

We observe that euclidean balls provide us with equality in Proposition 5.10 (i)
and the left-hand-side of (iv). We point out, that recalling the proof of Proposition 4.4
(iii), it is possible to find two convex bodies K and M , not full-dimensional, such that
˜Rσ
i (K ) = ˜Rσ

i (M) = 0, but Ri
σ (K + M) > 0. Hence, under some suitable conditions

on n, 1 ≤ i < n and 1 ≤ k ≤ n, it is possible to consider M = σL(K ), for a
suitable L ∈ Ln

k , and this allows us to establish that there is no c ∈ R, such that
˜Rσ
i (ML(K )) ≤ c˜Rσ

i (K ) and Ri
σ (ML(K )) ≤ cRi

σ (K ), for all K ∈ Kn .

Remark 5.11 We remark, that unlike Theorem 5.9, there can not be equality for the
case i = 1 in Proposition 5.10, since

Rπ
1 (K ) = D(K )

2
, r1π (K ) = ω(K )

2
= r1σ (K ),

and the diameter and the minimal width are not linear with respect to the Minkowski
sum.

We observe that Propositions 4.1 (iii) and 4.2 (v) yield also the inequalities

˜Rπ
i (ML(K )) ≥

√
2

2
˜Rπ
i (K ), Rπ

i (ML(K )) ≥ 1

2
√
2
Rπ
i (K ),

which provide us with a lower and upper bound for the mean projection outer and the
maximal projection outer radii.
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