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Abstract
Let A ⊆ B be two commutative rings with identity. It is well-known that if A is a
Noetherian ring and B is a finitely generated A-module, then B is also a Noetherian
ring. In this paper, we want to prove an analogue of the above result for SFT rings. For
that, we extend the notion of SFT rings to modules. An A-module M is said to be an
SFT module, if for each submodule N of M , there exist k ≥ 1, x1, . . . , xn ∈ N such
that for each a ∈ (N : M) = {α ∈ A, αM ⊆ N } and x ∈ M , akx ∈ 〈x1, . . . , xn〉.
First of all, we investigate some properties of SFT modules. In fact, we show that
properties of SFT rings can be generalized to SFT modules. In the end of this paper,
we give a partial answer of the main question of this work.

Keywords SFT-rings · SFT-modules · Rings extension

Mathematics Subject Classification 13B25 · 13E05 · 13A15

1 Introduction

In this paper, all rings considered are commutative with unit element and all modules
are left side and unital modules. For two sets X and Y , the symbol X ⊂ Y means that
X is strictely contained in Y . In Arnold (1973a), Arnold has introduced the concept
of SFT (strong finite type) rings as follow, a ring A is called SFT, if for each ideal
I of A there exist an integer k ≥ 1 and a finitely generated ideal F ⊆ I of A such
that xk ∈ F for every x ∈ I (in this case I is called an SFT ideal). He also showed
that the SFT condition is necessary for the finiteness of the Krull dimension of the
power series ring A[[X ]]. After, Coykendall in Coykendall (2002), has showed that
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this property is not sufficient. In fact, Coykendall gave an example of an SFT ring A
such that dim(A[[X ]]) = +∞.

Let A ⊆ B be a ring extension such that B is a finitely generated A-module. It is
well known that A is a Noetherian ring if and only if B is a Noetherian ring. In this
paper, we are interested in the case of SFT rings. In other words, if A is SFT, is the
ring B SFT? Inspired by the proof of the Noetherian case, it is natural to think about
extending the SFT notion from rings to modules. For that, we define the SFT-modules
as a generalization of SFT rings as follow. Let A be a ring and M an A-module.
The module M is called SFT, if for each submodule N of M , there exist an integer
k ≥ 1 and a finitely generated submodule L ⊆ N of M such that akm ∈ L for every
a ∈ (N :A M) and m ∈ M .

First of all, we show that this new notion is a generalization of SFT rings. For
instance, we show that a ring A is SFT if and only if it is an SFT A-module (see
Example 2.1). Next, we study some basic property of SFT module, for example, the
analogue of Cohen Theorem type, the homomorphic image of an SFT module, the
product of SFT modules etc... In fact, we show that an A-module M is SFT if and
only if PM is an SFT submodule of M for every prime ideal P of A. Among other
results, we show that HomA(M, N ) is an SFT A-module where M and N are two
A-modules, provided that M is a free finitely generated A-module and N is an SFT
A-module.

This paper is the first one which is devoted to study the sufficient conditions for
a finitely generated extension of an SFT ring to be an SFT ring. It is also the first
work concerning the natural extention of the SFT notion from rings to modules and
study their nice properties. In fact, we show that if A ⊆ B is a ring extension such
that B is a finitely generated A-module and A is a zero dimensional SFT ring, then
the ring B is SFT. Under the same hypothesis, it is shown that the ring A + XB[X ]
is SFT (see Theorem 2.23). On the other hand, we give a sufficient condition for
an A-module M such that the A[X1, . . . , Xn]-module M[X1, . . . , Xn] (respectively,
A[[X1, . . . , Xn]]-module M[[X1, . . . , Xn]]) is SFT.

Also, we show that an SFT ring extension B of A is not in general an SFT module.
In fact, we give an example of an SFT ring B and a subring A of B which is not an
SFT A-module. It is well known that a submodule of a Noetherian module is always
a Noetherian module. This result does not hold in the case of SFT module. In other
words, a submodule of an SFT module can be a nonSFT module (see Example 2.2).

2 Main results

We start this section by the following definitions and some examples showing the
importance of this concept.

2.1 Definitions

Let A be a ring and M an A-module.
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1. A submodule N of M is said to be an SFT submodule, if there exist k ≥ 1,
x1, . . . , xn ∈ N such that for each a ∈ (N : M) = {α ∈ A, αM ⊆ N } and x ∈ M ,
akx ∈ 〈x1, . . . , xn〉.

2. We call that M is an SFT A-module if every submodule of M is an SFT submodule.

The following example shows that this notion is a natural extention of the SFT
(strong finite type) condition from ring to module.

Example 2.1 1. Let A be a ring and N an ideal of A. Then N is an SFT ideal of A if
and only if it is an SFT A-submodule of A. Indeed, suppose that N is an SFT ideal of
A. We have (N : A) = N . Consequentely, there exist k ≥ 1 and x1, . . . , xn ∈ N such
that for each x ∈ (N : A), xk ∈ 〈x1, . . . , xn〉. Let a ∈ (N : A) = N and x ∈ A. We
have ak ∈ 〈x1 . . . , xn〉. Then akx ∈ 〈x1, . . . , xn〉. Thus N is an SFT A-submodule of
A.
Conversely, assume that N is an SFT A-submodule of A. Then there exist k ≥ 1,

x1, · · · , xn ∈ N such that for every a ∈ (N : A) and x ∈ A, akx ∈ 〈x1, . . . , xn〉. In
particular, for x = 1, we obtain ak ∈ 〈x1, . . . , xn〉 for all a ∈ (N : A) = N . Hence N
is an SFT ideal of A.
2. Using (1), we see that a ring A is an SFT ring if and only if it is an SFT A-module.

Example 2.2 1. Let A be a ring andM be an A-module. IfM is an SFT A-module, then
M is finitely generated. Indeed, there exist k ≥ 1 and x1, . . . , xn ∈ M such that for
every a ∈ (M : M) = A and x ∈ M , akx ∈ 〈x1, . . . , xn〉. In particular, if a = 1,
we get x = 1k x ∈ 〈x1, . . . , xn〉 for each x ∈ M . Therefore, M = 〈x1, . . . , xn〉.

2. A submodule of an SFT-module is not necessary an SFT-module. Indeed, let K be a
field, X = {Xn, n ≥ 1} a family of indeterminates over K , A = M = K [X ]/〈X〉2
and N = 〈X̄n, n ≥ 1〉. The only prime ideal of A is N which satisfies N 2 = {0}.
Thus A is an SFT-ring. By Example 2.1, the A-moduleM is SFT . As the A-module
N is not finitely generated, by (1) of Example 2.2, it is not an SFT A-module.

3. A finitely generated submodule of an A-module M is an SFT submodule. Indeed,
let N = 〈x1, . . . , xn〉 be a finitely generated submodule of M . Then for each
a ∈ (N : M) and x ∈ M , ax ∈ (N : M)M ⊆ N = 〈x1 . . . , xn〉. This shows that
every Noetherian module is an SFT module.

The analogue of the Cohen’s Theorem type is a natural question in this concept. This
allows us to consider this question in the beginning of our paper.

Lemma 2.2 Let A be a ring, M a finitely generated A-module and N a maximal
element among the non-SFT submodules of M. Then P = (N : M) is a prime ideal
of A.

Proof Since M is finitely generated, then N 	= M (by (3) of Example 2.2) and so
P 	= A. Assume that P is not a prime ideal of A. Then there exist a, b ∈ A \ P such
that ab ∈ P . Let L = N+aM . Since aM � N , we have N ⊂ L . Bymaximality of N ,
the submodule L is SFT. Thus there exist k ≥ 1, x1, . . . , xn ∈ N , m1, . . . ,mn ∈ M
such that for every α ∈ (L : M) and x ∈ M , αk x ∈ 〈x1 + am1, . . . , xn + amn〉.

Now, set K = (N : a) = {x ∈ M, ax ∈ N }. It is clear that K is a submodule of
M . As b /∈ P , there exists x ∈ M such that bx /∈ N , but abx ∈ PM ⊆ N . Therefore,
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bx ∈ K . Hence N ⊂ K . Again by maximality of N , K is an SFT submodule of M .
Consequentely, there exist l ≥ 1, y1, . . . , yr ∈ K such that for each β ∈ (K : M)

and y ∈ M , βl y ∈ 〈y1, . . . , yr 〉.
Since N ⊂ L , then P ⊆ (L : M). Let α ∈ P and x ∈ M . We have
αk x =

∑n

i=1
αi (xi + ami ) for some α1, . . . , αn ∈ A. Thus a

∑n

i=1
αimi =

αk x −
∑n

i=1
αi xi ∈ NConsequentely, there exist l ≥ 1, y1, . . . , yr ∈ K such

that for each β ∈ (K : M) and y ∈ M , βl y ∈ 〈y1, . . . , yr 〉.
Since N ⊂ L , then P ⊆ (L : M). Let α ∈ P and x ∈ M . We have
αk x =

∑n

i=1
αi (xi + ami ) for some α1, . . . , αn ∈ A. Thus a

∑n

i=1
αimi =

αk x −
∑n

i=1
αi xi ∈ N . Hence

∑n

i=1
αimi ∈ (N : a). As N ⊂ K , we have

P ⊆ (K : M). Therefore, αl
(∑n

i=1
αimi

) =
∑r

j=1
β j y j where β1, . . . , βr ∈ A.

Hence
∑n

i=1
αimi ∈ (N : a). As N ⊂ K , we have P ⊆ (K : M). Therefore,

αl(
∑n

i=1
αimi ) =

r∑

j=1

β j y j where β1, . . . , βr ∈ A. Hence

αl+k x =
n∑

i=1

(αlαi )xi +
r∑

j=1

β j (ay j ) ∈ 〈x1, . . . , xn, ay1, . . . , ayr 〉

with x1, . . . , xn, ay1, . . . , ayr ∈ N . Thus N is an SFT submodule ofM : absurd. Hence
P is a prime ideal of A. 
�
Theorem 2.3 Let A be a ring and M a finitely generated A-module. Then M is an SFT
module if and only if for each prime ideal P of A, PM is an SFT submodule of M.

Proof ′′ ⇐�′′ Assume that M is not an SFT-module. Then the set F of all non-SFT
submodules of M is not empty. Let (Nα)α∈� be a totally ordered family of (F ,⊆)

and N =
⋃

α∈�
Nα . It is clear that N is a submodule of M . Supposons that N is an

SFT submodule of M . Then there exist k ≥ 1 and x1, . . . , xn ∈ N such that for each
a ∈ (N : M) and x ∈ M , akx ∈ 〈x1, . . . , xn〉. Since the family (Nα)α∈� is totally
ordered, there exists α ∈ � such that x1, . . . , xn ∈ Nα . On the other hand, Nα ⊆ N ,
thus (Nα : M) ⊆ (N : M). Hence akx ∈ 〈x1, . . . , xn〉 for every a ∈ (Nα : M) and
x ∈ M , which contradicts the fact that Nα is not an SFT submodule of M . Therefore,
N ∈ F . It follows that (F ,⊆) is inductive. By Zorn’s Lemma, (F ,⊆) has a maximal
element N . By Lemma 2.2, P = (N : M) is a prime ideal of A. By hypothesis,
there exist k ≥ 1 and x1, . . . , xn ∈ PM such that akx ∈ 〈x1, . . . , xn〉 for every
a ∈ (PM : M) and x ∈ M . As P ⊆ (PM : M) ⊆ (N : M) = P , we have
P = (PM : M). Consequently, N is an SFT submodule of M : contradiction with the
choice of N . Hence M is an SFT A-module.

Note that if we consider a ring A as an A-module in Theorem 2.3, we get exactely
the analogue of Cohen theorem type of SFT ring. 
�
Example 2.3 Let A be an SFT ring. Then the A-module A× A is SFT. Indeed, let P be
a prime ideal of A. There exist k ≥ 1 and a1, . . . , an ∈ P such that ak ∈ 〈a1, . . . , an〉
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for every a ∈ P . Let a ∈ (P(A × A) : A × A). Then a(A × A) ⊆ P(A × A). In
particular, (a, a) ∈ P×P . It follows that a ∈ P . Therefore, (P(A×A) : A×A) = P .

Now, let a ∈ P and (x, y) ∈ A × A. Set ak =
∑n

i=1
αi ai where α1, . . . , αn ∈ A.

Thus

ak(x, y) = (akx, 0) + (0, ak y) =
n∑

i=1

xαi (ai , 0) +
n∑

i=1

yαi (0, ai )

with (ai , 0) = ai (1, 0) ∈ P(A× A), (0, ai ) = ai (0, 1) ∈ P(A× A) and xαi , yαi ∈ A
for each 1 ≤ i ≤ n. Hence P(A× A) is an SFT A-submodule of A× A. By Theorem
2.3, A × A is an SFT A-module.

The following proposition gives a generalization of Example 2.3.

Proposition 2.4 Let A be a ring, M and N two A-modules. If the A-modules M and
N are SFT, so is the A-module product M × N.

Proof Let P be a prime ideal of A. We have J = (P(M × N ) : M × N ) = (PM :
M)

⋂
(PN : N ). Indeed, let a ∈ J . Then a(M × N ) ⊆ P(M × N ) = PM × PN . It

yields that aM ⊆ PM and aN ⊆ PN . Which shows that J ⊆ (PM : M)
⋂

(PN :
N ). Conversely, let a ∈ (PM : M)

⋂
(PN : N ) and (x, y) ∈ M×N . Then a(x, y) =

(ax, ay) ∈ PM × PN = P(M × N ).
By hypothesis, there exist k1, k2 ≥ 1 two integers, x1, . . . , xn ∈ PM and y1, . . . , yr ∈
PN such that ak1x ∈ 〈x1, . . . , xn〉 and bk2 y ∈ 〈y1, . . . , yr 〉 for every a ∈ (PM :
M), b ∈ (PN : N ), x ∈ M and y ∈ N . Set k = k1 + k2. Let a ∈ J and (x, y) ∈
M × N . Thus akx = ak2ak1x = ak2

∑n

i=1
αi xi and ak y = ak1ak2 y = ak1

∑r

i=1
βi yi

where α1, . . . , αn, β1, . . . , βr ∈ A. Hence

ak(x, y) = ak(x, 0) + ak(0, y) =
n∑

i=1

(ak2αi )(xi , 0) +
r∑

i=1

(ak1βi )(0, yi ).

It follows that

ak(x, y) ∈ 〈(x1, 0), . . . , (xn, 0), (0, y1), . . . , (0, yr )〉

with (x1, 0), . . . , (xn, 0), (0, y1), . . . , (0, yr ) ∈ P(M × N ). Therefore, P(M × N ) is
an SFT submodule of M × N . Hence M × N is an SFT-module.

The next Corollary is an easy consequence of Example 2.1 and Proposition 2.4.

Corollary 2.5 1. Let A be an SFT ring. Then the A-module An is SFT for every integer
n ≥ 1.
2. Let A be a ring, M1, . . . , Mn be a finite number of SFT A-modules. Then M1 ×
M2 × . . . × Mn is an SFT A-module.

Proposition 2.6 The homomorphic image of an SFT-module is also an SFT-module.
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Proof Let A be a ring and φ : M −→ N be a surjective homomorphism of A-modules.
Assume that M is an SFT A-module. Let P be a prime ideal of A and L = φ−1(PN ).
We have L is an SFT submodule of M . Then there exist k ≥ 1 and x1, . . . , xn ∈ L
such that akx ∈ 〈x1, . . . , xn〉 for every a ∈ (L : M) and x ∈ M .
We are going to show that (L : M) = (PN : N ). Let a ∈ (L : M). Then aM ⊆ L .

Therefore, aN = aφ(M) = φ(aM) ⊆ φ(L) = PN . Consequentely, a ∈ (PN : N ).
Conversely, let a ∈ (PN : N ).We haveφ(aM) = aφ(M) = aN ⊆ PN . It yields that
aM ⊆ φ−1(PN ) = L . It follows that a ∈ (L : M). Therefore, (L : M) = (PN : N ).
Now, let a ∈ (PN : N ) and y ∈ N . There exists x ∈ M such that y = φ(x). We
have akx ∈ 〈x1, . . . , xn〉. Thus ak y = akφ(x) = φ(akx) ∈ 〈φ(x1), . . . , φ(xn)〉 with
φ(x1), . . . , φ(xn) ∈ φ(L) = PN . Hence PN is an SFT submodule of N . By Theorem
2.3, N is an SFT A-module.

As a natural application of Proposition 2.6, we get the following Example. 
�
Example 2.4 Let A be a ring and M an SFT A-module. Then for each submodule N
of M , M/N is an SFT A-module.

Now, we are going to give a characterization of SFTmodules over an SFT ring. It is
well known that any finitely generated module over a Noetherian ring is a Notherian
module. In fact, if M is an A-module such that A is a Noetherian ring then M is
Noetherian if and only if M is finitely generated. We show a similar result in the SFT
case.

Corollary 2.7 Let A be an SFT ring and M be an A-module. Then M is an SFT A-
module if and only if it is finitely generated.

Proof ′′ �⇒′′ By (1) of Example 2.2. ′′ ⇐�′′ By Example 2.1, the A-module A is
SFT. Let {x1, . . . , xn} ⊆ M be such that M = 〈x1, . . . , xn〉 and

φ : An −→ M

(a1, . . . , an) �−→
n∑

i=1

ai xi
.

It is clear that φ is a surjective A-homomorphism of modules. Thus M � An/ker(φ).
By Corollary 2.5, the A-module An is SFT and by Example 2.4, An/ker(φ) is an SFT
A-module. Hence M is an SFT A-module.

Example 2.5 Let A be an SFT ring and I be an ideal of A. Then I is an SFT A-module
if and only if it is a finitely generated ideal of A.

Theorem 2.8 Let A be a ring, M an A-module and N a submodule of M. If the
A-modules N and M/N are SFT, so is M.

Proof Let P be a prime ideal of A, L = PM and L̄ = {x̄ ∈ M/N , x ∈ L}. By
hypothesis, there exist k ≥ 1 and x1, . . . , xn ∈ L such that for each a ∈ (L̄ : M/N )

and x̄ ∈ M/N , ak x̄ ∈ 〈x̄1, . . . , x̄n〉. On the other hand, since the A-module N is SFT,
there exist l ≥ 1 and y1, . . . , yr ∈ L

⋂
N such that for all b ∈ (L

⋂
N : N ) and

y ∈ N , bl y ∈ 〈y1, . . . , yr 〉.
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Let a ∈ (L : M) and x ∈ M . We have aM ⊆ L , it follows that a(M/N ) ⊆ L̄ .

Thus a ∈ (L̄ : M/N ). Therefore, ak x̄ =
∑n

i=1
αi x̄i where α1, . . . , αn ∈ A. Which

shows that akx −
∑n

i=1
αi xi ∈ L

⋂
N . As aN ⊆ (aM)

⋂
N ⊆ L

⋂
N , we have

a ∈ (L
⋂

N : N ). Hence

al(akx −
n∑

i=1

αi xi ) =
r∑

j=1

β j y j

where β1, . . . , βr ∈ A. Thus

ak+l x =
n∑

i=1

(alαi )xi +
r∑

j=1

β j y j .

Consequentely, L is an SFT A-submodule of M . By Theorem 2.3, the A-module M
is SFT. 
�
Proposition 2.9 Let A be a ring, M an A-module and N =

⋂
P∈spec(A)

PM. If the

A-module M/N is SFT and N is finitely generated, then the A-module M is SFT.

Proof Let x1, . . . , xn ∈ N be such that N = 〈x1, . . . , xn〉 and P be a prime ideal of
A. Set L = PM . It is clear that N ⊆ L . Then there exist k ≥ 1 and y1, . . . , yr ∈ L
such that for every a ∈ (L/N : M/N ) and y ∈ M , we have ak ȳ ∈ 〈ȳ1, . . . , ȳr 〉. Now,
let a ∈ (L : M) and x ∈ M . We have aM ⊆ L . Then a(M/N ) ⊆ L/N . Therefore,

a ∈ (L/N : M/N ). Thus ak x̄ =
∑r

i=1
βi ȳi where β1, . . . , βr ∈ A. Consequently,

akx −
r∑

i=1

βi yi ∈ N . Hence

akx =
r∑

i=1

βi yi +
n∑

j=1

α j x j

where α1, . . . , αn ∈ A. As N ⊆ L , we get x1, . . . , xn ∈ L . It yields that L is an SFT
submodule of M . By Theorem 2.3, the A-module M is SFT.

Corollary 2.10 Let A be a ring. If the A-module A/Nil(A) is SFT and the ideal Nil(A)

is finitely generated, then the ring A is SFT.

Example 2.6 The converse of Corollary 2.10 is false. Indeed, let {Xn, n ≥ 1} be a
family of indeterminates over a field K and A = K [Xn, n ≥ 1]/〈Xn, n ≥ 1〉2. The
only prime ideal of A is M = 〈X̄n, n ≥ 1〉. Since M2 = {0}, then the ring A is SFT.
But Nil(A) = M is not finitely generated.

Remark 2.11 Let A be a ring and M an A-module. By Corollary 2.5, if M is an SFT
A-module, so is the A-module Mn for every integer n ≥ 1.
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For an A-module M , we recall that for each integer k ≥ 1, we have
HomA(Ak, M) � Mk . Using this interesting isomorphism, we get the following
result.

Proposition 2.12 Let A be a ring, M a free finitely generated A-module and N an SFT
A-module. Then HomA(M, N ) is an SFT A-module.

Proof Since M is a free finitely generated A-module, there exists k ≥ 1 such that
Ak � M . Thus HomA(M, N ) � HomA(Ak, N ) � Nk . By Remark 2.11, the A-
module Nk is SFT. Hence the A-module HomA(M, N ) � Nk is SFT.

Example 2.7 The hypothesis ′′ the A module M is finitely generated′′ is important.
Indeed, let A = Z and M = Z(N\{0}). It is clear that M is a free A-module with basis
{en, n ≥ 1} where en(k) = δn,k . Since M is not a finitely generated A-module, then
by Example 2.1, HomA(M, A) � M is not an SFT A-module.

Corollary 2.13 Let A be an SFT ring and M be a free finitely generated A-module.
Then for each k ≥ 1, the A-module HomA(M, Ak) is SFT.

Our next goal is to study the transfer of the SFT property from an A-module M to
the ring A. In other words, if an A-module M is SFT, under what condition the ring
A is SFT ?

Theorem 2.14 Let A be a ring and M a free A-module. If M is an SFT A-module,
then the ring A is SFT.

Proof As M is an SFT A-module, by Example 2.1, it is finitely generated. On the
other hand, M is a free A-module, then there exists k ≥ 1 such that Ak � M . Thus
A-module Ak is SFT. By Proposition 2.6, the A-module A is SFT, and by Example
2.1, the ring A is SFT.

Remark 2.15 Let A be a ring, M and N two A-modules. Then the A-module M × N
is SFT if and only if the A-modules M and N are SFT, it suffices to use Propositions
2.4 and 2.6. Which shows that for every integer k ≥ 1, the product ring Ak is SFT if
and only if the ring A is SFT if and only if the A-module A is SFT.

Let A ⊆ B be a ring extension. It is clear that the ring B is SFT does not imply that
the A-module B is SFT. As a counterexample one can take the ring extension Z ⊆ Q.
Since theZ-moduleQ is not finitely generated, by Example 2.2, theZ-moduleQ is not
SFT. In the next theorem, we show that the only condition missed is that the A-module
B is finitely generated, which is a necessary and sufficient condition to get this result.

Theorem 2.16 Let A ⊆ B be a ring extension. Assume that the A-module B is finitely
generated. If the ring B is SFT, then the A-module B is SFT.

Proof Let b1, . . . , bn ∈ B be such that B = 〈b1, . . . , bn〉A and P a prime ideal of
A. The ideal PB of B is SFT. Then there exist k ≥ 1 and x1, . . . , xr ∈ PB such
that for every a ∈ PB, ak ∈ 〈x1, . . . , xr 〉B. Let a ∈ (PB :A B) and b ∈ B. Set

b =
∑n

i=1
βi bi where β1, . . . , βn ∈ A. As a ∈ (PB :A B), we have aB ⊆ PB,
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which shows that a ∈ PB. Hence ak =
∑r

i=1
αi xi where α1, . . . , αr ∈ B. For each

i ∈ {1, . . . , r}, let αi =
∑n

j=1
γi, j b j , where γ1, . . . , γn ∈ A. Therefore,

ak =
r∑

i=1

( n∑

j=1

γi, j b j
)
x j =

r∑

i=1

n∑

j=1

γi, j (b j xi ).

Thus

akb =
r∑

i=1

n∑

j=1

γi, j
(
b j xi

) n∑

l=1

βlbl =
r∑

i=1

n∑

j=1

n∑

l=1

(
γi, jβl

)(
blb j xi

)
.

Consequentely, akb ∈ 〈blb j x j , 1 ≤ i ≤ r , 1 ≤ j, l ≤ n〉A ⊆ PB. By Theorem 2.3,
the A-module B is SFT.

Note that by combining Theorem 2.16 and Example 2.2, we have the following
equivalence for a ring extension A ⊆ B where B is an SFT ring: The A-module B is
SFT if and only if the A-module B is finitely generated. In this last result (the same
for Theorem 2.16) we do not assume any condition for the ring A. Now, we give a
sufficient condition to the descend of the SFT property from a ring B to a subring A
of B.

Corollary 2.17 Let A ⊆ B be a ring extension. Suppose that B is a finitely generated
free A-module. If the ring B is SFT, so is A.

Proof Since B is an SFT ring and a finitely generated A-module, by Theorem 2.16, the
A-module B is SFT. By Theorem 2.14, as B is a free finitely generated SFT A-module
the ring A is SFT.

Let M be an A-module. We recall that we have the two following extensions of
M , the polynomial extension M[X ] and power series extension M[[X ]] induced by
the natural addition and multiplication. Our goal now is to study the transfer of SFT
property between the A-module M and the A[X ]-module M[X ] (resp. the A[[X ]]-
module M[[X ]]). To prove our next result, we need to recall that for every ideal I of
A, we have the equality (I M)[X ] = I [X ]M[X ] but this equality is not true in general
in the case of power series module see Anderson and Kang (1998).

Proposition 2.18 Let A be a ring and M an A-module.

1. If the A[X ]-module M[X ] is SFT, then the A-module M is SFT.
2. If the A[[X ]]-module M[[X ]] is SFT, then the A-module M is SFT.

Proof (1) Let P be a prime ideal of A. Then P[X ] is a prime ideal of A[X ]. If
a ∈ (PM :A M), then aM ⊆ PM . Thus aM[X ] ⊆ (PM)[X ] = P[X ]M[X ]. It
follows that a ∈ (P[X ]M[X ] :A[X ] M[X ]). On the other hand, there exist k ≥ 1 and
f1, . . . , fn ∈ P[X ]M[X ] such that for each f ∈ (P[X ]M[X ] :A[X ] M[X ]) and g ∈
M[X ], we have f kg ∈ 〈 f1, . . . , fn〉A[X ]. It yields that for every a ∈ (PM :A M) ⊆
(P[X ]M[X ] :A[X ] M[X ]) and x ∈ M ⊆ M[X ], we get akx ⊆ 〈 f1, . . . , fn〉A[X ].
Therefore, akx ∈ 〈 f1(0), . . . , fn(0)〉A. By Theorem 2.3, the A-module M is SFT.

123



390 Beitr Algebra Geom (2024) 65:381–392

(2) Let P be a prime ideal of A. If a ∈ (PM :A M), then aM ⊆ PM .
Hence aM[[X ]] ⊆ (PM)[[X ]]. Therefore, a ∈ ((PM)[[X ]] :A[[X ]] M[[X ]]).
By hypothesis, there exist k ≥ 1 and f1, . . . , fn ∈ (PM)[[X ]] such that for
each f ∈ ((PM)[[X ]] :A[[X ]] M[[X ]]) and g ∈ M[[X ]], we have f kg ∈
〈 f1, . . . , fn〉A[[X ]]. Thus for each a ∈ (PM :A M) ⊆ ((PM)[[X ]] :A[[X ]] M[[X ]])
and x ∈ M ⊆ M[[X ]], we have akx ⊆ 〈 f1, . . . , fn〉A[[X ]]. Consequentely,
akx ∈ 〈 f1(0), . . . , fn(0)〉A where fi (0) is the constant term of fi for i = 1, . . . , n.
By Theorem 2.3, the A-module M is SFT.

Proposition 2.19 Let A be a one dimensional integrally closed domain and M an A-
module. If the ring A is SFT, then the A[X ]-module M[X ] is SFT if and only if the
A-module M is finitely generated.

Proof ′′ �⇒′′ By Proposition 2.18, the A-module M is SFT and by Example 2.2, the
A-module M is finitely generated. ′′ ⇐�′′ Since A is a one dimensional integrally
closed SFT domain, By (Park 2019, Theorem 2.5), the ring A[X ] is SFT. On the other
hand, the A-module M is finitely generated. It follows that the A[X ]-module M[X ]
is finitely generated. By Corollary 2.7, the A[X ]-module M[X ] is SFT.
Proposition 2.20 Let A be an SFT Prüfer domain and M an A-module. Then the
A[[X1, . . . , Xn]]-module M[[X1, . . . , Xn]] is SFT if and only if the A-module M is
finitely generated.

Proof ′′ �⇒′′ By Proposition 2.18, the A-module M is SFT and by Example 2.2,
the A-module M is finitely generated. ′′ ⇐�′′ Since A is an SFT Prüfer domain, by
(Kang and Park 2009, Proposition 10) the ring A[[X1, . . . , Xn]] is SFT. On the other
part, the A-module M is finitely generated. It yields that the A[[X1, . . . , Xn]]-module
M[[X1, . . . , Xn]] is finitely generated. ByCorollary 2.7, the A[[X1, . . . , Xn]]-module
M[[X1, . . . , Xn]] is SFT.

Note that by the same way in the proof of Proposition 2.20, we can show that if A is
an SFT Prüfer domain and M an A-module, then we have the following equivalence:
the A[X1, . . . , Xn]-module M[X1, . . . , Xn] is SFT if and only if the A-module M is
finitely generated. Now, we are going to study the SFT stability via the power series
extension of a module M over an APVD A. For that, we recall that an integral domain
A is called an almost pseudo-valuation domain (or for short APVD) if it is a quasi
local domain with maximal ideal P , and there is a valuation overring of A in which
P is primary ideal.

Theorem 2.21 Let A be an APVD (almost pseudo-valuation domain) with maxi-
mal ideal P and M a finitely generated A-module. If the ring (P : P) = {x ∈
q f (A), x P ⊆ P} is SFT, then the A[[X1, . . . , Xn]]-module M[[X1, . . . , Xn]] is SFT.
Proof First, we recall that the set (P : P) defined above is always an overring of A
(i.e. a ring between A and its quotient field). By (Khalifa and Benhissi 2014, Theo-
rem 2.3) the A[[X1, . . . , Xn]] is SFT. By Corollary 2.7, the A[[X1, . . . , Xn]]-module
M[[X1, . . . , Xn]] is SFT.

Using this new notion, we return to our main purpose which is studying the finitely
ring extension of anSFT ring. This newconcept allows us to prove the next Proposition.
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Proposition 2.22 Let A ⊆ B be a ring extension. Assume that A is an SFT ring with
characteristic p a prime number and B is a finitely generatedmultiplication A-module.
Then the ring B is SFT.

Proof ByCorollary 2.7, the A-module B is SFT. Let I be an ideal of B. By hypothesis,
I = (I :A B)B. On the other hand, there exist k ≥ 1 and a finitely generated A-
submodule F of I such that akx ∈ F for every a ∈ I :A B and x ∈ B. Take r ≥ 1
such that pr ≥ k. It is clear that for each a ∈ (I :A B) and x ∈ B, a pr x ∈ F .
As I = (I :A B)B, each element x ∈ I is of the form x =

∑
finite

aibi where

ai ∈ (I :A B) and bi ∈ B. Hence x pr =
∑

finite
a pr

i bpr

i ∈ F ⊆ FB where FB is a

finitely generated ideal of B contained in I . Therefore, I is an SFT ideal of B. Thus
B is an SFT ring.

Our purpose in the next theorem, is to give a sufficient condition to a ring extension
A ⊆ B so that the ring A + XB[X ] is SFT.
Theorem 2.23 Let A ⊆ B be a ring extension such that A is a zero dimensional SFT
ring and B is a finitely generated A-module. Then the ring A + XB[X ] is SFT.
Proof Let {b1, . . . , bn} be a generator family of the A-module B, {Y1, . . . ,Yn} a family
of indeterminates over A and φ : A[X ,Y1, . . . ,Yn] −→ B[X ] the A-homomorphism
of rings satisfies φ(X) = X and for every 1 ≤ i ≤ n, φ(Yi ) = bi X . It is clear that

φ(A[X ,Y1, . . . ,Yn]) ⊆ A + XB[X ].

Conversely, let f =
∑k

i=0
ai X

i ∈ A+XB[X ]. For 1 ≤ i ≤ k, set ai =
∑n

j=1
αi, j b j

where αi, j ∈ A for every 1 ≤ i ≤ k and 1 ≤ j ≤ n. Then

f = a0 +
k∑

i=1

n∑

j=1

(αi, j b j )X
i = a0 +

k∑

i=1

n∑

j=1

αi, j (b j X)Xi−1

= φ(a0 +
k∑

i=1

n∑

j=1

(
αi, j Y j )X

i−1).

Hence f ∈ φ(A[X ,Y1, . . . ,Yn]). Therefore, A+XB[X ] � A[X ,Y1, . . . ,Yn]/ker(φ).
By (Park 2019, Corollary 2.2), the ring A[X ,Y1 . . . ,Yn] is SFT. Thus A + XB[X ] is
SFT.

In Gabelli (2006), the author has shown that if A is an integral domain with quotient
field K , then the ring A + XK [X ] is an SFT Prüfer doamin if and only if the ring A
is an SFT Prüfer domain. In particular, the ring Z + XQ[X ] is an SFT Prüfer domain
see (Gabelli 2006, Corollary 4.5). Her result shows that there exists an extension of
rings A ⊆ B such that the ring A+ XB[X ] is SFT and the A-module B is not finitely
generated. 
�
Corollary 2.24 Let A ⊆ B be a ring extension such that A is a zero dimensional SFT
ring and B is a finitely generated A-module. Then the ring B is SFT.
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Proof Let I be an ideal of B. By Theorem 2.23, the ideal X I [X ] of the ring A+XB[X ]
is SFT. Thus there exist k ≥ 1 and f1, . . . , fn ∈ X I [X ] such that gk ∈ 〈 f1, . . . , fn〉
for every g ∈ X I [X ]. It follows that ak Xk ∈ 〈 f1, . . . , fn〉 for each a ∈ I . Hence
ak ∈ F = c( f1)B + · · · + c( fn)B for every a ∈ I where F ⊆ I is a finitely generated
ideal of B. Consequentely, the ring B is SFT.

Note that we can prove the result of Corollary 2.24 by the fact that B is isomorphic
to some quotient of the polynomial ring with finitely many indeterminates over A, and
using (Park 2019, Corollary 2.2). 
�
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