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Abstract
If M is a nonzero finitely generated module over a commutative Noetherian local ring
R such that M has finite injective dimension and finite Gorenstein dimension, then
it follows from a result of Holm that M has finite projective dimension, and hence a
result of Foxby implies that R is Gorenstein. We prove that the same conclusion holds
for certain nonzero finitely generated modules that have finite injective dimension and
finite reducing Gorenstein dimension, where the reducing Gorenstein dimension is a
finer invariant than the classical Gorenstein dimension, in general. Along the way, we
also prove new results, independent of the reducing dimensions, concerning modules
of finite Gorenstein dimension.
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1 Introduction

Throughout R denotes a commutative Noetherian local ring with unique maximal
ideal m and residue field k, and modules over R are assumed to be finitely generated.

Levin and Vascensolos (1968, 2.2) proved that, if R is a Gorenstein ring, then an R-
module has finite projective dimension if and only if it has finite injective dimension.
Subsequently, Foxby (1977, 4.4) proved a surprising converse: if R admits a nonzero
module of finite projective and finite injective dimension, then R must be Gorenstein.
Nearly three decades later, Holm (2004, 2.2) improved Foxby’s result by considering
modules (not necessarily finitely generated) of finite Gorenstein projective dimension.
Holm’s result (Holm 2004), in the local case, implies that, if M is an R-module of
finite injective dimension, then the projective dimension of M equals the Gorenstein
dimension of M ; see Sect. 2.2. In the local setting, the results of Foxby and Holm
from the foregoing discussion can be summarized as the following beautiful theorem:

Theorem 1.1 (Foxby (1977, 4.4) and Holm (2004, 2.2)) Let R be a local ring and let
M be a nonzero R-module such that idR(M) < ∞. Then the following hold:

(i) G-dimR(M) = pdR(M).
(ii) If G-dimR(M) < ∞, then R is Gorenstein.

Araya and Celikbas (2020), motivated by Bergh’s study of complexity of mod-
ules (Bergh 2007, 2009), introduced and studied the notion of reducing homological
dimensions. These homological dimensions have been recently considered in the non-
commutative setting by Araya and Takahashi (2022). In general, a module may have
infinite, but finite reducing, homological dimension; see Sect. 2.4 and Example 2.5
for the details.

The main purpose of this paper is to consider Theorem 1.1: we investigate whether
the conclusion of the theorem holds when the Gorenstein dimension and the projective
dimension are replaced with their reducing versions. We prove that the conclusion
of the first part of Theorem 1.1 also holds for reducing homological dimensions.
Moreover, we are able to extend the conclusion of the second part of the theorem for
two distinct classes of modules. More precisely, we prove:

Theorem 1.2 Let R be a d-dimensional local ring. If M is a nonzero R-module such
that idR(M) < ∞, then the following hold:

(i) red-G-dimR(M) = red-pdR(M).
(ii) If red-G-dimR(M) ≤ 1, or red-G-dimR(M) < ∞ and depthR(M) ≥ d −1, then

R is Gorenstein.

One of the motivations for Theorem 1.2 comes from a result of Araya and Celikbas,
which establishes Theorem 1.2(ii) for the case whereM is maximal Cohen–Macaulay;
see Sect. 2.6. A nontrivial consequence of Theorem 1.2 is that, if R is a one-
dimensional local ring and M is a nonzero R-module such that idR(M) < ∞ and
red-G-dimR(M) < ∞, then R is Gorenstein. Furthermore, for the two-dimensional
case, it follows immediately from Theorem 1.2 that:
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Corollary 1.3 Let R be a two-dimensional local ring and let M be a nonzero torsion-
free R-module (e.g., M is an ideal of R). If idR(M) < ∞ and red-G-dimR(M) < ∞,
then R is Gorenstein.

In view of Corollary 1.3, it seems worth noting that, in general, if a local ring
R admits a nonzero module of finite injective dimension, then R must be Cohen-
Macaulay, but it is not necessarilyGorenstein, even if themodule in question is torsion-
free; for example, one can consider the canonical module of the non-Gorenstein local
ring R = k[[t3, t4, t5]]; see also Roberts (1987) and Roberts (1998, page 113). On
the other hand, Peskine and Szpiro (1973) proved that, if R admits a nonzero cyclic
module of finite injective dimension, then R must be Gorenstein.

The proof of Theorem 1.2 is given in Sect. 2; the proof of the theorem makes use
of several preliminary results, which are recorded in Sect. 2 and are proved in Sect. 3.

2 Preliminaries and the proof of Theorem 1.2

In this section we prove our main result, namely Theorem 1.2. Along the way, we
record several definitions and preliminary results that are used in the proof, as well as
an argument for Theorem 1.1.

2.1 (Syzygy module) Let M be an R-module. For a positive integer i , we denote by
�i M the i-th syzygy of M , namely, the image of the i-th differential map in a minimal
free resolution of M . As a convention, we set �0M = M .

2.2 (Gorenstein dimensionAuslander and Bridger (1969)) Let R be a local ring and
let M be an R-module. Then M is said to be totally reflexive provided that M ∼= M∗∗
and ExtiR(M, R) = 0 = ExtiR(M∗, R) for all i ≥ 1.

The infimum of n for which there exists an exact sequence 0 → Xn → · · · →
X0 → M → 0 such that each Xi is totally reflexive is called theGorenstein dimension
of M . If M has Gorenstein dimension n, we write G-dimR(M) = n. Therefore, M is
totally reflexive if and only if G-dimR(M) ≤ 0, where by convention G-dimR(0) =
−∞.

In the proof of Theorem 1.2, we use the fact that the category of modules of
finite Gorenstein dimension is closed under taking direct summands; see, for example,
(Christensen 2000, 1.1.10(c)). �	

We use the following result of Ischebeck in the proof of Theorem 1.2:

2.3 (Ischebeck 1969, 2.6) Let R be a local ring and let M and N be nonzero R-
modules. If idR(N ) < ∞, then it follows that depth(R) − depthR(M) = sup{n |
ExtnR(M, N ) 
= 0}.
2.4 (Reducing dimensions (Araya and Celikbas 2020, 2.1)) Let M be an R-module,
and let I be a homological invariant of R-modules, for example, I = pd or I = G-dim.

We write red-I(M) < ∞ provided that there exists a sequence of R-modules
K0, . . . , Kr , positive integers a1, . . . , ar , b1, . . . , br , n1, . . . , nr , and short exact
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sequences of the form

0 → K⊕ai
i−1 → Ki → �ni K⊕bi

i−1 → 0 (2.4.1)

for each i = 1, . . . r , where K0 = M and I(Kr ) < ∞. If a sequence of modules as in
(2.4.1) exists, then we call {K0, . . . , Kr } a reducing I-sequence of M .

The reducing invariant I of M is defined as follows:

red-I(M) = inf{r ∈ N ∪ {0} : there is a reducing I − sequence K0, . . . , Kr of M}.

We set, red-I(M) = 0 if and only if I(M) < ∞. �	
Next we recall an example from Araya and Celikbas (2020) which shows that the

reducing homological dimensions are finer than regular homological dimensions.

Example 2.5 (Araya andCelikbas 2020, 2.3) Let R = k[x, y]/(x, y)2. ThenpdR(k) =
∞ = G-dimR(k), but we have that red-G-dimR(k) = 1 = red-pdR(k).

Moreover, if M is an R-module, then it follows that red-G-dimR(M) ≤ ∞ =
G-dimR(M) if and only if M ∼= R⊕α ⊕ k⊕β for some integers α ≥ 0 and β ≥ 1. �	

Note that Example 2.5 also shows that the reducing homological dimension of
a module is not always bounded by the depth of the ring in question. One can
also check (Araya and Celikbas 2020, 2.7) for an example of a two-dimensional
Cohen-Macaulay ring R and a maximal Cohen-Macaulay R-module M such that
red-pdR(M) = red-G-dimR(M) < ∞ = G-dimR(M) = pdR(M).

The following result, due to Araya and Celikbas (2020), is used in the proof of
Theorem 1.2:

2.6 (Araya and Celikbas 2020, 3.3(iii)) Let R be a local ring and letM be a (nonzero)
maximal Cohen–Macaulay R-module. If idR(M) < ∞ and red-G-dimR(M) < ∞,
then R is Gorenstein. �	

The proof of Theorem1.2 relies upon somepreliminary results, namely uponPropo-
sitions 2.7, 2.8 and 2.9, which are stated next.

Proposition 2.7 Let R be a local ring and let M be an R-module. Assume, whenever
X is a totally reflexive R-module, one has ExtiR(X , M) = 0 for all i ≥ 1. Then it
follows that red-G-dimR(M) = red-pdR(M).

Proposition 2.8 Let R be a local ring and let 0 → M⊕a → K → �nM⊕b → 0
be a short exact sequence of R-modules, where a ≥ 1, b ≥ 1, and n ≥ 0 are
integers. If G-dimR(K ) < ∞, then, for each i ≥ 1, there exists a short exact sequence
of R-modules 0 → M⊕ai → Yi → �ri M⊕bi → 0, where G-dimR(Yi ) < ∞,
ri = 2i (n + 1) − 1, ai = a2

i
and bi = b2

i
.

Proposition 2.9 Let R be a local ring and let M be an R-module. Assume x ∈ m is a
non zero-divisor on R and M. If {K0, . . . , Kr } is a reducing G-dim-sequence of M,
then {K0, . . . , Kr } is a reducing G-dim-sequence of M over R, where M = M/xM.
Therefore, red-G-dimR/x R(M/xM) ≤ red-G-dimR(M).

123



Beitr Algebra Geom (2024) 65:279–290 283

Next we exploit Propositions 2.7, 2.8 and 2.9 and prove Theorem 1.2; we defer the
proofs of these preliminary propositions until Sect. 3.

Proof of Theorem 1.2 We start by noting that, since idR(M) < ∞, R is a Cohen–
Macaulay ring; see Bruns and Herzog (1993, 9.6.2 and 9.6.4(ii)).

Part (i) follows immediately from Proposition 2.7: as idR(M) < ∞, we have that
Ext jR(X , M) = 0 for all j ≥ 1 for each totally reflexive R-module X ; see Sect. 2.3.

Next we assume red-G-dimR(M) ≤ 1, and show that R is Gorenstein. It follows
from Sect. 2.4 that there exists a short exact sequence of R-modules 0 → M⊕a →
K → �nM⊕b → 0, where a, b, n are positive integers and G-dimR(K ) < ∞.
Then, by Proposition 2.8, we have a short exact sequence of R-modules 0 →
M⊕ai → Y → �ri M⊕bi → 0, where i � 0, G-dimR(Y ) < ∞, and ri ≥ d.
Therefore, �ri M⊕bi is maximal Cohen–Macaulay. Now, as idR(M⊕ai ) < ∞, we
see that Ext1R(�ri M⊕bi , M⊕ai ) = 0; see Sect. 2.3. So the short exact sequence
0 → M⊕ai → Y → �ri M⊕bi → 0 splits, and hence M⊕ai occurs as a direct
summand of Y . This shows that G-dimR(M) < ∞ and hence R is Gorenstein; see
Sect. 2.2 and Theorem 1.1.

Now, to complete the proof of part (ii), we assume depthR(M) ≥ d − 1, and
proceed by induction on d to show that R is Gorenstein. There is nothing to prove if
d = 0; see Sect. 2.6.

Assume d ≥ 2 and that the claim is true when d = 1. Since R is a
Cohen-Macaulay ring and depthR(M) ≥ 1, there exists an element x ∈ m
which is a non zero-divisor on both R and M . Then it follows by Proposi-
tion 2.9 that red-G-dimR/x R(M/xM) ≤ red-G-dimR(M) < ∞. Therefore, since
idR/x R(M/xM) < ∞ and depthR/x R(M/xM) ≥ d − 2, we conclude by the induc-
tion hypothesis that R/x R is Gorenstein, i.e., R is Gorenstein. Therefore, it suffices
to prove the case where d = 1.

Assume d = 1 and choose a reducing G-dim-sequence {K0, . . . , Kr } of M .
Claim: For each i = 0, . . . , r , we have that Ki ∼= M⊕ci ⊕Li for some R-module Li

and for some integer ci ≥ 1 such that Li is either zero or maximal Cohen-Macaulay.
Proof of the claim: We proceed by induction on i . If i = 0, then, since K0 = M ,

we pick L0 = 0 and c0 = 1. So we assume i ≥ 1. Then, by the induction hypothesis,
we have that Ki−1 ∼= M⊕ci−1 ⊕ Li−1 for some R-module Li−1 and for some integer
ci−1 ≥ 1, where Li−1 is either zero or maximal Cohen–Macaulay. Now we consider
the following pushout diagram, where the middle horizontal short exact sequence
follows by the definition of reducing Gorenstein dimension; see Sect. 2.4.
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0 0

M⊕ci−1ai M⊕ci−1ai

0 K⊕ai
i−1 Ki �ni K⊕bi

i−1 0

0 L⊕ai
i−1 Li �ni K⊕bi

i−1 0

0 0

Since Li−1 is either zero or maximal Cohen-Macaulay, we see from the bottom hor-
izontal short exact sequence that Li is either zero or maximal Cohen-Macaulay. In
either case, since idR(M) < ∞, it follows by Sect. 2.3 that Ext1R(Li , M) = 0. This
implies that the middle vertical short exact sequence splits, yields the isomorphism
Ki ∼= Li ⊕ M⊕ci−1ai , and proves the claim.

Now, by the claim established above, M is a direct summand of Kr . Then, since
G-dimR(Kr ) < ∞, we conclude that G-dimR(M) < ∞; see Sect. 2.2. Therefore,
Theorem 1.1 shows that R is Gorenstein, and this completes the proof of the theorem.

�	

3 Proofs of the preliminary propositions

This section is devoted to the proofs of Propositions 2.7, 2.8 and 2.9. We start by
preparing a lemma.

3.1 If X is a totally reflexive module over a local ring R and n ≥ 1 is an integer, then
the nth cosyzygy of X , denoted by �−n X , is defined to be the image of the R-dual
map ∂∗

n of the n-th differential map in a minimal free resolution of X∗. Note that the
cosyzygy �−n X is totally reflexive and �n�−n X ∼= X .

Lemma 3.2 Let R be a local ring and let M be an R-module. Assume, for each totally
reflexive R-module X, we have that ExtiR(X , M) = 0 for all i ≥ 1. If X is a totally
reflexive R-module and j ≥ 0, then it follows that ExtiR(X ,� j M) = 0 for all i ≥ 1.

Proof Let i ≥ 1 and j ≥ 1 be integers. Then the following isomorphisms hold:

ExtiR(X ,� j M) ∼= Exti+ j
R (�− j X ,� j M) ∼= ExtiR(�− j X , M).

Here, the first isomorphism is due to the fact � j�− j X ∼= X ; the second one fol-
lows since �− j X is totally reflexive so that ExtsR(�− j X , R) = 0 for all s ≥ 1. As
ExtiR(�− j X , M) vanishes in view of the hypothesis, the claim follows. �	
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In passing we record:

Corollary 3.3 Let R be a local ring and let M be an R-module such that idR(M) < ∞.
Then, for each integer j ≥ 0 and each totally reflexive R-module X, it follows that
ExtiR(X ,� j M) = 0 for all i ≥ 1.

Proof The claim is an immediate consequence of Sect. 2.3 and Lemma 3.2. �	
Corollary 3.4 Let R be a local ring and let M be an R-module. Assume, for each
totally reflexive R-module X, it follows that Ext jR(X , M) = 0 for all j ≥ 1.
Assume further there are short exact sequences of R-modules of the form 0 →
K⊕ai
i−1 → Ki → �ni K⊕bi

i−1 → 0 for i = 1, . . . r , where K0 = M and
r , a1, . . . , ar , b1, . . . , br , n1, . . . , nr are all positive integers. Then, for each totally
reflexive R-module X and for each i = 0, . . . , r , it follows that Ext jR(X , Ki ) = 0 for
all j ≥ 1.

Proof We proceed by induction on i .
If i = 0, then K0 = M , and so there is nothing to prove. Let i be an integer

with 1 ≤ i ≤ r and assume, for each totally reflexive R-module X , we have that
Ext jR(X , Ki−1) = 0 for all j ≥ 1.

Next consider the following short exact sequence that exists by the hypothesis:

0 → K⊕ai
i−1 → Ki → �ni K⊕bi

i−1 → 0. (3.2.1)

Let Y be a totally reflexive R-module and let j ≥ 1. Then (3.2.1) yields the following
exact sequence:

Ext jR(Y , K⊕ai
i−1 ) → Ext jR(Y , Ki ) → Ext jR(Y ,�ni K⊕bi

i−1 ). (3.2.2)

As Ext jR(Y , K⊕ai
i−1 ) vanishes by the induction hypothesis, to complete the induction

argument, it suffices to observe the vanishing of Ext jR(Y ,�ni Ki−1). However this
follows by Lemma 3.2. �	

Next we use Corollary 3.4 and prove Proposition 2.7:

Proof of Proposition 2.7: Note that, if red-G-dimR(M) = ∞, then it follows that
red-pdR(M) = ∞. Hence, to prove the proposition, it suffices to assume
red-G-dimR(M) < ∞.

Assume red-G-dimR(M) = r < ∞ and let {K0, . . . , Kr } be a reducing G-dim
sequence of M . Then, since G-dimR(Kr ) < ∞, we consider the finite projective
dimension hull of Kr (Auslander andBuchweitz 1989, 1.1), i.e., a short exact sequence
of R-modules of the form 0 → Kr → P → X → 0, where pdR(P) < ∞ and X
is totally reflexive. Note that Corollary 3.4 implies that Ext1R(X , Kr ) = 0. Therefore,
the finite projective hull of Kr splits and hence pdR(Kr ) < ∞. This shows that
red-pdR(M) ≤ r . As, in general, we have that red-G-dimR(M) ≤ red-pdR(M), the
claim of the proposition follows. �	
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Remark 3.5 It is worth noting that there are examples of local rings R and modules M
over R with red-G-dimR(M) < ∞ = pdR(M) and ExtiR(X , M) = 0 for each totally
reflexive R-module X and each i ≥ 1. For example, if R is as in Example 2.5 and
M = k, then each totally reflexive R-module is free so that ExtiR(X , M) = 0 for all
i ≥ 1 and pdR(M) = ∞.

The next two results are used for the proof of Proposition 2.8; the first one, Sect. 3.6,
is well-known, but we include it for completeness. The second one, 3.7, is a special
case of (Takahashi 2006, 3.1) and plays an important role for the proof of Proposition
2.8.

3.6 (Dao and Takahashi 2015, 2.2) Let R be a local ring and let 0 → A → B →
C → 0 be a short exact sequence of R-modules.

(i) There is an exact sequence 0 → �C → F ⊕ A → B → 0, where F is a free
R-module.

(ii) If n ≥ 0 is an integer, then there is an exact sequence 0 → �n A → G⊕�n B →
�nC → 0, where G is a free R-module.

3.7 Let R be a commutative ring. If 0 → L → X → N → 0 is a short exact sequence
of R-modules such that G-dimR(X) < ∞ and L ∼= G ⊕ Y for some free R-module
G. Then there exists a short exact sequence of R-modules 0 → Y → A → N → 0,
where G-dimR(A) < ∞; see (Takahashi 2006, 3.1).

Next is the proof of the second proposition:

Proof of Proposition 2.8 We make use of 3.6 with the exact sequence 0 → M⊕a →
K → �nM⊕b → 0 and obtain the exact sequences

0 → �n+1M⊕b → F ⊕ M⊕a → K → 0 (2.8.1)

and

0 → �n+1M⊕a → G ⊕ �n+1K → �2n+1M⊕b → 0, (2.8.2)

where F and G are free R-modules.
By taking the direct sum of a copies of the short exact sequence in (2.8.1) and the

direct sum of b copies of the short exact sequence in (2.8.2), we obtain the following
short exact sequences:

0 → �n+1M⊕ab α−→ F⊕a ⊕ M⊕a2 → K⊕a → 0 (2.8.3)

0 → �n+1M⊕ab β−→ G⊕b ⊕ �n+1K⊕b → �2n+1M⊕b2 → 0 (2.8.4)
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Now we take the pushout of the maps α and β from the exact sequences in (2.8.3)
and (2.8.4), and obtain the following diagram with with exact rows and columns:

0 0

0 �n+1M⊕ab α

β

F⊕a ⊕ M⊕a2 K⊕a 0

0 G⊕b ⊕ �n+1K⊕b X K⊕a 0

�2n+1M⊕b2 �2n+1M⊕b2

0 0

Now assume G-dimR(K ) < ∞. Then the exact sequence in the middle row in the
above diagram implies that G-dimR(X) < ∞. So we use 3.7 for the exact sequence
0 → F⊕a ⊕ M⊕a2 → X → �2n+1M⊕b2 → 0, and obtain a short exact sequence of
the form

0 → M⊕a2 → A → �2n+1M⊕b2 → 0, (2.8.5)

where G-dimR(A) < ∞. Therefore, setting Y1 = A, we establish the claim for the
case where i = 1.

Next assume i ≥ 2. Then, by the induction hypothesis, there exists a short exact
sequence of R-modules of the form

0 → M⊕ai−1 → Yi−1 → �ri−1M⊕bi−1 → 0, (2.8.6)

where G-dimR(Yi−1) < ∞, ri−1 = 2i−1(n + 1) − 1, ai−1 = a2
i−1

and bi−1 = b2
i−1

.
Hence we can apply the previous process to the short exact sequence in (2.8.6) and
obtain a short exact sequence of R-modules 0 → M⊕ai → Yi → �ri M⊕bi → 0,
where G-dimR(Yi ) < ∞, ri = 2i (n + 1) − 1, ai = a2

i
and bi = b2

i
. This completes

the induction argument and establishes the proposition. �	
Our next aim is to prove Proposition 2.9; for that we proceed and prepare two

lemmas. The first one can be found, for example, in (Avramov 1996, 1.2.4).

Lemma 3.8 Let R be a local ring, M an R-module, and let x ∈ m be an element of R.

(i) x is a non zero-divisor on R, then x is a non zero-divisor on �i
R(M) for each

i ≥ 1.
(ii) If x is a non zero-divisor on R and M, then�i

R(M)/x�i
R(M) ∼= �i

R/x R(M/xM)

for each i ≥ 0.
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Lemma 3.9 Let R be a local ring and let 0 → K⊕ai
i−1 → Ki → �

ni
R K⊕bi

i−1 → 0 be
short exact sequences of R-modules for i = 1, . . . r , where ai , bi , ni are nonnegative
integers and r is a positive integer. If x ∈ m is a non zero-divisor on R and on K0,
then x is a non zero-divisor on Ki for each i = 0, . . . , r .

Proof We proceed by induction on i . If i = 0, then the claim is just the hypothesis.
Hence we assume i ≥ 1. Then, by the induction hypothesis, it follows that x is a
non-zero divisor on Ki−1. Thus, tensoring the given short exact sequences by R/x R,
for each i = 1, . . . , r , we obtain an exact sequence of the form TorR1 (K⊕ai

i−1 , R/x R) →
TorR1 (Ki , R/x R) → TorR1 (�

ni
R K⊕bi

i−1 , R/x R). This yields TorR1 (Ki , R/x R) = 0 and
hence shows that x is a non zero-divisor on Ki , as required. �	

We are now ready to prove Proposition 2.9:

Proof of Proposition 2.9 There is nothing to prove if red-G-dimR(M) = ∞. Therefore
we assume red-G-dimR(M) = r < ∞. Then, by definition, there exist short exact
sequences of R-modules

0 → K⊕ai
i−1 → Ki → �

ni
R K⊕bi

i−1 → 0, (2.9.1)

where i = 1, . . . , r , K0 = M and G-dimR(Kr ) < ∞.
Tensoring the short exact sequences in (2.9.1) by R/x R, we obtain the following

exact sequences

TorR1 (�
ni
R K⊕bi

i−1 , R) → (
Ki−1

)⊕ai → Ki → (
�

ni
R K⊕bi

i−1

) → 0, (2.9.2)

where i = 1, . . . , r and (−) denotes − ⊗R R/x R.
Note that, since x is a non zero-divisor on R, it follows from Lemma 3.8(i), x is a

non zero-divisor on �
ni
R Ki−1 for each i = 1, . . . , r . Therefore, it follows that

TorR1 (�
ni
R K⊕bi

i−1 , R) = 0 for each i = 1, . . . r . (2.9.3)

Recall that x is a non zero-divisor on K0. Hence, it follows from Lemma 3.9 that
x is a non zero-divisor on Ki for each i = 0, . . . , r . Consequently, Lemma 3.8(ii)
implies that

(
�

ni
R K⊕bi

i−1

) ∼= �
ni
R

(
Ki−1

)⊕bi for each i = 1, . . . r . (2.9.4)

Now, the exact sequence in (2.9.2), in view of (2.9.3) and (2.9.4), yields the following
exact sequence of R-modules for each i = 1, . . . , r .

0 → (
Ki−1

)⊕ai → Ki → �
ni
R

(
Ki−1

)⊕bi → 0. (2.9.5)

We know that G-dimR(Kr ) = G-dimR(Kr ) < ∞; see (Christensen 2000, 1.4.5).
Therefore, (2.9.5) shows that {K0, . . . , Kr } is a reducing G-dim-sequence of M over
the ring R. This implies that red-G-dimR(M/xM) ≤ r . �	
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One can see from the proof of Proposition 2.8 that the fact G-dimR(Kr ) =
G-dimR(Kr ) is used only once at the end of the argument, and in fact, it suffices to have
the inequality G-dimR(KR) ≤ G-dimR(Kr ) for the proposition to hold. Therefore,
we finish this section by noting that the proof of Proposition 2.8 yields the following
more general result:

Remark 3.10 Let (R,m) be a local ring and let I be a homological invariant of R-
modules. Assume we have that IR/x R(M/xM) ≤ IR(M), in case M is an R-module
and x ∈ m is a non zero-divisor on R andM . Then it follows that red-IR/x R(M/xM) ≤
red-IR(M) in case M is an R-module and x ∈ m is a non zero-divisor on R and M ,
where red-I is the reducing invariant of I defined as in 2.4; see also (Araya andCelikbas
2020, 2.1).
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