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Abstract
Tarizadeh and Aghajani conjectured that each purely-prime ideal is purely-maximal
(Tarizadeh and Aghajani in Commun Algebra 49(2):824–835, 2021, Conjecture 5.8).
We study purely-prime and purely-maximal ideals in rings of the form A+ XS (where
S is either B[X ] or B[[X ]]), subrings of A[[X ]] of the form A[X ] + I [[X ]] and
A + I [[X ]] (where A is a subring of a commutative unitary ring B and I an ideal of
A) and Nagata’s idealization ring. As application, we give necessary and sufficient
conditions on each of the aforementioned ring to be semi-Noetherian. We deduce that
the power series ring A[[X ]] is semi-Noetherian if and only if the ring A is semi-
Noetherian. We deduce that Tarizadeh and Aghajani’s conjecture holds in each of the
aforementioned ring if and only if it holds in the ring A.

Keywords Power series ring · Purely-maximal ideal · Nagata idealization ring

Mathematics Subject Classification 13F25 · 13E05

1 Introduction

Throughout this paper all rings are commutative with identity. Let A be a subring of a
ring B and I an ideal of A. The ideal I is said to be pure if for every a ∈ I there exists
b ∈ I such that a = ab (Borceux and Van den Bossche 1983, p. 141). The ideal I is
said to be purely-maximal if it is maximal (under inclusion) in the lattice of proper
pure ideals of A (Borceux and Van den Bossche 1983, p. 156). The ideal I is said to be
purely-prime if it is proper and if for any pure ideals I1, I2 of A with I1 ∩ I2 ⊆ I , then
I1 ⊆ I or I2 ⊆ I (Borceux and Van den Bossche 1983, p. 156). Borceaux and Van
den Bossche had introduced and studied purely-maximal and purely-prime ideals in
their book (Borceux andVan denBossche 1983). Al-Ezeh had studied purely-maximal
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ideals of a PF-ring (Al-Ezeh 1988). Recently, Tarizadeh andAghajani have established
new algebraic and topological results on purely-prime ideals (Tarizadeh and Aghajani
2021). Also they called a ring A to be semi-Noetherian if every pure ideal of A is
finitely generated (Tarizadeh and Aghajani 2021, p. 834). Tarizadeh and Aghajani
asked if each purely-prime ideal is purely-maximal (Tarizadeh and Aghajani 2021,
Conjecture 5.8).

The aim of this paper is (I) to study purely-maximal ideals of rings of the form
A + XS (where S is either B[X ] or B[[X ]]), subrings of A[[X ]] of the form A[X ] +
I [[X ]] and A+ I [[X ]], Nagata’s idealization ring R× M (where M is an R-module),
(II) to give necessary and sufficient conditions so that each of the aforementioned
rings is semi-Noetherian and (III) to provide necessary and sufficient conditions so
that Tarizadeh and Aghajani’s conjecture holds in each of the aforementioned ring.

In the second section, we show that purely-maximal ideals of the ring R = A +
XS are precisely ideals of the form IR where I ranges over purely-maximal ideals
of A (Theorem 2.4). We deduce an analogous of Hilbert’s basis theorem for semi-
Noetherian ring: the ring A[[X ]] (respectively A[X ]) is semi-Noetherian if and only
if A is semi-Noetherian (Corollary 2.7).

In the third section, we show that purely-maximal ideals of the ring R(I ) = A +
I [[X ]] (respectively A+ I [X ], A[X ]+ I [[X ]]) are precisely ideals of the form JR(I )
where J ranges over purely-maximal ideals of A (Corollary 3.3). We deduce that the
ring R(I ) is semi-Noetherian if and only if A is semi-Noetherian (Corollary 3.4).

Let R be a ring and M a module over R. The fourth section is devoted to study
purely-maximal ideals of Nagata idealization ring R × M . We show that purely-
maximal ideals of Nagata idealization ring R × M are precisely ideals of the form
I × I M where I ranges over purely-maximal ideals of A (Theorem 4.4). We deduce
that the ring R × M is semi-Noetherian if and only if R is semi-Noetherian (Theorem
4.4).

Every purely-maximal ideal is purely-prime (Borceux and Van den Bossche 1983,
Chapter 7–Proposition 26). Tarizadeh andAghajani noticed that in all known examples
each purely-prime ideal is purely-maximal (Tarizadeh and Aghajani 2021, p. 834).
So they asked if this is true for all rings or not. We study their question in each of
the aforementioned ring. We give necessary and sufficient conditions on each of the
aforementioned ring so that Tarizadeh and Aghajani’s conjecture holds.

2 Purely-maximal ideals of the ring A+ XS

For any ring extension A ⊆ B and for any ideal J of B, then the set A+ J = {a+ b :
a ∈ A, b ∈ J } is a subring of B which contains A. Throughout this section, A denotes
a subring of a ring B, X an indeterminate over B andR = A+ XS (where S is either
B[X ] or B[[X ]]) the subring of S formed by elements whose constant term belongs
to A. For each f ∈ S, f (i) denotes the coefficient of Xi in f .

For any ideals I and J of A, then I ⊆ J if and only if IR ⊆ JR.

Lemma 2.1 If J is a proper pure ideal ofR, then J ⊆ IR for some proper pure ideal
I of A.
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Proof Let I = { f (0), f ∈ J } be the ideal of A consisting of constant terms of elements
of J . For R = A + XB[[X ]], since invertible elements of R are elements whose
constant terms are invertible in A, I is proper. For the other case R = A + XB[X ],
suppose that I = A. Then 1 = f (0) and f = f g for some f , g ∈ J . It follows that
g(0) = 1 and f (1) = f (1)g(0) + f (0)g(1). So g(1) = 0. By induction, g(i) = 0 for all
i ≥ 1 and so 1 = g ∈ J , a contradiction. Then I is proper.

Let a ∈ I and f ∈ J be such that a = f (0). Let g ∈ J be such that f = f g. Thus
a = ag(0) and g(0) ∈ I . Then I is a pure ideal of A. Let f , g ∈ J such that f = f g.
Thus f (0) = f (0)g(0) ∈ aA (where a = g(0) ∈ I ) and f (1) = f (0)g(1) + f (1)g(0) ∈
aB. By induction, f (i) ∈ aB for all i ≥ 1. So f = ah ∈ IR for some h ∈ R. ��
Lemma 2.2 For any ring map f : R −→ R′, if I is a pure ideal of R then its extension
I R′ is a pure ideal of R′. If moreover, f is injective and I is proper then I R′ is proper.

Proof The first assertion is easy and well known (Borceux and Van den Bossche
1983, Chapter 7–Lemma 60). For the second, first note that for any finite subset
{a1, . . . , an} ⊆ I there exists some b ∈ I such that ai = aib for all i . Now if 1 ∈ I R′
then we may write 1 = �

n
i=1 r

′
i f (ai ) where r

′
i ∈ R′ and ai ∈ I for all i . So there

exists some b ∈ I such that ai = aib for all i . It follows that f (1) = 1 = f (b) and
so 1 = b ∈ I , a contradiction. ��
Lemma 2.3 Let I be an ideal of A.

1. IR is a proper pure ideal ofR if and only if I is a proper pure ideal of A
2. IR is a purely-prime (respectively purely-maximal) ideal of R if and only if I is

a purely-prime (respectively purely-maximal) ideal of A.

Proof 1. The implication “⇐” follows from Lemma 2.2. Assume that IR is a pure
ideal of R and let a ∈ I . There exists f ∈ IR such that a = a f . Thus f (0) ∈
I A = I and a = a f (0).

2. Assume that I is a purely-maximal ideal of A. By (1), IR is proper and pure. Let
J be a proper and pure ideal of R such that IR ⊆ J . By Lemma 2.1, J ⊆ J ′R
for some proper pure ideal J ′ of A. Thus I ⊆ J ′ and so I = J ′. Then IR = J .
Conversely, assume that IR is purely-maximal. Thus I is proper and pure by (1).
Let I ′ be a proper and pure ideal of A such that I ⊆ I ′. Thus IR ⊆ I ′R which is
a proper pure ideal of R by (1). So IR = I ′R. Then I = I ′.
Assume that I is a purely-prime ideal of A. Let J1, J2 be two proper pure ideals

of R such that J1 J2 ⊆ IR. By Lemma 2.1, Ji ⊆ IiR for some proper pure ideal Ii
of R (where Ii is the set of constant terms of elements of Ji ). Thus I1 I2 ⊆ I and so
Ii ⊆ I for some i . Then Ji ⊆ IiR ⊆ IR for some i . Conversely, assume that IR is
purely-prime and let I1, I2 be two pure ideals of A such that I1 I2 ⊆ I . Since each IiR
is pure and I1RI2R ⊆ I1 I2R ⊆ IR, IiR ⊆ IR for some i . Then Ii ⊆ I . ��
Theorem 2.4 Purely-maximal ideals of the ring R are precisely IR where I ranges
over purely-maximal ideals of A. In particular, the ring R is semi-Noetherian if and
only if the ring A is semi-Noetherian.

Proof By Lemma 2.3, if I is a purely-maximal ideal of A, then IR is a purely-
maximal ideal ofR. Let J be a purely-maximal ideal ofR and I = { f (0), f ∈ J }. By
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Lemma 2.1, I is a proper pure ideal of A and J ⊆ IR. By Lemma 2.3, IR is proper
and pure and so J = IR and I is purely-maximal. It was shown that a ring is semi-
Noetherian if and only if each purely-maximal ideal is finitely generated (Tarizadeh
and Aghajani 2021, Theorem 6.2). Assume that the ring A is semi-Noetherian and let
J be a purely-maximal ideal of R. Then J = IR for some purely-maximal ideal I
of A. Since I is a finitely generated ideal of A, J is a finitely generated ideal of R.
Conversely, assume that the ringR is semi-Noetherian and let I be a purely-maximal
ideal of A. Then IR = ( f1, . . . , fn) is a finitely generated ideal of R and so using
Lemma2.1 and since IR is purely-maximal ideal,we obtain that I = ( f (0)

1 , . . . , f (0)
n ).

Hence every purely-maximal ideal of A is finitely generated. ��
Tarizadeh and Aghajani noticed that in all known rings each purely-prime ideal is

purely maximal (Tarizadeh and Aghajani 2021). So, they asked if this fact holds for
any ring. We study their question on the ring R. Any ideal I contains a largest pure
ideal (i.e., the sum of all pure ideals contained in I ), denoted ν(I ) (see Tarizadeh and
Aghajani 2021, p. 825) (also denoted I ◦ in (Borceux andVandenBossche 1983, Propo-
sition 8, p. 147).

Lemma 2.5 Let A ⊆ B be a ring extension and J be a purely-prime ideal of B. Then
ν(J ∩ A) is a purely-prime ideal of A.

Proof By Borceux and Van den Bossche (1983, Chapter 7–Lemma 62). ��
The following shows that Tarizadeh and Aghajani’s conjecture holds in the ringR

if and only if it holds in the ring A.

Corollary 2.6 Every purely-prime ideal of R is purely maximal if and only if every
purely-prime ideal of A is purely maximal.

Proof Assume that every purely-prime ideal of R is purely-maximal and let I be
a purely-prime ideal of A. By Lemma 2.3, IR is a purely-prime ideal of R. Thus
IR is purely-maximal by hypothesis. Again by Lemma 2.3, I is purely-maximal.
Conversely, assume that every purely-prime ideal of A is purely-maximal and let J
be a purely-prime ideal of R. By Lemma 2.5, ν(J ∩ A) is a purely-prime ideal of
A. By hypothesis, ν(J ∩ A) is a purely-maximal ideal of A and so ν(J ∩ A)R is a
purely-maximal ideal of R by Theorem 2.4. Since ν(J ∩ A) ⊆ J , ν(J ∩ A)R ⊆ J
and so ν(J ∩ A)R = J . Hence J is a purely-maximal ideal of R. ��
Corollary 2.7 1. Purely-maximal ideals of the ring A[[X ]] (respectively A[X ]) are

precisely I A[[X ]] (respectively I [X ]) where I ranges over purely-maximal ideals
of A.

2. The ring A[[X ]] (respectively A[X ]) is semi-Noetherian if and only if the ring A
is semi-Noetherian.

3. Every purely-prime ideal of A[[X ]] (respectively A[X ]) is purely maximal if and
only if every purely-prime ideal of A is purely maximal.

Proof If we take A = B then A+ XB[X ] = A[X ] and A+ XB[[X ]] = A[[X ]].Now
the assertion is easily deduced from Theorem 2.4 and Corollary 2.6. ��
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EveryNoetherian ring is semi-Noetherian, but the converse is not true (seeTarizadeh
and Aghajani 2021, p. 834). In the following we give other examples of a semi-
Noetherian ring which is not Noetherian.

Example 2.8 It is well known that if A is an integral domain or a local ring, then the
only pure ideals of A are zero and A and so A is semi-Noetherian. Let Z be the ring of
integers, (Xi )i≥1 a countably set of (algebraically independent) indeterminates over
Z and A = Z[X1, X2, . . .], then A a semi-Noetherian ring that is not Noetherian.
Hence the ring Z[X1, X2, . . .][X ] (also Z[X1, X2, . . .][[X ]]) is semi-Noetherian by
Corollary 2.7 and is not Noetherian by Hilbert’s basis theorem. Also the ring Z+ XS
(where S is either Q[X ] or Q[[X ]]) is semi-Noetherian but is not Noetherian (see
Hizem 2009, Proposition 2.1).

Remark 2.9 Semi-Noetherian ring satisfies the ascending chain condition on pure ide-
als, i.e., every ascending sequence of pure ideals of A stops. In fact, let I1 ⊂ I2 ⊂ · · ·
be an increasing sequence of pure ideals of A. Let I = ∪n∈N∗ In, then I is a pure ideal
of A. So there exist a1, . . . , ak ∈ I such that I = (a1, . . . , ak). There exist s ∈ N

∗
such that a1, . . . , ak ∈ Is . So I = Is . Hence, for any n ≥ s, In = Is .

Example of a ring which is not semi-Noetherian (we construct a strictly ascending
chain of pure ideals).

Example 2.10 Let A = ∏
λ∈� Kλ where � is an infinite set and each Kλ is a field.

Let (λn)n≥1 be an infinite countably subset of � and en ∈ A whose λ-component is 1
if λ ∈ {λ1, . . . , λn} and 0 elsewhere. Thus en is idempotent and en = enen+1 and so
e1A ⊂ e2A ⊂ · · · is a strictly ascending chain of pure ideals of A. By Remark 2.9,
the ring A is not semi-Noetherian. We can show this fact otherwise: the direct sum
ideal ⊕λ∈� Kλ of A is a pure ideal which is not finitely generated, because the index
set � is infinite. Hence an infinite product of fields is never semi-Noetherian. We also
have: if R is an infinite Boolean ring, then R is not a semi-Noetherian ring. Indeed:
In a Boolean ring R, each element is idempotent and so each ideal is pure. It follows
that R is semi-Noetherian if and only if R is Noetherian. But it is well known that a
Boolean ring is Noetherian if and only if it is finite.

Each ideal in the given chain in the previous example, is principal (so finitely
generated). The following gives an example of a strictly ascending chain of pure
ideals which are not finitely generated.

Example 2.11 Consider the open real interval (0, 1) ⊆ R and the polynomial ring
F2[Xi : i ∈ (0, 1)] modulo the ideal H generated by elements of the form Xr − Xr Xt

with 0 < r < t < 1. For each sub-open interval � of (0, 1), let J (�) be the
ideal of A generated by (xr )r∈� where xr is the class of Xr modulo H . For each
r ∈ �, there exists r ′ ∈ � such that r < r ′ and so xr = xr xr ′ . Thus J (�) is a
pure ideal of A. For each positive integer n, let �n = (0, 1− 1

2n ). Since �n ⊂ �n+1,
J (�n) ⊆ J (�n+1).We claim that J (�n) �= J (�n+1). Indeed: if not, then xs ∈ J (�n)

for some s ∈ �n+1 − �n . Let so r1, . . . , rk ∈ � and a1, . . . , ak ∈ A such that xs =
xr1a1 + · · · + xrk ak . We can assume that r1 < · · · < rk . Since xri = xri xrk , xs = xra
for some a ∈ Awhere r = rk . Thus Xs − Xr f ∈ H for some f ∈ F2[(Xr )0<r<1]. Let
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so s1, t1, . . . , sm, tm ∈ (0, 1) and g1, . . . , gm ∈ F2[(Xr )0<r<1] such that Xs − Xr f =
(Xs1 − Xs1Xt1)g1 + · · · + (Xsm − Xsm Xtm )gm and si < ti . Taking the linear form
in each side, we have Xs = Xs1c1 + · · · + Xsm cm where ci ∈ F2 is the constant
term of gi . Thus m = 1 and s = s1. It follows that Xs − Xr f = (Xs − Xs Xt1)g1.
Since r �= s and Xs is a prime element of F2[(Xr )0<r<1], f ∈ XsF2[(Xr )0<r<1]
and so 1 − Xr f = (1 − Xt1)g1. Let ϕ : F2[(Xr )0<r<1] −→ F2[(Xr )0<r<1] the
homomorphism of rings that maps Xr to zero. If t1 �= r , then 1 = (1 − Xt1)ϕ(g) and
so 1 − Xt1 is invertible in F2[(Xr )0<r<1] which is absurd because the only invertible
element of F2[(Xr )0<r<1] is 1. Thus s < t1 = r and so s ∈ �n , a contradiction.
Hence J (�1) ⊂ J (�2) ⊂ · · · is a strictly ascending chain of pure ideals of A. Hence
the ring A is not semi-Noetherian. Assume that J (�) is finitely generated for some
open sub-interval � of (0, 1) of the form � = (0, α). Let so r1, . . . , rk ∈ � such that
J (�) = xr1 A + · · · + xrn A. We can assume that r1 < · · · < rn . Thus J (�) = xr A
where r = rn because xri = xri xrn . Let s ∈ (0, 1) such that r < s < α. So xs ∈ J (�)

and thus xs = xra for some a ∈ A. Thus Xs−Xr f ∈ H for some f ∈ F2[(Xr )0<r<1].
With a similar argument as above, we have s < r which is absurd. Hence J (�) is not
finitely generated.

If I is an ideal of a ring A, then by Lemma 2.3(1), I R is a pure ideal of R if and only
if I is a pure ideal of A where R denotes either A[X ] or A[[X ]]. In particular, I [X ]
(= I A[X ]) is pure if and only if I is pure. Always I A[[X ]] ⊆ I [[X ]] but I [[X ]] is not
necessarily equal to I A[[X ]] and it is proved that the equality I A[[X ]] = I [[X ]] holds
if each countably subset of I is contained in a finitely generated ideal of R contained
in I (see Gilmer and Heinzer 1968, p. 386). If I is a finitely generated ideal of A, then
it is easy to see that I [[X ]] = I A[[X ]]. It is well know that I [[X ]] = I A[[X ]] for
each ideal of I of A if and only if A is Noetherian (Arnold et al. 1977, Proposition
1.2). In the following result we study the purity of the ideal I [[X ]] in A[[X ]].
Lemma 2.12 Let I be an ideal of A. The ideal I [[X ]] is pure if and only if I is pure
and I [[X ]] = I A[[X ]].
Proof The implication “⇐” is obvious, because the extension of every pure ideal
is pure. Assume that I [[X ]] is a pure ideal of A[[X ]] and let a ∈ I . There exists
f ∈ I [[X ]] such that a = a f . So a = a f (0) and f (0) ∈ I . Then I is pure. By
Lemma 2.1, I [[X ]] ⊆ I A[[X ]] and so I [[X ]] = I A[[X ]]. ��

Aghajani proved that a ring A is von-Neumann regular if and only if every ideal of
A is pure (Aghajani 2022).

Proposition 2.13 Let A be a ring. The ideal I [X ] of A[X ] is pure for all ideal I of A
if and only if A is a von-Neumann regular ring.

Proof By Lemma 2.3 and Aghajani (2022, Corollary 3.5). ��
If every maximal ideal of a ring R is pure, then R is absolutely flat (von-Neumann

regular) ring (Tarizadeh 2022, Proposition 2.7). Note that in a von-Neumann regular
ring A, not only every ideal I is pure, even it is generated by a set of idempotents,
because if a ∈ I then a = a2b for some b ∈ A, then clearly ab ∈ I is an idempotent
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and a = a(ab). It is also easy to see that in any ring, a finitely generated ideal which
is generated by a set of idempotents is a principal ideal. Thus a von-Neumann ring
is Noetherian if and only if it is a principal ideal ring (PIR). If A is a von-Neumann
regular and Noetherian ring, then clearly I A[[X ]] = I [[X ]] is a pure ideal of A[[X ]]
for each ideal I of A. It follows that:

Theorem 2.14 For a ring A the following assertions are equivalent.

(i) A is a finite product of fields.
(ii) A is a von-Neumann regular and Noetherian.
(iii) A is a von-Neumann regular and PIR.
(iv) For each ideal I of A, I [[X ]] is a pure ideal of A[[X ]].
(v) For each maximal ideal M of A, M[[X ]] is a pure ideal of A[[X ]].
Proof (i) ⇔ (i i) Straightforward. By the above comment, we have (i i) ⇒ (i i i) ⇒
(iv). The implication (iv) ⇒ (v) is clear. So it remains to prove the implication
(v) ⇒ (i i): By hypothesis, every maximal ideal M of A is pure, thus by (Tarizadeh
2022, Proposition 2.7), A is von-Neumann regular. Also by Lemma 2.12, for each
maximal ideal M of A we have M[[X ]] = MA[[X ]]. Recall that a module N over a
ring R is called a (	)-module if each countably generated submodule of N is contained
in a finitely generated submodule of N (Arnold et al. 1977, p. 649). An ideal I of A is
called a (	)-ideal of A if I is a (	)-module (Arnold et al. 1977, p. 648). By Arnold et al.
(1977, Theorem 2.3), it suffices to show that each prime ideal of A is a (	)-ideal of
A. It is well known that each prime ideal of a von-Neumann regular ring is maximal.
Let so M be a maximal ideal of A and countable subset {a0, a1, a2, . . .} of M . Let
f = �k≥0 ak X

k . Since f ∈ M[[X ]] = MA[[X ]], we may write f = �
n
i=1 bi fi

where bi ∈ M and fi ∈ A[[X ]] for all i . It follows that for each k ≥ 0 ak = f (k) =
�

n
i=1 bi f

(k)
i ∈ (b1, . . . , bn). and (b1, . . . , bn) ⊆ M . Thus M is a (	)-ideal of A.

Therefore by Arnold et al. (1977, Proposition 1.2), A is Noetherian ring. ��

3 Purely-maximal ideals of the rings A+ I[[X]] and A[X] + I[[X]]
Let I be an ideal of A. This section is devoted to study purely-maximal ideals of the
ring A + I [[X ]] = { f ∈ A[[X ]] such that f (i) ∈ I for all i ≥ 1}, the ring A + I [X ]
and the ring A[X ] + I [[X ]] = { f ∈ A[[X ]] : ∃ n ≥ 1, ∀ i ≥ n, f (i) ∈ I } which is
a subring of A[[X ]] containing A[X ]. For more informations about rings of the form
A[X ]+ I [[X ]], readers are referred to Chang and Toan (2021) and Hizem (2009). It is
clear that A+ I [X ] ⊆ A+ I [[X ]] ⊆ A[X ]+ I [[X ]] ⊆ A[[X ]]. LetR(I ) = A+ I [X ]
or A + I [[X ]] or A[X ] + I [[X ]].
Lemma 3.1 Let Q be an ideal of A.

1. If Q is a pure ideal of A, then QA[[X ]] ∩ R(I ) = QR(I ).
2. Q is a pure ideal of A if and only if QR(I ) is a pure ideal of R(I ).
3. If J is a proper pure ideal of R(I ), then J ⊆ J ′R(I ) for some proper pure ideal

J ′ of A.
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Proof 1. By Lemma 2.2, QA[[X ]] = { f ∈ A[[X ]] such that f = a f for some
a ∈ Q}.

2. Assume that Q is a pure ideal of A and let f ∈ QA[[X ]] ∩R(I ). By Lemma 2.3,
QA[[X ]] is a pure ideal of A[[X ]] and f = b f for some b ∈ Q (see the proof
of Lemma 2.2). Thus QA[[X ]] ∩ R(I ) is a pure ideal of R(I ). Conversely, let
a ∈ Q ⊆ QR(I ). There exists f ∈ QR(I ) such that a = a f . Thus a = a f (0)

and f (0) ∈ Q.
3. Let J ′ be the set of constant terms of elements of J . Clearly, J ′ is a pure ideal

of A. Suppose that J ′ = A and let f , g ∈ J such that 1 = f (0) and f = f g. It
follows that g(0) = 1 and f (1) = f (1)g(0) + f (0)g(1). So g(1) = 0. By induction,
g(i) = 0 for all i ≥ 1 and so 1 = g ∈ J , a contradiction. Then J ′ is proper. With
a similar argument as in the proof of Lemma 2.1, we show that J ⊆ J ′A[[X ]]. So
J ⊆ J ′A[[X ]] ∩ R(I ) = J ′R(I ).

��
Theorem 3.2 Let Q be an ideal of A.

1. QR(I ) is a purely-maximal ideal of R(I ) if and only if Q is a purely-maximal
ideal of A.

2. QR(I ) is a purely-prime ideal ofR(I ) if and only if Q is a purely-prime ideal of
A.

Proof 1. Assume that Q is a purely-maximal ideal of A. By Lemma 3.1, QR(I ) is
pure ideal ofR(I ). Since Q is proper, so is QA[[X ]] ∩R(I ) = QR(I ). Let J be
a proper pure ideal of R(I ) such that QR(I ) ⊆ J . By Lemma 3.1, J ⊆ J ′R(I )
for some proper pure ideal J ′ of A. It follows that Q ⊆ J ′ and so Q = J ′. Then
J = QR(I ). Conversely, assume that QR(I ) is purely-maximal of R(I ). By
Lemma 3.1, Q is a pure ideal of A. Since QR(I ) is proper, so is Q. Let P be a
pure proper ideal of A such that Q ⊆ P . So QR(I ) ⊆ PR(I ) which is a pure
and proper ideal of R(I ). Then QR(I ) = PR(I ) and so Q = P .

2. Assume that Q is a purely-prime ideal of A. Thus QA[[X ]] is a purely-prime ideal
of A[[X ]] by Lemma 2.3. So ν(QA[[X ]] ∩R(I )) is a purely-prime ideal ofR(I )
by Lemma 2.5. By Lemma 3.1, QA[[X ]]∩R(I ) = QR(I ) is pure and so QR(I )
is purely-prime. Conversely, similar argument as in the proof of Lemma 2.3. ��

Corollary 3.3 Purely-maximal ideals of the ring R(I ) are precisely QR(I ) where Q
ranges over purely-maximal ideals of A.

Proof Let J be a purely-maximal ideal of R(I ) and Q the set of constant terms of
elements of J . By Lemma 3.1, J ⊆ QR(I ) and Q is a proper pure ideal of A.
Again by Lemma 3.1, QR(I ) is a proper pure ideal of R(I ) and so J = QR(I ). By
Theorem 3.2, Q is purely-maximal. Theorem 3.2 completes the proof. ��
Corollary 3.4 The ring R(I ) is semi-Noetherian if and only if the ring A is semi-
Noetherian.

Proof This result follows from Theorem 3.2(1), the fact that a ring is semi-Noetherian
if and only if each purely-maximal ideal is finitely generated (so is a principal ideal
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generated by an idempotent) (Tarizadeh and Aghajani 2021, Theorem 6.2), the fact
that idempotent elements ofR(I ) (also of A[[X ]]) are precisely idempotent elements
of A (by Benhissi 2003) and the fact that if e is an idempotent element of A, then
eA[[X ]] ∩ R(I ) = eR(I ). ��
Example 3.5 It was proved that for an ideal I ofZ, the ringZ[X ]+ I [[X ]] is Noetherian
if and only if I = 0 or Z (Kosan et al. 2013, Example 14). So for each integer n ≥ 2,
the ring Z[X ] + nZ[[X ]] is semi-Noetherian by Corollary 3.4 but is not Noetherian.

Example 3.6 It was proved for a proper ideal I of a ring A, the ring A + I [[X ]] is
Noetherian if and only if A is Noetherian and I 2 = I (Hizem 2009, Proposition 2.4).
Then the ring Z+ 2Z[[X ]] is semi-Noetherian by Corollary 3.4 but is not Noetherian
because 2Z �= 4Z.

In the following we give an example of a semi-Noetherian ring which is not an integral
domain, not local and not Noetherian ring.

Example 3.7 Let A = Z/12Z, I = 2Z/12Z and R(I ) = A + I [[X ]]. Then by the
above CorollaryR(I ) is semi-Noetherian ring. ClearlyR(I ) is not an integral domain.
Since A is not a local ring, then byHizem andBenhissi (2005, Proposition 1.3),R(I ) is
not so. Since I 2 �= I , then by Hizem (2009, Proposition 2.4),R(I ) is not a Noetherian
ring.

Tarizadeh and Aghajani’s conjecture holds in the ring R(I ) if and only if it holds in
the ring A as shows the following:

Corollary 3.8 Every purely-prime ideal ofR(I ) is purely-maximal if and only if every
purely-prime ideal of A is purely-maximal.

Proof Assume that every purely-prime ideal ofR(I ) is purely-maximal and let Q be
a purely-prime ideal of A. By Theorem 3.2, QR(I ) is a purely-prime ideal of R(I ).
Thus QR(I ) is purely-maximal by hypothesis. Then Q is a purely-maximal ideal of
A. Conversely, let J be a purely-prime ideal of R(I ). By Lemma 2.5, ν(J ∩ A) is
purely-prime ideal of A. So ν(J ∩ A) is a purely-maximal ideal of A. By Theorem 3.2,
ν(J ∩ A)R(I ) is a purely-maximal ideal of R(I ). Since ν(J ∩ A)R(I ) ⊆ J , ν(J ∩
A)R(I ) = J . ��

4 Purely-maximal ideals of Nagata’s idealization ring

Let R be a ring and M be a unitary R-module. We recall that Nagata introduced the
ring extension of R called the idealization of M in R, denoted here by R × M , as the
R-module R ⊕ M endowed with a multiplicative structure defined by:

(a, x)(b, y) = (ab, ay + bx) for all a, b ∈ R and x, y ∈ M

For more informations on the ring R × M , readers are referred to Anderson and
Winders (2009).
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Lemma 4.1 If I is a pure ideal of R, then I M = {x ∈ M such that x = r x for some
r ∈ I }.
Proof Obvious, because if I is a pure ideal then for any finite subset {a1, . . . , an} ⊆ I
there exists some b ∈ I such that ai = aib for all i . See also (Borceux and Van den
Bossche 1983, Chapter 7–Proposition 11). ��
Lemma 4.2 The pure ideals of the Nagata idealization ring R × M are precisely of
the form I × I M where I ranges over the pure ideals of R.

Proof Assume that I is a pure ideal of R and let (r , x) ∈ I × I M . There exists a ∈ I
such that r = ra. By Lemma 4.1, x = bx for some b ∈ I . Let c ∈ I such that a = ac
and b = bc. Since rc = rac = ra = r and cx = cbx = bx = x , (r , x) = (r , x)(c, 0)
and (c, 0) ∈ I × I M . Thus I × I M is pure.

Conversely, Let J be a pure ideal of R × M . Let I be the set of elements r ∈ R
such that (r , x) ∈ J for some x ∈ M . Clearly I is an ideal of R.
Claim: I is a pure ideal of R. If r ∈ I , then (r , x) ∈ J for some x ∈ M and so
(r , x) = (r , x)(a, y) for some (a, y) ∈ J . Thus r = ra and a ∈ I .

Let (r , x), (a, y) ∈ J be such that (r , x) = (r , x)(a, y). Thus r , a ∈ I and x =
r y+ax ∈ I M . Then J ⊆ I×I M . Conversely, let (r , x) ∈ I×I M . There exists y ∈ M
such that (r , y) ∈ J . Since x ∈ I M , there exists b ∈ I such that x = bx byLemma4.1.
Let so z ∈ M such that (b, z) ∈ J . Then (0, x) = (b, z)(0, x) ∈ J and so 0× I M ⊆ J .
Since y ∈ I M , (r , 0) = (r , y) − (0, y) ∈ J . Hence (r , x) = (r , 0) + (0, x) ∈ J . ��
Lemma 4.3 For each ideal I of R, I × I M is a purely-prime (respectively purely-
maximal) ideal of R×M if andonly if I is a purely-prime (respectively purely-maximal)
ideal of R.

Proof Assume that I × I M is a purely-maximal ideal of R× M . So I is a proper pure
ideal of R. Let Q be a proper pure ideal of R such that I ⊆ Q. Thus I× I M ⊆ Q×QM
which is a proper and pure ideal of R × M . So I × I M = Q × QM and thus I = Q.
Conversely, assume that I is a purely-maximal ideal of R and let J be a proper pure
ideal of R × M such that I × I M ⊆ J . By Lemma 4.2, J = Q × QM for some
proper pure ideal Q of R. Thus I ⊆ Q and so I = Q. Then J = I × I M .

Assume that I × I M is a purely-prime ideal of R × M . Clearly I is a pure and
proper ideal of R. Let I1, I2 be two pure ideals of R such that I1 I2 ⊆ I . Since
[I1 × I1M][I2 × I2M] ⊆ I1 I2 × I1 I2M ⊆ I × I M and each Ii × Ii M is pure,
Ii × Ii M ⊆ I × I M for some i and so Ii ⊆ I . Conversely, assume that I is a purely-
prime ideal of R and let J1, J2 be two pure ideals of R×M such that J1 J2 ⊆ I × I M .
By Lemma 4.2, each Ji = Ii × Ii M for some pure ideal Ii of R. Since J1 J2 ⊆ I × I M ,
I1 I2 ⊆ I and so Ii ⊆ I for some i . Hence Ji ⊆ Ii × Ii M ⊆ I × I M for some i . ��
Theorem 4.4 Purely-maximal ideals of the ring R × M are precisely I × I M where
I ranges over purely-maximal ideals of R. In particular, the ring R × M is semi-
Noetherian if and only if the ring R is semi-Noetherian.

Proof By Lemma 4.3, if I is a purely-maximal ideal of R, then I × I M is a purely-
maximal ideal of R × M . Let J be a purely-maximal ideal of R × M . By Lemma 4.2,
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J = I × I M for some proper pure ideal I of R. By Lemma 4.3, I is purely-maximal.
Assume that the ring R is semi-Noetherian and let J be a purely-maximal ideal of
R × M . Thus J = I × I M for some purely-maximal ideal I of R. Since I is finitely
generated, I is principal generated by an idempotent element e. Since x = ex for
each x ∈ I M , (r , x) = (r , x)(e, 0) for each (r , x) ∈ I × I M . Then J is principal
generated by (e, 0). The “only if” part follows from the fact that for each ideal I of
R, if the ideal I × I M is finitely generated, then so is I . ��

Example of a semi-Noetherian ring of the form R × M that is not Noetherian.

Example 4.5 The ringZ×Q is semi-Noetherian byTheorem4.4 but it is notNoetherian
by Anderson and Winders (2009, Theorem 4.8) because Q is not finitely generated
over Z. More generally, for each integral domain (not necessarily Noetherian) R with
quotient field K �= R, the ring R × K is semi-Noetherian but is not Noetherian.

Tarizadeh and Aghajani’s conjecture holds in the ring R × M if and only if it holds
in the ring R as shows the following:

Theorem 4.6 Every purely-prime ideal of R×M is purely maximal if and only if every
purely-prime ideal of R is purely maximal.

Proof Assume that every purely-prime ideal of R×M is purely-maximal and let I be a
purely-prime ideal of R. ByLemma4.3, I× I M is a purely-prime ideal of R×M . Thus
I × I M is purely-maximal by hypothesis. Again by Lemma 4.3, I is purely-maximal.
Conversely, assume that every purely-prime ideal of R is purely-maximal and let J
be a purely-prime ideal of R × M . By Lemmas 4.2 and 4.3, J = I × I M for some
purely-prime ideal I of R. Thus I is purely-maximal. Hence J is purely-maximal. ��

In spite of the contributions of the present article, the conjecture (Tarizadeh and
Aghajani 2021, Conjecture 5.8) is still unsolved.
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