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Abstract
We study a nearly Kaehler manifold M admitting a closed conformal vector field V ,
and obtain three results under the following assumptions (i) V is almost analytic, (ii)
M has real dimension > 6, is complete and strictly nearly Kaehler, and (iii) M is
complete strictly nearly Kaehler of global constant type.
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1 Introduction

An almost Hermitian manifold is a real 2n-dimensional smooth manifold M with a
(1,1) tensor field J and a Riemannian metric g such that J 2 = −I and g(J X , JY ) =
g(X ,Y ) for arbitrary vector fields X , Y on M . If J is integrable, i.e. the Nijenhuis
tensor N of J vanishes, then M is a Hermitian manifold.

An almost Hermitian manifold is said to be an almost Kaehler manifold if the
fundamental 2-form � defined by �(X ,Y ) := g(X , JY ) is closed, i.e. d� = 0.

An almost Kaehler manifold whose underlying almost complex structure J is inte-
grable, is known as a Kaehler manifold. An almost Hermitian manifold is Kaehler if
and only if ∇ J = 0, where ∇ is the Levi–Civita connection of g.
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A nearly Kaehler manifold is an almost Hermitian manifold satisfying

(∇X J )Y + (∇Y J )X = 0. (1.1)

A nearly Kaehler manifold is one of the 16 classes of almost Hermitian manifolds
described by the Gray–Hervella classification (Gray and Hervella 1980). For details
on nearly Kaehler manifolds and related results, we refer to Gray (1970) and Chen
(2011).

A smooth vector field V on a Riemannian manifold (M, g) with Riemannian metric
g is said to be a conformal vector field if it satisfies

LV g = 2ag, (1.2)

where LV is the Lie derivative operator along V , and a is a smooth function (conformal
scale function) on M . In particular, if a is constant, then V is homothetic, and if
a = 0, then V is Killing. Tanno and Weber (1969) obtained several conditions under
which a compactRiemannianmanifold admits a closed conformal vector field.Kaehler
manifolds carrying a conformal vector field have been studied by Deshmukh (2011).
We also recall that a vector field V on an almost complex manifold is said to be
almost analytic if LV J = 0. In particular, an almost analytic vector field on a Kaehler
manifold is called analytic (the real part of a holomorphic vector field). Details can be
found in Yano (1965). For a closed conformal vector field on Kaehler manifolds, we
state the following result of Goldberg (1964).

Theorem 1.1 (Goldberg) A closed conformal vector field V on a Kaehler manifold M
is homothetic and analytic.

Intrigued by this result, and bearing in mind the facts that a nearly Kaehler manifold
M with dim(M) < 6 is Kaehlerian (Gray 1969), and for dim(M) = 6, a strictly
nearly Kaehler manifold is positively Einstein (Gray 1976), we study a nearly Kaehler
manifold M with dim(M) ≥ 6 admitting a closed conformal vector field V , and
obtain the following results: (i) if V is almost analytic, then it is homothetic, also, in
addition if M is complete, then M is isometric to the complex Euclidean space Cn .
(ii) If M has real dimension > 6, is complete and strictly nearly Kaehler, then it has a
non-vanishing first Chern class. (iii) If M is complete strictly nearly Kaehler of global
constant type, then it is isometric to a 6-sphere.

Our study of a nearly Kaehler manifold with a closed conformal vector field is
mainly motivated by the fact that the unit sphere S6 carries a strictly (i.e. non-Kaehler)
nearly Kaehler structure inherited from the Cayley division algebra (Ejiri 1981) and
admits many closed conformal vector fields. To illustrate the last part of the foregoing
statement, let N be a unit normal vector on S6 in theEuclidean space R7 withEuclidean
metric <>, then for any constant vector field C on R7, its restriction to S6 can be
decomposed as C = V + f N , where f =< C, N > is a smooth function and V turns
out to be a gradient (hence closed) conformal vector field on S6, with the conformal
scale function − f .

It is worth pointing out that nearly Kaehler manifolds with conformal Killing forms
were studied by Naveira and Semmelmann in Naveira and Semmelmann (2020).
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2 Closed conformal vector fields on nearly Kaehler manifolds

First, we prove the following result.

Theorem 2.1 Let V be a non-parallel closed conformal vector field on a real 2n-
dimensional (2n > 2) nearly Kaehler manifold M.

• (i) If V is almost analytic (i.e. LV J = 0), then it is homothetic.
• (ii) In addition, if M is complete, then M is isometric to the complex Euclidean
space Cn.

• (iii) If V is homothetic, then it is almost analytic.

Proof As V is closed, the conformal Eq. (1.2) assumes the simple form

∇XV = aX , (2.1)

where a is a smooth function on M . Using Eq. (2.1) and the definition R(Y , X)Z :=
∇Y∇X Z − ∇X∇Y Z − ∇[Y ,X ]Z we compute

R(Y , X)V = (Ya)X − (Xa)Y . (2.2)

Taking its inner product with an arbitrary vector field Z gives

g(R(Y , X)V , Z) = (Ya)g(X , Z) − (Xa)g(Y , Z).

As the curvature tensor is symmetric in the first and second pair of arguments, the
above equation provides

g(R(V ,Y )Z ,W ) = (Za)g(W ,Y ) − (Wa)g(Z ,Y ). (2.3)

Let us recall the following property of a nearly Kaehler manifold (Gray (1970) used
a different sign convention for the curvature tensor):

g(R(X ,Y )J Z , JW ) − g(R(X ,Y )Z ,W ) = g((∇X J )Y , (∇Z J )W ). (2.4)

Substituting V for X in the above equation and using Eq. (2.3) gives

g((∇V J )Y , (∇Z J )W ) = ((J Z)a)g(Y , JW ) − ((JW )a)g(Y , J Z)

−(Za)g(Y ,W ) + (Wa)g(Y , Z). (2.5)

Also, we note that

(LV J )X = LV J X − J LV X = ∇V J X − ∇J X V − J (∇V X − ∇XV )

= (∇V J )X − ∇J X V + J∇XV .

Using Eq. (2.1) in the preceding equation we find that

LV J = ∇V J . (2.6)
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which shows that V is almost analytic iff ∇V J = 0.
Now, let us assume that V is almost analytic. Then Eq. (2.5) gives

((J Z)a)g(Y , JW ) − ((JW )a)g(Y , J Z)

− (Za)g(Y ,W ) + (Wa)g(Y , Z) = 0. (2.7)

Factoring out W from the preceding equation we immediately get

− ((J Z)a)JY + g(Y , J Z)J Da − (Za)Y + g(Y , Z)Da = 0, (2.8)

where D is the gradient operator. Contracting Eq. (2.8) at Y and noting that tr .J = 0
we get

(2 − 2n)Za = 0. (2.9)

Since 2n > 2, it follows that a is a constant, i.e. V is homothetic. This proves part (i).
Next, using Eq. (2.1) we have D|V |2 = 2aV . Differentiating this equation along

an arbitrary vector field X yields

∇X D|V |2 = 2a2X . (2.10)

Now, if M is complete, then by our hypothesis, a �= 0, and so, by a result of Tashiro
(1965), Eq. (2.10) implies that M is isometric to the Euclidean space E2n . That is, M
is isometric to the flat Cn . This proves part (ii). To prove (iii), we assume that V is
homothetic i.e. a is constant, then from Eq. (2.5) we have

g((∇V J )Y , (∇Z J )W ) = 0. (2.11)

Setting Z = V and W = Y in the preceding equation we have |(∇V J )Y |2 = 0, i.e.
∇V J = 0. This shows by virtue of Eq. (2.6) that V is almost analytic. This completes
the proof.

Next, we recall (Gray 1976) that a 6-dimensional strictly nearly Kaehler manifold
has vanishing first Chern class. In Gray (1970), for a compact nearly Kaehler manifold
M , the first Chern class γ1 of M is given by

γ1(X ,Y ) = − 1

2π

n∑

i=1

{
(g(R(X ,Y )ei , Jei ) + 1

2
g((∇X J )ei , J (∇Y J )ei )

}
(2.12)

for arbitrary vector fields X , Y on M , and {e1, . . . , en, Je1, . . . , Jen} is a local J -
adapted orthonormal 2n-frame on M . We now state the following results from Euh
and Sekigawa (2011) and Nagy (2002) respectively, that would be used in proving our
next results. ��
TheoremS1: Let (M, J , g) be a compact, irreducible strictly nearlyKaehlermanifold.
Then, M is Einstein iff the first Chern class of M vanishes.
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Theorem S2: Let (M, J , g) be a complete, strictly nearly Kaehler manifold. Then,
the following hold:

• (i) If g is not an Einstein metric, the canonical Hermitian connection has reduced
holonomy.

• (ii) The metric g has positive Ricci curvature, hence M is compact with finite
fundamental group.

• (iii) The scalar curvature of the metric g is a strictly positive constant.

We prove the following result:

Theorem 2.2 A complete strictly nearly Kaehler manifold M of real dimension > 6
and admitting a closed conformal vector field V has a non-vanishing first Chern class.
If, in addition, M is irreducible, then M cannot be Einstein.

Proof We prove this by contradiction. Since a complete strictly nearly Kaehler mani-
fold is compact (Theorem S2) the first Chern class of M is given by (2.12). Suppose
that the first Chern class of M vanishes. Then from (2.12) we have

2
n∑

i=1

g(R(X ,Y )ei , Jei ) = −
n∑

i=1

g((∇X J )ei , J (∇Y J )ei )) (2.13)

Putting X = V yields,

2
n∑

i=1

g(R(V ,Y )ei , Jei ) = −
n∑

i=1

g((∇V J )ei , J (∇Y J )ei )) (2.14)

The use of (2.2) reduces (2.14) to

2

[
n∑

i=1

g(Da, ei )g(Y , Jei ) −
n∑

i=1

g(Da, Jei )g(Y , ei )

]

= −
n∑

i=1

g((∇V J )ei , J (∇Y J )ei )). (2.15)

Substituting Y = JV , using (∇ J )J = −J (∇ J ) and the definition (∇X J )Y =
−(∇Y J )X of a nearly Kaehler structure, we get

2Va = −
n∑

i=1

g((∇V J )ei , (∇V J )ei )), (2.16)

Next, substituting Z = V in (2.5) and then contracting the resulting equation with
respect to Y and W yields
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(2 − 2n)Va =
n∑

i=1

g((∇V J )ei , (∇V J )ei ))

+
n∑

i=1

g((∇V J )Jei , (∇V J )Jei ). (2.17)

Taking into account that (∇ J )J = −J (∇ J ) and that g is Hermitian, we use Eq. (2.16)
in conjunction with (2.17) in order to get (2n − 6)Va = 0. As 2n > 6, Va = 0, and
hence from (2.16) we obtain ∇V J = 0. Hence LV J = 0, i.e. V is almost analytic
which is a contradiction, because if M is complete, then by Theorem 2.1, M is flat
and hence Kaehler. Hence the first Chern class of M cannot vanish.

Now, if M is irreducible, then it follows that M cannot be Einstein (Theorem S1).
This completes the proof.

Next, we recall from Gray (1970), that a nearly Kaehler manifold is said to be of
global constant type if

|(∇X J )Y |2 = α[|X |2|Y |2 − (g(X ,Y ))2 − (g(J X ,Y ))2] (2.18)

where α is a constant function. We now classify a complete strictly nearly Kaehler
manifold of global constant type (in which case α is a positive constant) admitting a
closed conformal vector field. Precisely, we establish the following result character-
izing a 6-sphere. ��
Theorem 2.3 Let (M, g, J ) be a complete strictly nearlyKaehlermanifold M of global
constant type admitting a closed conformal vector field V . Then M is isometric to a
6-sphere.

Proof Substituting X = Z = V and W = Y in (2.4) gives

g(R(V ,Y )JV , JY ) − g(R(V ,Y )V ,Y ) = g((∇V J )Y , (∇V J )Y ). (2.19)

The use of (2.3) and (2.18) in (2.19) gives

< Y , JV > g(J Da,Y ) − (Va)|Y |2+ < Y , V > Ya

= α[|V |2|Y |2 − (g(V ,Y ))2 − (g(JV ,Y ))2]. (2.20)

As Y is arbitrary, we choose Y to be orthogonal to both V and JV . The use of this
reduces (2.20) to

α = − (Va)

|V |2 . (2.21)

on any open dense subset U of M , on which V �= 0.
Hence, (Va)

|V |2 is constant on U . Now replacing Y with V in Eq. (2.3) gives

g(Da, Z)g(V ,W ) = g(Da,W )g(Z , V ). (2.22)
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Putting Z = V and factoring out W yields

Da = (Va)

|V |2 V = −αV , (2.23)

on U . But the zeroes of V are discrete points (see Ros and Urbano 1998). So, by
continuity, Da = −αV on M . Differentiating it along an arbitrary vector field X and
using (2.1), we obtain

∇X Da = −αaX . (2.24)

We note here that a is non-constant, because if it were a constant, then Eq. (2.21)
would imply α = 0, which in turn, in view of equation (2.18), would imply that M
is Kaehler, a contradiction. As M is complete and α is positive, by Obata’s theorem
(Obata 1965), M is isometric to a sphere. But the only sphere that has a nearly Kaehler
structure is the 6-sphere (Gray 1969). This completes the proof. ��
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