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Abstract
Let X ,Y be two irreducible subvarieties of the projective space P

n , and d ≥ 1 an
integer number. The main result of this paper is an algorithm to construct explic-
itly, in terms of d and the ideals defining X and Y , a quasi-affine algebraic variety
parametrising the set of all birational maps f from X onto Y which can be extended
to a self-rational map of Pn of algebraic degree ≤ d. We also prove similar results
for the case f is a dominant rational map, regular morphism, isomorphism or regular
embedding. Similar results are valid for varieties over an arbitrary algebraically closed
field, and also for maps on non-projective varieties.

Keywords Birationality problem · Explicit bounds · Gröbner bases · Linear
projections · Monoids

Mathematics Subject Classification 14Exx

1 Introduction

Themain theme in this paper is to show that the existence of rationalmaps from a given
projective variety X ⊂ P

n to another projective varietyY ⊂ P
n with certain interesting

properties (such as birational, dominant, regular, isomorphic or regular embedding)
and with bounded algebraic degree is computable, that is can be detected by an
algorithm whose complexity is explicitly bound. We will treat first the main case
of interest, that of birational maps. With some minor modifications, the proofs for
the projective varieties also work for non-projective varieties. In particular, (biregular)
isomorphisms of bounded degrees between two irreducible, smooth algebraic varieties
can be parametrised by an algebraic variety. These results are valid over fields of
any characteristic, which is a not-negligible point, given that many results known in
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characteristic zero are not known in positive characteristic. For example, it is still
unknown whether resolution of singularities holds in positive characteristic, or to
what extent the known results in the Minimal Model Program can be done in positive
characteristic.

We note that in general deciding isomorphisms requires much more work than
deciding birational maps. Based on the main results in this paper, we propose a rough
strategy towards the birationality problem, via Iitaka’s fibrations, in the appendix.
We use monoids in our proofs since they allow explicit constructions in the proof of
Theorem 2.1. Of course, proofs using other approaches are possible, but we feel that
our approach is very natural.

Remark From now on, for simplicity, except when specifically mentioned, we will
call degree of amap f , its algebraic degree, and not its topological degree. As far as we
know, this paper is the first in the literature where a rigorous proof for the concerned
results (see the next sections) is given.

2 Birational maps of bounded degrees

This section treats the class of maps, reflected in the title of this paper, which is of
main interest to us: birational maps.

The birationality problem asks whether there is a birational map f between two
given irreducible algebraic varieties X and Y . It is a fundamental and classical ques-
tion in algebraic geometry. Having the seminal Gödel theorem thatmanymathematical
questions are undecidable, it is at least psychologically important to ask the question:
Is the birationality problem decidable? This question is also practically important.
A special case of the birationality problem, the so-called rationality problem, which
seeks to check whether a given variety is birationally equivalent to a projective space,
has attracted a lot of attention and effort. As far as we know, even this special case
is still open in general. To this end, in this paper, we prove that a weaker version of
the birationality question, called bounded birationality problem, is not only decid-
able but also even computable. That is, there is an algorithm—whose complexity is
explicitly bound—to solve the weaker version. As a consequence, the union of all
varieties W (X ,Y , d) in Theorem 2.1 below, where d runs all over N, is a countable
complete set of invariants for the birationality problem. (Note that it is usually the
case in mathematics that a property is determined via a countable set of invariants. For
example, the Kodaira dimension of a variety X is defined based on the behaviour of the
sequence h0(X , K⊗m

X ). Related questions for rationally connected varieties and unir-
uled varieties, for a smooth projective variety X , are also stated in terms of countable
invariants: in the first case it is Mumford’s conjecture which concerns the vanishing
of all h0(X , (T ∗

X )⊗m), in the second case it is Mori’s conjecture which concerns the
vanishing of all h0(X , K⊗m

X ). In this aspect, our result can be restated as that the bira-
tionality problem for given X and Y is characterised by an explicit countable set of
invariants.)

Bounded birationality problem Given X ,Y irreducible complex algebraic subva-
rieties of Pn (where n ≥ 2) and a positive integer d. Is there a (bi)rational map
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F : P
n ��� P

n with deg(F) ≤ d whose restriction to X is a birational map
F |X : X ��� Y ?

Note that any rational map X ��� Y is the restriction of a rational map Pn ��� P
n .

Moreover, by results inMella and Polastri (2009) and Ciliberto et al. (2016), whenever
X ,Y ⊂ P

n with n − 2 ≥ dim(X), dim(Y ), the existence of a birational map X ��� Y
is equivalent to the existence of a birational map F : Pn ��� P

n whose restriction
to X is a birational map F |X : X ��� Y . On the other hand, there are cases of
dim(X) = dim(Y ) = n − 1 for which there are no such birational map extensions
F (Mella and Polastri 2012). In the above formulation of the Bounded Birationality
Problem, we allow X ,Y to be hypersurfaces of Pn .

Remark Since we will fix a projective space Pn once and for all, we can regard n
as a constant for the remaining of this paper.

Define B(X ,Y , d) := {F : P
n ��� P

n : F is rational, deg(F) ≤ d, F |X is
birational from X onto Y }. Also, define B+(X ,Y , d) := {F : P

n ��� P
n : F is

birational, deg(F) ≤ d, F |X is birational from X onto Y }. The set ⋃∞
d=1 B(X ,Y , d)

is exactly those rational selfmaps of Pn whose restriction to X is a birational map onto
Y . A similar interpretation can be given for

⋃∞
d=1 B+(X ,Y , d). Note that from results

inMella and Polastri (2012) as mentioned above, if X and Y are hypersurfaces in Pn , it
may happen that

⋃∞
d=1 B(X ,Y , d) �= ∅ while

⋃∞
d=1 B+(X ,Y , d) = ∅. On the other

hand, byMella and Polastri (2009) as mentioned above, if dim(X) = dim(Y ) ≤ n−2,
then

⋃∞
d=1 B(X ,Y , d) �= ∅ if and only if

⋃∞
d=1 B+(X ,Y , d) �= ∅.

The main result in this section is the following. (An accompanying algorithm will
also be given.)

Theorem 2.1 The Bounded Birationality Problem has a solution if and only if at least
one among explicitly constructed C1 systems of polynomial equations in C2 variables,
each polynomial of degree bounded from above by a constant C3, has one solution in
C. Here C1,C2,C3 and the number of polynomials in each system of equations are
explicitly bounded in terms of X ,Y , deg(F) and n.

In other words, there is an explicitly bounded number of variables α1, . . . , αN ,
an explicitly constructed finite dimensional (generally reducible) variety W (X ,Y , d)

in variables α1, . . . , αN , and a surjective map κ : W (X ,Y , d) → B(X ,Y , d). The
variety W (X ,Y , d) is non-empty if and only if the set B(X ,Y , d) is non-empty.

Similarly, there is an explicitly constructed finite dimensional variety W+(X ,Y , d)

and a surjective map κ+ : W+(X ,Y , d) → B+(X ,Y , d).

Remark 2.2 From the proof of the theorem, it is easy to see that it is also valid for
varieties over an arbitrary algebraically closed field.

We now present a consequence of this result. Denote by R(n, d) the set {F :
P
n ��� P

n : deg(F) ≤ d and F is rational}, and by R+(n, d) the set {F : Pn ���
P
n : deg(F) ≤ d and F is birational}. We recall that here we work with Zariski

topology, and that a set in a topological space is locally closed if it is the intersection of
an open and a closed set, and a set is constructible if it is a finite union of locally closed
sets. For example, C2\{(0, 0)} is a constructible set, and it is a union of two algebraic
varieties C2\{0} × C and C

2\C × {0}. We recall here the fact that a constructible
set in a projective space is parametrised by an algebraic variety. Indeed, such a set
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is a finite union of affine varieties, say A1, A2, . . . , AN ⊂ C
m . Then we can embed

A1, . . . , AN as disjoint algebraic subvarieties B1, . . . , BN of CNm . The union B of
B1, . . . , BN is an algebraic subvariety of CNm , and the natural map from B to the
union of A1, . . . , AN , given by Bi → Ai is the desired surjective morphism.

Corollary 2.3 The setsR(n, d) and R+(n, d) are algebraic varieties.
The subset B(X ,Y , d) of R(n, d) is constructible. In particular, B(X ,Y , d) is

parametrised by an affine algebraic variety, that is there is a surjective morphism
from an affine algebraic variety onto B(X ,Y , d).

Similarly, the subset B+(X ,Y , d) of R+(n, d) is constructible. In particular,
B+(X ,Y , d) parametrised by an affine algebraic variety, that is there is a surjective
morphism from an affine algebraic variety onto B+(X ,Y , d).

Before giving the detail of the proofs of the above results, we introduce some useful
lemmas.

The following result, so-called Andreotti–Bezout inequality in the literature (see
e.g. Angeniol 1981), will be used throughout the paper.

Lemma 2.4 Let I =< f1, . . . , fk > be an ideal in PN . Then for C = 1 the following
holds. If V ⊂ P

N is any irreducible component of the reduced variety defined by I,
then deg(V ) ≤ C deg( f1) . . . deg( fk).

Consequently, we obtain effective upper bounds for the degree of the graph of a
map of bounded degree and for degrees of linear projections. For a subvariety V of
P
n × P

n , we define deg(V ) to be the degree computed with the polarisation O(1, 1).

Lemma 2.5 (1) Let X ,Y be irreducible subvarieties of Pn. Assume that a rational
map f : X ��� Y is given of degree ≤ d, that is it is the restriction of a rational
self-map of Pn of degree ≤ d. Let � f ⊂ P

n × P
n be the graph of f . Then the

degree of � f is effectively bounded in terms of d.
(2) Let π : Cn → C

n−1 be the natural projection. Let Z ⊂ C
n be an irreducible

variety. Then there is a constant C > 0, independent of Z, so that deg(π(Z)) ≤
C deg(Z).

Proof (1) We can proceed as follows. Let x0, x1, . . . , xn be the homogeneous coor-
dinates for the copy of Pn containing X , and y0, y1, . . . , yn be the homogeneous
coordinates for the copy of Pn containing Y . Let F = [F0 : . . . : Fn] be a rational
map from P

n to itself whose degree is ≤ d and whose restriction to X is f . Then
Fi ’s are homogeneous polynomials of degree ≤ d in x0, . . . , xn . Hence, the graph
�F is a component where the intersection of the n hypersurfaces yi Fj − y j Fi = 0
is proper—that is of correct dimension—where the indices run on all i, j for
which both Fi and Fj are non-zero. Since the degrees of these hypersurfaces are
bounded explicitly in terms of d, and the number of these hypersurfaces is also
explicitly bounded, we have that the degree of �F is explicitly bounded, by apply-
ing Lemma 2.4. Next, since � f is one component where �F and X × Y intersect
properly, it follows from Lemma 4.1 in Truong (2020) that the degree of � f is
also explicitly bounded.

(2) The proof is simple. We choose H a very ample divisor of P
n−1. Then

deg(π(Z)) = π(Z).Hn−1−k , where k is the dimension of π(Z). We can choose
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a realisation of H so that Z ∩ H is contained in C
n−1. Then by simple moving

lemma, it can be checked that π(Z).Hn−1−k ≤ C .Z .π∗(Hk−1−l), hereC is a pos-
itive constant independent of Z . The RHS of the previous inequality is bounded
in terms of deg(Z).

�

For the next lemma, we first introduce the notation and some basic properties

of monoids, which are important and allow explicit constructions in the proof of
Theorem 2.1. For more detail, see for example Sections 1.2 and 1.3 in Ciliberto et al.
(2016). We use the notation (0)p = (0, . . . , 0) (p times). We also use combinations
of these, such as ((0)p, 1, (0)q) and ((0)p, (0)q , 1) = ((0)p+q , 1).

A hypersurface M ⊂ P
r (where r ≥ 2) of degree d is a monoid with vertex p if it

is irreducible and p is a point in M of multiplicity exactly d − 1. If we choose the
coordinates for Pr so that p = [0 : . . . : 0 : 1], then the defining equation for M is
fd−1(x0, . . . , xr−1)xr + fd(x0, . . . , xr−1). Here fd−1 is a homogeneous polynomial
of degree d − 1 and fd is a homogeneous polynomial of degree d. The assumption
that M is irreducible is equivalent to that GCD( fd−1, fd) = 1.

The projection from p gives rise to a birational map between a monoid M ⊂ P
r

and the projective space Pr−1. More precisely, the projection map is π : M ��� P
r−1

given by [x0 : . . . : xr−1 : xr ] �→ [x0 : . . . : xr−1], and the inverse π−1 : Pr−1 ��� M
is given by

[x0 : . . . : xr−1] �→ [ fd−1x0 : . . . : fd−1xr−1 : − fd ].

From these formulas, it is obvious thatπ mapsM\{ fd−1 = fd = 0} = M\{ fd−1 = 0}
isomorphically to its image P

r−1\{ fd−1 = 0}. We note also that the indeterminacy
set of π is p, and the indeterminacy set of π−1 is { fd−1 = fd = 0}. For a subvariety
p �= A ⊂ M , the cone Cp(A) over A with vertex p is contained in M iff the image
π(A\{p}) ⊂ P

r−1 is in the indeterminacy set of π−1.
Note that a monoid M can have two or more vertices. If a monoid M ⊂ P

r has two
vertices [0 : . . . : 0 : 1] and [0 : . . . : 0 : 1 : 0], then it has a defining equation of the
form:

fd(x0, . . . , xr−2) + xr−1g(x0, . . . , xr−2)

+xr hd−1(x0, . . . , xr−2) + xr xr−1 fd−2(x0, . . . , xr−2) = 0.

In this case, if we compose the birational map Pr−1 ��� M of the projection from one
vertex and the projectionM ��� P

r−1 from theother vertex ofM , thenweobtain a bira-
tionmapPr−1 ��� P

r−1.Moreover, we note that in this case the defining polynomial is
irreducible iffGCD( fd(x0, . . . , xr−2)+xr−1g(x0, . . . , xr−2), hd−1(x0, . . . , xr−2)+
xr−1 fd−2(x0, . . . , xr−2)) = 1 (apply the case ofmonoids with only one vertex above).

The following effective versions of Lemma 2.1 and 2.2 in Ciliberto et al. (2016)
are also important in the proof of Theorem 2.1. The fact that the bound is independent
of the vertex p is crucial.

Lemma 2.6 (1) Let Z ⊂ P
r , with r ≥ 3, be an irreducible variety of dimension

1 ≤ s ≤ r − 2 and let p ∈ P
r be such that the projection of Z from p is birational
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to its image. Then for d large enough, depending only on the degree of Z and r,
there is a monoid in Pr of degree d with vertex p, containing Z but not containing
the cone Cp(Z) over Z with vertex p.

(2) Let Z ⊂ P
r , with r ≥ 3, be an irreducible variety of dimension 1 ≤ s ≤ r −3, and

let p1, p2 ∈ P
r be distinct points such that the projection of Z from the line going

through p1 and p2 is birational to its image. Then, with the same number d as in
part 1, there is a monoid in P

r of degree d with vertices p1 and p2, containing Z
but not containing the cones Cpi (Z) over Z with vertices pi (for i = 1, 2).

Proof (1) Let π : V → P
r be the blowup of Pr at p. Let Z ′ ⊂ V be the strict

transform of Z . From the proof of Lemma 2.1 in Ciliberto et al. (2016), it suffices
to show the following, where E is the exceptional divisor and H is a hyperplane:
h0(Z ′, OZ ′(d(H − E))) is bounded explicitly in terms of d and (H − E)s · Z ′. (The
latter is smaller than or equal to the degree of Z . To see this claim about the bound for
(H − E)s · Z ′, we expand (here C(s, j) are binomial numbers)

(H − E)s · Z ′ = Hs · Z ′ +
s∑

j=1

(−1) jC(s, j)Hs− j · E j · Z ′

= deg(Z) +
s∑

j=1

(−1) jC(s, j)Hs− j · E j · Z ′,

and note that for all j ≥ 1 the class of E j is (−1) j−1 of a linear subspace in E ,
and the intersections between linear subspaces of E and Z ′ are psef. Therefore,∑s

j=1(−1) j Hs− j · E j · Z ′ ≤ 0 and (H − E)s · Z ′ ≤ deg(Z).)
More precisely, putting δ = (H − E)s .Z ′ ≥ 1, we will show the following: There

is a polynomial ps,δ(d) in the variable d, of degree s, whose all coefficients are
explicitly bounded in terms of s and δ, whose coefficient of ds is δ/s!, and so that
h0(Z ′, OZ ′d(H − E)) ≤ ps,δ(d) for all non-negative integers d ≥ 0.

Note that since the linear system H − E is nef, and is also movable (having no base
locus, this can be seen by observing that the strict transform in V of a hyperplane in
P
r containing p is an element of the linear system |H − E |), we have a SES

0 → OZ ′(d(H − E)) → OZ ′((d + 1)(H − E)) → OZ1((d + 1)(H − E)) → 0,

where Z1 = Z ′ ∩ S (S is a generic element of |H − E |) is a variety of dimension =
dim(Z ′)− 1 = s − 1, and (H − E)s−1.Z1 = (H − E)s .Z ′. Therefore, we have a LES

0 → H0(OZ ′(d(H − E)))
i1→ H0(OZ ′((d + 1)(H − E)))

i2→ H0(OZ1((d + 1)(H − E)))

→ H1(OZ ′(d(H − E))) → . . .

From this we obtain

h0(OZ ′((d + 1)(H − E))) = dim(ker(i2)) + dim(im(i2))

= dim(im(i1)) + dim(im(i2))
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≤ h0(OZ ′d(H − E)) + h0(OZ1(d + 1)(H − E)).

Summing this over d, we obtain

h0(OZ ′d(H − E)) ≤
d∑

j=0

h0(OZ1 j(H − E)).

Then we have the conclusion by induction on the dimension of Z1. In fact, the base
case of dimension 0 is obvious, in which case we obtain that Z1 is a union of δ points,
and hence h0(OZ1d(H − E)) = δ for all non-negative integers d. If we define by
induction the following sequence of polynomials: q0(d) = 1 for all d, and for m ≥ 1

qm(d) =
d∑

j=0

qm−1( j),

then we have that qm(d) is a polynomial of degree m in d whose coefficient of dm is
1/m!. The first several elements in the sequence are listed below:

q0(d) = 1,

q1(d) = d + 1,

q2(d) = d(d + 1)

2
+ d + 1.

Moreover, we have from the above arguments that

h0(Z ′, OZ ′d(H − E)) ≤ δqs(d)

for all non-negative integers d. Therefore, the choice of ps,δ(d) = δqs(d) satisfies the
claim.

(2) This follows from (1) as in the proof of Lemma 2.2 in Ciliberto et al. (2016).
In fact, let H1 and H2 be the hyperplanes in P

r so that the projection from p1 maps
onto H1 and the projection from p2 maps onto H2. Let Z1 ⊂ H1 and Z2 ⊂ H2
be images of Z under the mentioned projections. Then deg(Z1), deg(Z2) ≤ deg(Z),
being (a component of) the (proper) intersection between a cone over Z and H1
(respectively H2). Since dim(Z) ≤ r − 3, we have that dim(Z1) ≤ dim(H1) − 2 and
dim(Z2) ≤ dim(H2) − 2. Moreover, if p′

1 is the image of p1 under the projection
from p2, then the projection under p′

1 of Z2 is birational to its image. Similarly for
the image p′

2 of p2 under the projection from p1. We can then apply part 1 to obtain
a monoid S′

1 in H1, which may be assumed of the same degree d, with vertex p′
2,

containing Z1 but not the cone Cp′
2
(Z1). Let S1 be the cone over S′

1 with vertex p1.
Then S1 is a monoid of the same degree d whose vertices include all points on the
line contacting p1 and p′

2, and hence in particular include p1 and p2. Moreover, S1
contains Z but not the cone over Z with vertex p2. We construct a similar monoid S2.
Then a generic linear combination between S1 and S2 gives the desired answer. �
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Here is the proof of Theorem 2.1. It gives an algorithm to construct the systems of
polynomial equations. For the convenience of the readers,wewill present the algorithm
explicitly afterwards.

Proof of Theorem 2.1 We first give the conclusion for the set B(X ,Y , d). By a linear
change of coordinates, we may assume that none of X ,Y belongs to the hyperplane
at infinity of Pn . For simplicity, from now on (except when otherwise indicated) we
will work with the Zariski open dense sets Ck of Pk only.

Step 1 (Forward: here we go step by step from the graph � f ⊂ P
n × P

n , assuming
that it is known, down to X andY , each step construct a birationalmodel of� f inside an
ambient space of smaller dimension): If X = Y = P

n then there is nothing to do.Hence
we can assume that dim(X) = dim(Y ) ≤ n−1. Since n ≥ 2 and dim(� f ) = dim(X),
it follows that � f ⊂ C

n × C
n is of codimension at least 3. Hence, by Lemma 2.6,

there is a monoid M0,0 ⊂ C
n × C

n of degree effectively bounded by the degree of
� f , containing � f and has two vertices ((0)n−1, 1, (0)n) and ((0)n, (0)n−1, 1). Note
that the projections from ((0)n, (0)n−1, 1) and ((0)n−1, 1, (0)n) are birational from� f

onto its image. Let �0,1 ⊂ C
n × C

n−1 and �1,0 ⊂ C
n−1 × C

n be the corresponding
images of � f . Their degrees are effectively bounded in terms of the degree of � f (see
part 2 of Lemma 2.5) and hence, by part 1 of Lemma 2.5, in terms of d.

Similarly,we canfind amonoidM0,1 ⊂ C
n×C

n−1 of degree effectively boundedby
the degree of �0,1 and has the vertex ((0)n, (0)n−2, 1). Again, note that the projection
from the point ((0)n, (0)n−2, 1) is birational from�0,1 to its image�0,2 ⊂ C

n ×C
n−2.

Similarly, we construct M1,0 ⊂ C
n−1 × C

n and �2,0 ⊂ C
n−2 × C

n .
Repeating the above process, we obtain monoids M0, j ⊂ C

n × C
n− j , Mj,0 ⊂

C
n− j × C

n and the birational images of � f = �0,0: they are �0, j ⊂ C
n × C

n− j and
� j,0 ⊂ C

n− j × C
n . Note that �0,n = X and �n,0 = Y .

Step 2Now toproveTheorem2.1,we reverse the above argument, and proceed from
what we know (that is �0,n = X and �n,0 = Y ) step by step, each step constructing a
system of equations parametrising the � j,0 and �0, j in Step 1.

We do not know the graph � f and consequently, the monoids M0, j and Mj,0
above. Also we do not know the intermediate � j,0 and �0, j , except that �0,n = X and
�n,0 = Y .

We do, however, know that the degrees of the monoids M0, j and Mj,0 are
effectively bounded. We also know that these monoids are in fixed variables
x1, . . . , xn, y1, . . . , yn− j and x1, . . . , xn− j , y1, . . . , yn . Therefore,we can parametrise
them in terms of their coefficients. The number of these coefficients is effectively
bounded.

Now we start the process of writing out the equations promised in the theorem.
We will start from X, and then go step by step through all �0, j and � j,0, at each step
add some polynomial equations, and end up at Y . At that stage we have the needed
polynomial systems.

We start from X = �0,n ⊂ C
n and want to go up to �0,n−1 ⊂ C

n × C. We do not
know about �0,n−1, but we know that �0,n−1 ⊂ M0,n−1 and X is the birational image
of �0,n−1 via the projection from the point ((0)n, 1). We next show that this can be
described in terms of some polynomial equations.
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Using the homogeneous coordinates, the monoid M0,n−1 is given by an equation

f0,n−1(x0, . . . , xn, y1) = f0,n−1,1(x0, . . . , xn)y1 + f0,n−1,2(x0, . . . , xn) = 0.

Wecan dehomogenise to get an equation in affine coordinates x1, . . . , xn, y1. Knowing
the bound on the degree of f0,n−1, we know how many parameters (which are the
coefficients of the monomials in the equation for the given monoid) we will need.

From Lemma 2.6, we see that X is the birational image of some �0,n−1 ⊂ M0,n−1
under the projection from ((0)n, 1) exactly when X �⊂ { f0,n−1,1 = f0,n−1,2 = 0}.
We note that in M0,n−1, set theoretically the locus { f0,n−1,1 = f0,n−1,2 = 0} is
the same as the hypersurface { f0,n−1,1 = 0}. Provided this condition is satisfied,
then �0,n−1 will be the strict transform in M0,n−1 of X , under the inverse of the
projection map π . Hence �0,n−1 is contained in the total inverse image π−1(X) ∩
M0,n−1. If X is defined by an ideal I (X) = {g1, . . . , gm}, then the total inverse
image of X is given by the ideal {g1, . . . , gm, f0,n−1,1y1 + f0,n−1,2}. However, this
set usually is bigger than what we want (the variety �0,n−1), and it will make later
computations and arguments harder. So, one key idea here is to consider only the
preimage H0,n−1 of the Zariski open set X\{ f0,n−1,1 = 0} of X , which is given by
the ideal {g1, . . . , gm, f0,n−1,1y1 + f0,n−1,2, 1− t0,n−1 f0,n−1,1}. (Using the common
trick, we added a variable t0,n−1.) This latter set H0,n−1 is a Zariski open dense set
of the hypothetical �0,n−1, and it is isomorphic (to see this, note that the projection
map from ((0)n, 1) is an isomorphism between M0,n−1\{ f0,n−1 = 0} onto its image)
to the Zariski dense open set X\{ f0,n−1,1 = 0} of X , provided that X\{ f0,n−1,1 = 0}
is non-empty and the following conditions on the monoid are satisfied.

• The first condition is that both f0,n−1,1 and f0,n−1,2 are non-zero polynomials. The
condition that f0,n−1,1 is a non-zero polynomial is already taken care (provided
H0,n−1 is non-empty) by the equation 1−t0,1 f0,n−1,1 = 0 in the defining equations
for H0,n−1. For the condition that f0,n−1,2 is non-zero,weneedonly that at least one
of the coefficients aI of some monomial x I is non-zero, and this condition can be
again described using the trick of adding one new variable sI so that 1− sI aI = 0.
So an explicitly bounded number of such equations will cover our case.

• The second condition is that the monoid M0,n−1 should be irreducible, which is
the same as that GCD( f0,n−1,1, f0,n−1,2) = 1. We will show that this condition
is also taken care by the equation 1 − t0,n−1 f0,n−1,1 = 0 already given above. In
fact, assume that GCD( f0,n−1,1, f0,n−1,2) = h0,n−1. Then, by the first condition,
we can write f0,n−1,1 = h0,n−1w0,n−1,1 and f0,n−1,2 = h0,n−1w0,n−1,2 where
GCD(w0,n−1,1, w0,n−1,2) = 1. Then, the equation

0 = 1 − t0,n−1 f0,n−1,1 = 1 − t0,n−1,1h0,n−1,1w0,n−1,1

of H0,n−1 implies that in fact H0,n−1 is contained in the set {h0,n−1,1 �= 0}, and
hence is contained in the irreducible monoid w0,n−1,1y1 + w0,n−1,2 = 0.

Iterating this argument, we can go back further and introduce some explicitly
bounded number of systems of equations (each time at one monoid), to go back
from X ⊂ C

n to some H0,1 ⊂ C
n × C

n−1. By a similar argument (but a bit more
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complicated, see below), we go back to some H0,0 ⊂ C
n ×C

n . H0,0 is then a Zariski
dense open set of the hypothetical graph � f . The difference between H0,0 and the
other H0, j (where 1 ≤ j ≤ n − 1) is that while the other H0, j ’s belong to monoids
with only one vertex, H0,0 belongs to a monoid with 2 vertices. The equation for such
a monoid is

f0,0,1(x1, . . . , xn−1, y1, . . . , yn−1) + xng0,0(x1, . . . , xn−1, y1, . . . , yn−1)

+ynh0,0(x1, . . . , xn−1, y1, . . . , yn−1) + xn yn f0,0,2(x1, . . . , xn−1, y1, . . . , yn−1)

= f0,0,1 + xng0,0 + yn(h0,0 + xn f0,0,2)

= f0,0,1 + ynh0,0 + xn(g0,0 + yn f0,0,2).

Here the last two equalities express the same monoid regarded as a monoid of either
one of the two vertices in concern. As before, H0,0 is not contained in either of the
bad sets of the projections from these two vertices, that is H0,0 �⊂ { f0,0,1 + xng0,0 =
0} ∪ { f0,0,1 + ynh0,0 = 0}. As before, we can consider only the complement in of the
latter set, which can be described in terms of polynomial equations: 1 − t0,0( f0,0,1 +
xng0,0)( f0,0,1 + ynh0,0) = 0, where t0,0 is a new variable.

Now, we see that the graph � f , and hence the birational map f , exists iff the
following two conditions are satisfied:

• Condition 1:At least one among themany systems of equationswhichweproduced
for H0,0 in the above has a non-empty solution set. (Each such solution corresponds
to one H0,0, but the correspondence may not be 1-to-1.) If this is the case, then
from the construction it is obvious that H0,0 is birational to X . The latter means
exactly that H0,0 is the graph of a rational map from X into Pn .

• Condition 2: For at least one system of equations in Condition 1 which has a
non-empty solution set, the corresponding H0,0 is birational to Y via the second
projectionCn×C

n → C
n . This means exactly that H0,0 is the graph of a birational

map from X , and the image of that map is Y .

Towards Condition 2, we go step by step, using monoids on the Y -side: M0,0, M1,0
and so on.

We can apply the same argument employed when we went up from X = �0,n to
�0,n−1. Here we describe how to go from H0,0 ⊂ C

n × C
n to H1,0 ⊂ C

n × C
n

(important note: H1,0 is still in C
n × C

n), the latter being isomorphic to a dense
set of the image of H0,0 in C

n−1 × C
n under the projection from (1, (0)n−1, (0)n).

(Note the difference here is that we do not need to compute the image of H0,0 under
the concerned linear projection, which is quite complicated—for example not Zariski
closed—in particular when we have parameters in the defining equations.) This H1,0
is isomorphic to its image via the projection from the point (1, (0)n−1, (0)n), and its
image is contained in M1,0. We will, as when going up from X to �0,n−1, consider
only a Zariski open set of H0,0 lying inside the monoid M0,0 where the projection is
an isomorphism to its image. We also need to check that the image is contained in
the monoid M1,0, and this can be done by checking that for all polynomials h in a
defining ideal of M1,0, the hypersurface h = 0 (now considered as a hypersurface in
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C
n ×C

n instead of Cn−1 ×C
n) contains the variety H0,0. (In effect, we are checking

that the preimage under the projection from (1, (0)n−1, (0)n) of M1,0 contains as a set
the variety H0,0). We will show that this can be done by adding some polynomials, as
below in the check of whether the image of Hn,0 belongs to Y .

At the end of this induction process, we get some Hn,0 ⊂ C
n × C

n which is
birational to H0,0 and hence to X . We need only to check that the image of Hn,0 is
a subset of Y (since then, because Hn,0 and Y have the same dimension, and Hn,0 is
birational to its image, we get that Hn,0 is birational equivalent to Y , and are done).

Now, we proceed to show that whether the image of H0,0 under the projection to
the second factor Cn × C

n → C
n belongs to Y is determined by some polynomial

equations. This is the same as requiring the preimage of Y under this projection
contains Hn,0. This reduces to the following question: Let Hn,0 be defined by an
ideal {h1, . . . , hk} in variables x1, . . . , xn, y1, . . . , yn, sI (depending on parameters
as well). Let h be a polynomial (which we can think as an element in the ideal of Y ).
We need to show that whether the set {h1 = . . . = hk = 0} is contained in h = 0 is
described by some polynomial equations.

To this end, we use the following common method. Working in a ring
C[w1, . . . , wN ]. The set {h1 = . . . = hk = 0} is contained in h = 0 iff
in C[w1, . . . , wN , a], where a is a new variable, the function 1 is in the ideal
< h1, . . . , hk, 1 − ah >. For the readers’ convenience, we recall here the classi-
cal argument. By Hilbert’s Nullstellensatz, {h1 = . . . = hk = 0} is contained in
{h = 0} iff there is some positive integer j so that in C[w1, . . . , wN ] the polynomial
h j is in the ideal < h1, . . . , hk >. Then in the polynomial ring C[w1, . . . , wN , a]

1 = (1 − a j h j ) + a j h j = (1 − ah)(1 + ah + a2h2 + · · · + a j−1h j−1) + a j h j

is in the ideal< h1, . . . , hk, 1−ah >.)By effectiveHilbert’sNullstellensatz (Hermann
1926; Brownawell 1987; Kollár 1998), there will be polynomials τ1, . . . , τk, τ ∈
C[w1, . . . , wN , a] with explicitly bounded degrees so that

1 ≡ τ1h1 + · · · + τkhk + τ(1 − ah)

in the ringC[w1, . . . , wN , a]. Note that τ1, . . . , τk will have coefficients not yet deter-
mined, and we determine them by balancing the coefficients of the polynomials on the
two sides of the above identity. We then get a system of polynomial equations in the
coefficients of the concerned polynomials, which we need to have at least a solution.

Combining the above steps, we have several systems of polynomials in the parame-
ter spaces (the coefficients of the monoids Mi, j and the coefficients of the polynomials
τi ), at least one among them has a solution if we have a birational map of degree ≤ d
from X to Y . Conversely, any such a solution will provide us with a birational map
from X to Y (even though may be of degrees much bigger than d).

The only thing remains to check is whether the above constructed birational maps
(corresponding to these solutions) are of degree≤ d. That is, it remains for us to check
whether at least one of these birational maps from X ��� Y comes from a global
rational map F : Pn ��� P

n of degree ≤ d actually. We show that this can be detected
by some polynomial equations and proceed as follows. That a birational map X ��� Y
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which we constructed above comes from a rational map F : Pn ��� P
n is the same

as that the variety H0,0 ⊂ C
n × C

n constructed above is contained in the graph �F .
Writing in the affine set Cn ×C

n (recalling our convention from the beginning of this
proof), the ideal of�F is< y1h(x1, . . . , xn)−g1(x1, . . . , xn), . . . , ynh(x1, . . . , xn)−
gn(x1, . . . , xn) >, where g1, . . . , gn and h are polynomials inC[x1, . . . , xn] of degree
≤ d. Again, these polynomials are not yet determined, but we can parametrise them in
terms of their coefficients, and the number of these coefficients are efficiently bounded
by the degree d. We can check whether�F contains H0,0 by using the procedure above
in checking whether the image of X is contained in Y . This creates new polynomial
equations. We also need to check that X is not contained in the indeterminacy locus
of F , which is the same as H0,0\{h(x1, . . . , xn) = 0} is non-empty. Adding a new
variable t , the latter is the same as the following conclusion: the system of polynomial
equations {H0,0, 1 − th(x1, . . . , xn) = 0} has at least one solution.

We add all of these new equations into the equations we already constructed
above. Therefore, by taking the zero set of these systems of polynomial equa-
tions, we have a finite dimensional variety W (X ,Y , d) (depending on the variables
x1, . . . , xn, y1, . . . , yn as well as coefficients of the involved monoids and some other
parameters, as stipulated above) together with the surjective map κ as in the theo-
rem. A priori, two distinct points in W (X ,Y , d) may give rise to the same birational
map X ��� Y . We can also use Gröbner bases (Gunther 1941; Buchberger 1965)
to eliminate the variables x1, . . . , xn, y1, . . . , yn from W (X ,Y , d) to obtain systems
of equations in the parameters only, and hence obtain a (generally reducible) variety
W̃ (X ,Y , d) of finite dimension in parameters. It is clear that the parameters which
give us birational maps between X and Y is a dense subset W̃0(X ,Y , d) of the variety
W̃ (X ,Y , d).

To finish off, we give the proof for the conclusion concerning the set B+(X ,Y , d).
Our starting point is the equations in the previous paragraph. We only need to add the
equations which the coefficients of a rational map F : Pn ��� P

n in the above must
satisfy in order for F to be a birational map. This can be done similarly to the above
proof, with the following modifications. Here we construct a monoid M ′

0,0 for �F

with only one vertex (1, (0)n−1, (0)n). This is because we only need to check that the
projection to the second factorCn ×C

n will give us a birational map, and hence we do
not need to consider the vertex ((0)n, (0)n−1, 1) as before. Since�F is of codimension
n ≥ 2 in C

n × C
n , we can apply Lemma 2.6. We need to add the equations which

check that the monoid M ′
0,0 contains �F . Then we can follow the argument we gave

for H0,0, until we reach the isomorphic image H ′
n−1,0 in C×C

n of a Zariski open set
of �F . At this step, we cannot apply Lemma 2.6, since the dimension of �F is n and
the dimension of C × C

n is n + 1. To be able to finish this last step, we simply add
one more dimension so that the assumptions in Lemma 2.6 are satisfied, concerning
C×C

n as a hyperplane w = 0 in a bigger spaceC×C
n ×Cw. Then we can construct

a monoid in C×C
n ×Cw for H ′

n−1,0, and then the proof is finished by checking that
C
n = C

n × {w = 0} ⊂ C
n × Cw contains the image of H ′

n−1,0 under the projection
from the point (1, (0)n, w = 0).

Addendum Note that by a linear change of coordinates, we can assume that X and
Y are not contained in any coordinate hyperplane. If in Step 2 we consider the smaller
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Zariski open subset X\{ f0,n−1,1 f0,n−1,2 = 0}, which corresponds to considering the
ideal

{g1, . . . , gm, f0,n−1,1y1 + f0,n−1,2, 1 − t0,n−1 f0,n−1,1 f0,n−1,2},

then we can reduce the number of systems of equations regarding �0,n−1 to 1. Conse-
quently, this reduces the number C1 in the conclusion of Theorem 2.1. Note, however,
that in doing so we increase (double) the degree of the polynomials involved and
consequently the number C3.

The following algorithm is a spin-off of the proof of Theorem 2.1. Note that the
constants C1,C2 here are not the same as in the theorem.

Algorithm. Detecting the existence of bounded birational maps between given
varieties.

Input. Two irreducible subvarieties X and Y of Pn of the same dimension, and a
positive integer d.
Output.An answer Yes or No to the question of whether there are birational maps
f : X ��� Y which are restrictions of rational maps F : Pn ��� P

n whose degree
deg(F) is ≤ d.

• Step 1: Use a linear change of coordinates so that both X and Y do not belong to
any coordinate hyperplane of Pn .

• Step 2: Compute the explicit constantC1 = C1(d) > 0 (from part 2 of Lemma 2.5)
with the following property: Whenever Z ⊂ C

n × C
n is an irreducible variety of

degree ≤ d, and π j : Cn ×C
n → C

n ×C
j is the natural linear projection (where

0 ≤ j ≤ n), then deg(π j (Z)) ≤ C1.
• Step 3: With respect to C1 (considered as the degree of Z in the statement of
Lemma 2.6), compute the explicit constant C2 (considered as the number d in the
statement of Lemma 2.6).

• Step 4: Now we start to construct the systems of polynomial equations. We start
with S0,n = {g1, . . . , gm}, where g1, . . . , gm is a basis for the ideal I (X) defining
X in Cn .

• Step 5: For each j = 1, 2, . . . , n − 1, we construct the system S0,n− j as follows.

The variables of S0,n− j are the union of the variables of S0,n− j+1, the coefficients
of f0,n− j,1 and f0,n− j,2, and an extra variable t0,n− j . Here, f0,n− j,1 is a general
polynomial of degree C2 − 1 in variables x1, . . . , xn, y1, . . . , y j−1, and f0,n− j,2
is a general polynomial of degree C2 in variables x1, . . . , xn, y1, . . . , y j−1.

The equations of S0,n− j are the union of the equations of S0,n− j+1 and 2 extra
equations: f0,n− j,1y j + f0,n− j,2 and 1− t0,n− j f0,n− j,1 f0,n− j,2. (These two extra
equations represent certain Zariski open dense sets of the involved monoids.)

• Step 6: We now construct a system of polynomials S0,0, which is more special
than the S0, j ’s in Step 5.

The variables of S0,0 are the union of the variables of S0,1, the coefficients of f0,0,1,
g0,0, h0,0 and f0,0,2, and two extra variables t0,0,1 and t0,0,2. Here f0,0,1, g0,0, h0,0
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and f0,0,2 are all general polynomials in unknowns x1, . . . , xn−1, y1, . . . , yn−1,
of degrees C2, C2 − 1, C2 − 1 and C2 − 2 respectively.

The equations of S0,0 are the union of the equations of S0,1 and 3 extra equations:
f0,0,1 + xng0,0 + ynh0,0 + xn yn f0,0,2 = 0, 1 − t0,0,1( f0,0,1 + xng0,0)(h0,0 +
xn f0,0,2) = 0 and 1 − t0,0,2( f0,0,1 + ynh0,0)(g0,0 + yn f0,0,2) = 0.

This S0,0—in case non-empty—represents certain non-empty Zariski open sets
of graphs of rational maps from X to C

n . Each S0,n− j in Step 5 then represents
the image of S0,0 under the natural linear projections Cn × C

n → C
n × C

j . All
S0,n− j—when non-empty—are birational to X .

• Step 7: We now continue to add more equations and variables. For each
j = 1, 2, . . . , n we construct the system S j,0 as follows.

The variables of S j,0 are the union of the variables of S j−1,0, the coefficients
of f j,0,1 and f j,0,2, two extra variables t j,0 and a, together with coefficients of
other polynomials τ j,1,0, . . . , τ j,1,m( j) and τ j,2,0, . . . , τ j,2,m( j). Here f j,0,1 is a
general polynomial of degree C2 −1 in variables y1, . . . , yn, xn− j−1, . . . , x1, and
f j,0,2 is a general polynomial of degree C2. Here m( j) = the number of poly-
nomials in S j−1,0, and τ j,1,0, . . . , τ j,1,m( j) and τ j,2,0, . . . , τ j,2,m( j) are general
polynomials in the variables of S j,0 and a. The degrees of τ j,1,0, . . . , τ j,1,m( j) and
τ j,2,0, . . . , τ j,2,m( j) are determined from the effective Hilbert’s Nullstellensatz,
related to the two extra equations in the next paragraph.

The equations of S j,0 are the union of the polynomials h1, . . . , hm( j) of S j−1,0
and 2 extra equations:

−1 + τ j,1,0(1 − a( f j,0,1x j + f j,0,2)) + τ j,1,1h1 + · · · τ j,1,m( j)hm( j) = 0,

−1 + τ j,2,0(1 − a(1 − t j,0 f j,0,1 f j,0,2)) + τ j,2,1h1 + · · · τ j,2,m( j)hm( j) = 0.

The above 2 equations check that {h1 = · · · = hm = 0} belongs to both the
monoid ( f j,0,1x j + f j,0,2) = 0 and the set f j,0,1 f j,0,2 �= 0 where the projection
from the monoid has good properties. Recall from the classical fact used in the
proof of Theorem 2.1 that to check whether {h1 = · · · = hm = 0} belongs to the
set {h = 0}, we add a new variable a and use the effective Hilbert Nullstellensatz to
reduce the question to the existence of polynomials τ, τ1, . . . , τm (in the variables
of the polynomials h1, . . . , hm, h and the new variable a) of effectively bounded
degrees so that 1 = τ(1 − ah) + τ1h1 + · · · + τmhm .

At the end of Step 7, we obtain a system of polynomial equations Sn,0—which, in
case non-empty—represents certain non-empty Zariski open subset of the images
of X under birational maps.

• Step 8: We are now ready to construct the final system of polynomial equations S.
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The variables of S are the union of the variables of Sn,0, the coefficients of
F0, F1, . . . , Fn , an extra variable a, together with the coefficients of polynomials
τi, j,k coming from effective Hilbert Nullstellensatz (more detail below). Here
F0, F1, . . . , Fn are general polynomials of degree ≤ d in variables x1, . . . , xn .

The equations of S are the union of equations in Sn,0 and the ones coming from
effective Hilbert Nullstellensatz when we want to check that the set defined by
Sn,0 is contained in the set {y1F0 − F1 = 0, . . . , yn F0 − Fn = 0, 1 − aF0 = 0}
and Y . The number of these extra equations equals the sum of n + 1 (which is the
number of polynomials in {y1F0 − F1 = 0, . . . , yn F0 − Fn = 0, 1 − aF0 = 0})
and the number of a basis of the ideal defining Y . Each of these polynomials will
contain the set Sn,0 and leads to one equation as we mentioned in Step 7.

This S represents the fact that the birational maps induced by solutions of Sn,0 are
restrictions of rational selfmaps of Pn degrees ≤ d, and maps X onto Y .

• Step 9: Now we can use Gröebner bases to solve the system of polynomial equa-
tions S. If S has at least one solution, then the output of the algorithm is Yes, that
is there is a birational map of degree ≤ d from X onto Y . If, on the contrary, S has
no solution, then the output of the algorithm is No.

Now we give the proof of Corollary 2.3.

Proof of Corollary 2.3 That R(n, d) is an algebraic variety is easy to see. The last
paragraph in the proof of Theorem 2.1 shows that R+(n, d) is an algebraic variety
and can be explicitly constructed.

Theproof ofTheorem2.1 shows thatW (X ,Y , d) is a subvariety ofCN×R(n, d) for
some integer N , and the map κ : W (X ,Y , d) → B(X ,Y , d) is simply the restriction
to W (X ,Y , d) of the projection C

N × R(n, d) → R(n, d). Therefore, by Cheval-
ley’s theorem, the subset B(X ,Y , d) ofR(n, d) is constructible, and W (X ,Y , d) is a
parameterization for B(X ,Y , d).

The proof for the subset B+(X ,Y , d) of R+(n, d) is similar.

Remark 2.7 We list some final remarks in this section.

• For a given rational map f : X ��� Y , it has been known for some decades that
Gröbner bases can be used to checkwhether it is a birational map (see e.g. Shannon
and Sweedler 1988 for the special case when Y is a projective space). However, as
far as we know, our algorithm in the proof of Theorem 2.1 is the first one to treat
the case of determining the set of all birational maps from X to Y , which need
to deal with maps whose coefficients are undetermined. This poses difficulties
which do not arise in the case of explicit maps.

• While the bounds in the proof of Theorem 2.1 are explicit, they are quite big. For
example, the degree bound in the effective Hilbert Nullstellensatz is exponential,
and the degree bound for the graph� f is polynomial. Therefore, more refinements
of the given algorithm are needed before it can be used for practical examples.
Also, with the ever improvement in computer hardwares and softwares, we hope
that in a not far future the theoretical aspects of results in this paper can be put into
practice.
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• As the Addendum in the proof of Theorem 2.1 shows, there are many choices of
such W (X ,Y , d) and κ . We know that whatever the choice of W (X ,Y , d) is, its
image (as a set) by κ is alwaysB(X ,Y , d). By Corollay 2.3,B(X ,Y , d) is an alge-
braic variety. Hence, we can choose B(X ,Y , d) as a canonical choice for all such
W (X ,Y , d)’s. Using the recent result (Harris et al. 2019) on computing images
of polynomial maps, we would again be able to explicitly describe B(X ,Y , d) in
terms of X ,Y and d. The same consideration can also be applied to B+(X ,Y , d).
If we are interested only in finding an answer to the Bounded Birational Problem,
we may alternatively proceed in the following simpler manner. We start with any
of the W (X ,Y , d) given in Theorem 2.1. Then elimination (by using for exam-
ple Gröbner bases) gives us explicitly a closed subvariety C(X ,Y , d) of R(n, d).
While C(X ,Y , d) may not be reduced, its reduced structure is exactly B(X ,Y , d).
Again, the reduced structure of C(X ,Y , d) can be explicitly constructed using
Gröbner bases. In general, this B(X ,Y , d) may be bigger than B(X ,Y , d), and
hence a specific point in B(X ,Y , d) may not give rise to a birational map from X
to Y . However, still we have that B(X ,Y , d) �= ∅ if and only if B(X ,Y , d) �= ∅.
Therefore, B(X ,Y , d) can still be used to answer the Bounded Birationality Prob-
lem, and from the above analysis we may regard B(X ,Y , d) as another canonical
choice concerning this aspect.

3 Variants

In this section we prove similar results for other interesting classes of maps (such as
dominant rational maps, regular morphisms, isomorphisms or regular embeddings).
The proofs will combine the ideas in the previous sections together with some addi-
tional ingredients to resolve new difficulties associatedwith the particular case at hand.
As before, we work with an algebraically closed field K of arbitrary characteristic,
unless specifically stated otherwise. We fix from now on two irreducible subvarieties
X ,Y ⊂ P

n , and a positive integer d.
We also show that some minor modifications prove the same results for maps on

affine varieties. Then we deduce from this the validity of all the results for maps on
arbitrary algebraic varieties.

3.1 Dominant rational maps of bounded degrees

We consider the following question.

Question 3.1 (Question (A)) Is there a rational map F : Pn ��� P
n , of degree ≤ d, so

that F |X is a dominant rational map onto Y ?

In the case where X = P
k a projective space, we have the unirationality problem,

which has attracted a lot of interest.

Theorem 3.2 The above Question (A) is computable.
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Proof We will give an algorithm, whose complexity is explicitly bounded, to solve
this question.

We write the maps F : Pn ��� P
n needed to find in terms of their coefficients.

First, to check that X is not contained in the indeterminacy locus F and that F
maps X to Y , we can proceed as in the proof of Theorem 2.1. This way we get some
systems of polynomial equations.

We now proceed to check the condition that F maps X onto Y . To this end, we
analyse what happens in the opposite case. So, assume for a moment that the map
F does not map X onto Y . This means that there is a proper subvariety W of Y so
that the projection of � f is W . We observe that, by part 2 of Lemma 2.5, the degree
of W is bounded in terms of that of � f . Then since Pn × P

n can be embedded into

P
n2+2n , we can use a trick of Mumford (1969) that set-theoretically W is generated

by polynomials of degrees explicitly bounded in the degree ofW (in fact, these can be
chosen as cones over W with vertex a linear subspace of Pn , and hence of degree =
deg(W )), to find a proper hypersurface Z of explicitly bounded degree of Pn so that
Y �⊂ Z , Z ∩Y contains π(� f ). We nowwork on the affine Zariski open setCn ×C

n of
P
n × P

n , and interpret the previous sentence in terms of polynomial equations. Since
the degree of Z is explicitly bounded, we can as before parameterise it in terms of an
explicitly bounded number of coefficients. As in the proof of Theorem 2.1, we can
express the condition that Z ∩ Y contains π(� f ) which we call (E).

Now we let (E ′) to be the union of (E) and the polynomial equations expressing
the condition that the hypersurfaces Z in the above paragraph contain Y . Then the
variety defined by (E ′) is a subvariety of the variety defined by (E). The maps F
which map X onto Y will be parametrised by the complement of (E ′) in (E), and
hence are parametrised by a finite union of algebraic varieties. Hence to check that
there are dominant rational maps F from X onto Y is the same as checking that the
set of solutions to (E) is strictly bigger than the set of solutions to (E ′), which is a
decidable problem, by using for example Gröbner bases. �


3.2 Regular morphisms of bounded degrees

We now consider the following question.

Question 3.3 (Question (B)) Is there a rational map F : Pn ��� P
n , of degree ≤ d, so

that F |X is a regular morphism into Y ?

Note that while the indeterminacy set of F = [F0 : F1 : . . . : Fn], as a rational
map from P

n ��� P
n , is simply the set I(F) := {F0 = · · · = Fn = 0}, determining

the indeterminacy set of the restriction of F to a subvariety X is not an easy task.
In particular, it is not true that the indeterminacy set of F |X is always I(F) ∩ X .
A classical example is the following. Let X = {xz = y2} ⊂ P

2. The rational map
F : P

2 ��� P
1 given by [x : y : z] �→ [x : y] has I(F) = [0 : 0 : 1] ∈ X .

However, F |X is a regular morphism. In fact, this follows from the fact that we have
[x : y] = [y : z] on X , and at least one among these two represents a genuine point
in P

1. One can also check that [x : y] and [y : z] are the only representatives (up to

123



146 Beitr Algebra Geom (2024) 65:129–155

multiplicative factors) of F |X , and the indeterminacy set of [y : z] is [1 : 0 : 0] ∈ X .
Thus for any G : P2 ��� P

1 with G|X = F |X we have that I(G) ∩ X �= ∅.
For a given rational map F , Simis (2004) computed the indeterminacy set of F |X

in terms of some algebras associated to F . Hence by checking that these algebras give
rise to empty indeterminacy sets, we arrive at a necessary and sufficient condition
for F |X to be regular. However, as far as we know, no criterion has been given in
the literature for the case where the map F is not explicitly given. The main result
we give here is that provided X is a smooth projective variety, then Question (B) is
computable.

Example 3.4 Before stating themain result, let us explain themain idea via the example
X = {xz = y2} ⊂ P

2 and F[x : y : z] = [x : y] above. Let π : P2 × P
1 → P

2 be
the projection to the first factor. We saw that for f = F |X , the graph � f is not the
intersection between�F andπ−1(X) (which is {([x : y : z], [u : v]) ∈ P

2×P
1 : xz =

y2, xv = yu}), but it is an irreducible component of this intersection. Therefore, we
can add in several polynomials to obtain the correct ideal for � f . In this case, it turns
out that we need only to add one more polynomial, of degree 2. More precisely

� f = {([x : y : z], [u : v]) ∈ P
2 × P

1 : xz = y2, xv = yu, yv = zu}.

To check that f is a regular morphism is the same as checking that the projection π

maps � f isomorphically to X . Since π is a birational morphism on � f , it suffices to
check that the relative tangent spaces (defined by taking with respect to variables
in P

1 of the defining equations for � f ) are 0 at every point of � f . (In fact, we can
work on a chart, say C

2
x,y × Cu . If f is regular, then by Hilbert’s Nullstellensatz in

this chart � f is generated by u − g(x, y) = 0 and the ideal for X , which when taking
derivative with respect to u will have rank 1 as claimed. Then if g1, . . . , gm are another
set of generators for the ideal of � f in this chart, we will get the same answer, which
is 1. Hence the dimension of the relative tangent space, which is the corank of the
above matrix, is 0. Conversely, if the relative tangent spaces are 0 for every point on
� f , this will give us that the projection π is étale. Hence, by using Zariski’s Main
Theorem, since π is also projective and birational, it is an isomorphism. Alternatively,
we observe that any fibre of π must be finite, and hence by cohomological reason
has the same number of points, which is 1.) This can be checked by working with the
(2 + 1)(1 + 1) = 6 coordinate charts C2 × C of P2 × P

1. For example, in one such
chart, corresponding with z = 1 and v = 1, we obtain

X = {(x, y) ∈ C
2 : x = y2},

� f = {((x, y), u) ∈ C
2 × C : x = y2, x = yu, y = u}.

The ideal of � f is generated by x − y2, x − yu, y−u, and hence the dimension of the
relative tangent space is the corank of thematrixweobtain by taking thefirst derivatives
of the above polynomials with respect to u: which consecutively are 0,−y,−1. Since
the rank of this matrix is 1 everywhere on � f , we conclude that the relative tangent
space has dimension 0 everywhere, as desired.
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Remark 3.5 The point of view in Example 3.4 is that to check whether f is a regular
morphism, we do not need to compute the indeterminacy set of f . Instead, we only
need to check that � f is isomorphic to X , and this in turn is the same as checking that
the projection� f → X is étale. The special formof the projectionmakes computations
less complicated and is more flexible, allowing us to deal with maps F not explicitly
given.

In Example 3.4, we see that the important factor for being able to arrive at an explicit
algorithm is that the number of polynomials needed, as well as their degrees, to add
into �F ∩ π−1(X)—where π : Pn × P

n → P
n is the projection to the first factor—to

obtain the ideal for � f (recall that f = F |X ), should be explicitly bounded in terms of
d and X . (Note that we will need to deal with the case where f is undetermined, and
so we do not know anything about � f except that it is contained in �F ∩ π−1(X), its
degree is explicitly bounded and it should be isomorphic to X . Hence if X is smooth
then� f is also smooth.) The following lemma (see Theorem10 inBlanco et al. (2004))
is important in this aspect. (For the convenience of the readers, a non-optimal version
of this lemma—which is enough for the conclusions of Theorems 3.7 and 3.8—can
be proven based solely on Mumford (1969).)

Lemma 3.6 Let V ⊂ A
n be a smooth equi-dimensional algebraic variety and set

m := (n−dim(V ))(1+dim(V )). There exist polynomials f1, . . . , fm inK[x1, . . . , xn]
with degrees bounded by deg(V ) such that I (V ) = ( f1, . . . , fm).

Now we can state the main result of this subsection.

Theorem 3.7 Assume that X is a smooth projective variety. Then Question (B) is
computable.

Proof Again, checking that a rational map F : Pn ��� P
n gives rise to a rational map

from X into Y can be expressed in terms of polynomial equations. (This does not
require any condition on X .)

We now proceed to showing that when X is a smooth projective variety, the condi-
tions for that f = F |X is regular, as a map from X into P

n , can also be expressed in
terms of polynomial equations.

As seen from Example 3.4, that f is regular is equivalent to � f is isomorphic to X
and hence in particular is smooth. By Lemma 3.6, we can add an explicitly bounded
number of polynomials of explicitly bounded degrees and which vanish on H0,0 in the
proof of Theorem 2.1 (this conditon can be expressed in terms of polynomial equations
by the argument in the proof of Theorem 2.1) into the polynomials already generating
�F ∩ π−1(X), where π : Pn × P

n → P
n is the projection to the first factor, to obtain

generators h1, . . . , h p for some � (which we want to be the graph � f ). Note that the
number p and the degrees of h1, . . . , h p are explicitly bounded.

Wewant that� is exactly� f andmoreover it is isomorphic to X . Note that these two
conditions are equivalent to that there is one such constructed � which is isomorphic
to X . In fact, if this is the case, then � is in particular irreducible. Since � contains
H0,0 as a set, it follows from the fact that � is isomorphic to X , that � is exactly the
graph � f .

Now to check that � is isomorphic to X , we need to check that the relative tangent
spaces at every point in � has dimension 0. (Strictly speaking, this check only shows
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that the irreducible component of � containing � f as a set is isomorphic to X , but this
is enough to have that� f is isomorphic to X as desired. A priori, sincewe are not given
explicitly the map F and the polynomials we add in are also undetermined, there may
be other components of� besides� f .) We can work with Zariski open setsCn×C

n of
P
n ×P

n . From the above generators h1, . . . , h p of �, which are undetermined, hence
need to be parametrised in terms of their coefficients, we compute the derivatives of
them with respect to the variables y1, . . . , yn in the second factor ofCn ×C

n . Call the
Jacobian matrix obtained J�/X , and call M1, . . . , Mq all the n × n-minors of J�/X .
Note that the number q and the degrees of M1, . . . , Mq are also explicitly bounded.
Then the fact that the relative tangent spaces at every point of � has dimension 0 is
translated into that the system defined by M1 = · · · = Mq = 0 has no solution on �.
As in the proof of Theorem 2.1, this and the effective Hilbert’s Nullstellensatz allow
us to translate Question B into the question about the existence of solutions to an
explicitly constructed variety. �


3.3 Isomorphisms/regular embeddings of bounded degrees

We now consider the following question. Question (C): Is there a rational map F :
P
n ��� P

n , of degree ≤ d, so that F |X is an isomorphism onto Y ? We also consider
a more general question. Question (C’): Is there a rational map F : Pn ��� P

n , of
degree ≤ d, so that F |X is a regular embedding into Y ?

Combining the previous results, we obtain the following result.

Theorem 3.8 Assume that X is a smooth projective variety. Then Questions (C) and
(C’) are computable.

Proof We only need to prove for Question (C’).
Using Theorem 2.1, we can check whether there is a rational map F : Pn ��� P

n

of degree ≤ d so that f = F |X is a birational map into Y . Call Z the image of f .
(Here, we do not need to specify Z .)

We can use Theorem 3.7 to check if F |X is a regular morphism.
It remains to check whether the birational map g−1 : Z ��� X , where g = f −1, is

also a regular morphism. To this end, we can compute the derivatives of the generators
we have for � f in the proof of Theorem 3.7 with respect to variables in the other
copy of Pn containing Y , and denote the resulting matrix by J�/Z . As in the proof of
Theorem 3.7, we only need to check that J�/Z gives rise to that the relative tangent
spaces with respect to the projection P

n × P
n → P

n to the second factor are 0. As
before, this can be described in terms of polynomial equations involving minors of
J�/Z .

Note that here a priori, we do not know whether Z is smooth or not. To this end,
we can add the equations for the condition that Z is smooth: it is the same that at least
one of the (n−dim(X))× (n−dim(X))minors of the derivatives of the generators of
I (Z) must be non-zero at every point of Z , which then can be interpreted by effective
Hilbert’s Nullstellensatz.

At the end, we obtain some explicit systems of polynomial equations, whose
solutions parametrise Question (C). �
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3.4 Maps on affine varieties

In this subsection we discuss the above results for the cases where varieties concerned
are affine. More precisely, considering now X ,Y ⊂ C

n be closed irreducible varieties,
and a positive integer d. We ask whether there is a rational map F : Cn ��� C

n of
degree ≤ d so that the restriction f = F |X maps X into Y and is: (i) birational;
or (ii) dominant rational; or (iii) regular; or (iv) regular embedding. We also ask the
following stronger versions of (iii) and (iv), which are not necessary in the projective
setting: whether f is (iii’) regular and surjective; or (iv’) a regular embedding onto a
closed subvariety of Y . We recall that the reason that in the affine setting (iii’) and (iv’)
are actually stronger than (iii) and (iv) respectively is because the image of a closed
subvariety of Cn under a polynomial map is not always a closed subvariety but only
constructible (Chevalley’s theorem). In the above formulations, we may as well ask
for the case where F is a polynomial, in which case the proof will be the same.

We will show that all of the above questions are computable. As usual, the degree
of an affine variety is the degree of its closure in the projective space. With this
convenience, the proofs of the previous results apply straightly forwardly to questions
(i) and (ii), and show that they are computable. For question (iii), the application is
almost straightly forward, after we projectivise the varieties and the maps. Then an
application of Zariski’s main theorem (which says that the preimage of a smooth point
in a variety V by a birational morphism is connected, and hence is one point if the
fibre has an isolated point) will again give the following. The fact that relative tangent
spaces are 0 at every point on the graph implies that the projection π onto the first
factor is a regular embedding of the graph � f into X and vice versa. To check that
the graph � f is the graph of a regular morphism, we need to check that the projection
π : � f → X is surjective. This then can be checked as in the end of the proof of (iv’)
below. Since constructible sets form a Boolean algebra (closed under finite union and
complementation), it follows that we can parametrise question (iii) also by algebraic
varieties. For question (iv), we use (iii), and then similarly check that the relative
tangent spaces of the projection � f → Y are all 0.

Now we briefly show how to solve questions (iii’) and (iv’). First we consider
question (iii’). By question (iii), we can check whether f is regular and whose image
is contained in Y . To check that the image is actually Y and hence solve the stronger
question (iii’), it suffices to show that for π : Cn × C

n → C
n the projection to the

second factor, there is no point y ∈ Y for which the intersection π−1(y) ∩ �, here �

is the one constructed in the proof of Theorem 3.7, is empty. Note that the condition
that π−1(y) ∩ � = ∅ can be described in terms of polynomial equations by effective
Hilbert Nullstellensatz. Hence, themaps fromquestion (iii) (call their parameter space,
in terms of the coefficients of F only, W1) whose image are not the whole of Y can
be parametrised (in terms of the coefficients of F only) by a constructible subset W2
of W1. By Harris et al. (2019), W1 and W2 would be explicitly constructed from X ,Y
and d. Then the parameter space for (iii’) is the constructible set W = W1\W2. In
particular, it is a finite union of algebraic varieties.

We end this subsection by giving a proof for the fact that question (iv’) is also
computable. By question (iv), we can check whether f is a regular embedding into
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Y . Denote by Z = f (X) ⊂ Y , which we do not know in advance. We need to have
that Z is a closed subvariety of Y . Let Z be the closure of Z in Y , then Z is a closed
subvariety of Y of the same dimension as that of X . As in the proof of Theorem 3.2, the
degree of Z is explicitly bounded. Since in question iv’) we want to show that f (X) is
a closed subvariety of Y , it follows that f (X) = Z , and hence Z must also be smooth.
Then by Lemma 3.6, the ideal I (Z) is generated by an explicitly bounded number of
polynomials of degrees ≤ deg(Z). (Again, these polynomials are undetermined, but
we can parametrise them by their coefficients whose number is explicitly bounded.)
We add to these polynomials also a finite set of generators for the variety Y to make
sure that Z is contained in Y . We also add in the equations for the condition that Z is
smooth (which should be, if it is to be the image of X under an isomorphism f ). Denote
by π : Cn × C

n → C
n the projection to the second factor. Then as in the previous

paragraph, the fact that f (X) = Z is the same as that there is no z ∈ Z for which
π−1(z)∩� = ∅. Hence, as before, among the regular embeddings f of X into Y , those
for which f (X) is not a closed subvariety is parametrised by a constructible subset of
the variety parametrising the answer to question (iv). Hence, the parameter space for
(iv’), which is the difference between these two varieties, is also a constructible set,
and is parameterized by an affine variety.

3.5 Maps on arbitrary algebraic varieties

Since any algebraic variety has a finite Zariski open cover by affine varieties, the
results in the previous subsection imply that all questions (i), (ii), (iii), (iii’), (iv) and
(iv’) in the previous subsection are also computable when X and Y are arbitrarily
irreducible algebraic varieties. To this end, it is enough to make precise for a rational
map f : X ��� Y , what it means that f has bounded degree. To this end, we can
proceed as follows. Let X1, . . . , X p be a Zariski open covering by affine varieties for
X , and Y1, . . . ,Yq be a Zariski open covering by affine varieties for Y . Assume that
Xi and Y j belong to Cn for all i, j . Then we say that the degree of f is bounded by a
positive integer d if for every pair i, j for which f maps Xi into Y j , there is a rational
map Fi, j : Cn ��� C

n of degree ≤ d and so that Fi, j |Xi = f |Xi .

4 Concluding remarks

In this paper we showed that birational maps of bounded degrees between algebraic
varieties can be parametrised by some algebraic varieties. We provide an explicit
algorithm for implementing on computers. We also proved that similar results hold
for other interesting classes of maps, such as biregular isomorphisms. These results
are valid for both varieties over C and over fields of positive characteristic. They
provide countable invariants for characterising these maps. Based on these results,
together with Iitaka’s fibrations, we proposed a rough approach towards solving the
birationality problem, computationally and effectively, in general.

An application of the above results is the following. Let X be a smooth algebraic
affine curve. Then whether or not X is algebraically embedded in the affine plane A2
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is characterised by a countable set of varieties explicitly constructed from X . In fact,
X is algebraically embedded into A3, and hence we can apply the results in Sect. 3.4.
The question of whether there is a finite set of invariants characterising that a smooth
affine algebraic curve is algebraically embeddable intoC2 is a long standing, classical
open question.

In the remarks after the proof of Theorem 2.1, we proposed an approach toward
the birationality problem. If it is true that X and Y are not birationally equivalent, and
we want to confirm this, then we can try the following alternative approach. That X
and Y are not birationally equivalent is the same as that all the systems W (X ,Y , d)

(d = 1, 2, 3, . . .) have no solutions, which by effective Hilbert’s Nullstellensatz is
the same as having an identity 1 ≡ ∑

τi hi , where hi are a generator for the ideal
of W (X ,Y , d), and all τi and hi have degrees bounded in terms of d and X ,Y . The
systems W (X ,Y , d + 1) contains as a special case the system W (X ,Y , d), for all d.
Hence if we are able to verify the existence of such an identity for small values of d,
we may be able to use induction to deduce the identity for general d.

It is interesting to know if in Theorems 3.7 and 3.8 we can get rid of the smoothness
assumptions on the variety X .
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Appendix: A rough strategy towards the birationality problem via
Iitaka’s fibrations

In this section, we state a rough strategy, based on Theorem 2.1, for a computational
approach towards the birationality problem.
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We first recall briefly about the fact that the birationality problem for varieties of
general type overCwas completely solved about 10years ago.We thank JohnChristian
Ottem for communicating this remark. Note that the birationality problem for smooth
surfaces of general type is computable. For any smooth surface of general type X , the
linear system |5KX | is a birational embedding of X into some projective space. Given
two smooth projective surfaces of general type X ,Y , if h0(X , 5KX ) �= h0(Y , 5KY ),
then they are not birationally equivalent. In the case h0(X , 5KX ) = h0(Y , 5KY ) = N ,
let X ′ be the birational embedding of X in PN using the linear system |5KX | and Y ′ be
the birational embedding of Y in PN using the linear system |5KY |. If f : X ��� Y is
birational, then f ∗ : H0(X , 5KX ) → H0(Y , 5KY ) is isomorphic, and hence there is a
linear map in PN which maps X ′ onto Y ′. The latter question is computable. Similarly,
the question of whether two smooth complex projective varieties of general type in
higher dimension are birational equivalent is decidable. (Here we use the following
distinction between “computable” and “decidable”: an algorithm is computable if
its complexity is explicitly given, while for a decidable program, we do not know
its complexity but we know that it will stop in a finite time.) This follows from the
following result in Hacon and McKernan (2006), Takayma (2006), Tsuji (2006) and
Tsuji (2007): Let X be a smooth irreducible projective variety of dimension k. Then
there is a positive number rk > 0 depending only on k such that the linear system
|rk KX | is a birational embedding. If k > 2, it is not known whether this question is
again computable, since the above number rk is not yet explicitly determined.

Note that in the proof of Theorem 2.1, the assumption that the birational map
f : X ��� Y is the restriction of a rational map F : X ��� Y of degree ≤ d is needed
only to deduce that the degree of the graph �g is explicitly bounded. Therefore, the
birationality problem is solved if the following question has an affirmative answer.

Question 5.1 (Main Question) Let X ,Y ⊂ P
n be irreducible varieties, where n ≥ 2,

and assume that there is a birational map f : X ��� Y . Is there another birational map
g : X ��� Y so that the degree of the graph �g , viewed as a subvariety of Pn × P

n , is
explicitly bounded in terms of n and the ideals for X and Y ?

A special case when Question 5.1 is answered in the affirmative is when X is a
monoid andY is a projective space, see the description before the proof of Theorem2.1.
The bound in degree is the degree of the monoid. Less trivially, we have the following
result.

Proposition 5.2 (1) To solve Question 5.1, it is sufficient to do it for the case where X
and Y are either:

(a) Hypersurfaces; or
(b) Normal varieties.

(2) Over C, Question 5.1 has an affirmative answer when X and Y are varieties of
general type.

(3) Question 5.1 has an affirmative answer when X and Y are curves.

Proof (1) (a) Letm = dim(X)+1, we can always find a linear projection π : Pn ���
P
m , under which the strict transform X ′ of X is birational to X and the strict

transform Y ′ of Y is birational to Y . Assume that Question 5.1 is affirmatively
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answered for hypersurfaces. Then, provided there is a birational map from
X to Y , there will be a birational map g′ : X ′ ��� Y ′ whose graph �g′ ⊂
X ′ × Y ′ ⊂ P

m ×P
m has explicitly bounded degree in terms of X ,Y . Then the

graph�g ⊂ X×Y ⊂ P
n ×P

n of the lifting birational map g : X ��� Y , which
is contained in the intersection between X × Y and the strict transform of �g′
under the dominant rational map π × π , also has explicitly bounded degree.
Then the proof of Theorem 2.1 provides us with a rational map F : Pn ��� P

n ,
whose degree is explicitly bounded in terms of X ,Y , and whose restriction to
X is g.

(b) The proof is similar, now we use that any variety has a normalisation.
(2) By the results mentioned above, there is a number rk > 0 depending only on

k = dim(X) = dim(Y ) so that the pluricanonical divisor rk KX gives a birational
map X ��� M(X) ⊂ P

N1 , and similarly rk KY gives a birational map Y ���
M(Y ) ⊂ P

N2 . From the properties of the canonical divisor, we have that X and
Y are birational iff N1 = N2 =: N and M(X) is isomorphic to M(Y ) via a
linear automorphism of PN . Then, the degree of the graph of the composition
X ��� M(X) → M(Y ) ��� Y is bounded effectively in terms of X and Y .

(3) We consider different cases.
Case 1 X and Y are curves of genus ≥ 2. We can apply the argument in (2).
Case 2 X and Y are elliptic curves. We use that on an elliptic curve the divisor 3p,
where p is any point in the elliptic curve gives rise to an embedding of that elliptic
curve as a cubic curve in P2. Now, two smooth cubic curves in P2 are isomorphic
iff they are so under some linear automorphisms of P2. Then, the same argument
as in (2) completes the proof.
Case 3 X and Y are rational curves. In this case we can use the anti-canonical
divisor and argue as in (2).

�


Proposition 5.2 gives some evidence that Question 5.1 should have an affirmative
answer. In the remaining of this section, we provide a rough argument, based on
Iitaka’s fibration, to reduce Question 5.1 to the following two special cases: varieties
of Kodaira dimension−∞ or 0. The argument we present here is largely heuristic and
relies on further advancement on the understanding of Iitaka’s fibrations.

In the remaining of this section we work overC. Iitaka has shown that for a smooth
projective variety Z of non-negative Kodaira dimension, for m large enough so that
h0(Z ,mKZ ) �= 0, the maps Z ��� PH0(Z ,mKZ )∗ are all birational to one common
fibration, now so-called the Iitaka’s fibration.Moreover, the Iitaka’s fibration has a uni-
versal property among fibrations whose general fibers have zero Kodaira’s dimension,
which is unique up to birational morphisms. Under some assumptions (in particular,
including that the general fiber of the Iitaka’s fibration has good minimal models),
Pacienza (2009) showed that the bound on m is effectively computed in terms of the
dimension of Z , the pluricanonical divisors of general fibers, and the Betti numbers
of some associated cover over the general fibers. More recently, Birkar and Zhang
(2016) (Theorem 1.2 therein) proved the same result unconditionally.

Now let X and Y be two smooth projective varieties of the same Kodaira dimension
≥ 0. By the cited result, there is an effective constant m (in terms of X and Y ), so that
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both natural maps ϕX : X ��� I F(X) ⊂ PH0(X ,mKX )∗ and ϕY : Y ��� I F(Y ) ⊂
PH0(Y ,mKY )∗ are both birational to the corresponding Iitaka’s fibrations of X and
Y . Note that I F(X) and I F(Y ) are varieties of general type of the same dimension.
By the uniqueness of Iitaka’s fibration up to birational maps, and the properties of the
pluricanonical divisors mentioned in the proof of part 2 of Proposition 5.2, we deduce
that X and Y are birational iff there is a birational map ψ : X ��� Y which takes a
general fiber ofϕX to a general fiber ofϕY , and that the inducedmap I F(X) ��� I F(Y )

is the restriction of a linear automorphism of PH0(X ,mKX )∗ = PH0(Y ,mKY )∗.
Note then that also the degrees of the graphs of the birational maps between the general
fibers of ϕX and ϕY are uniformly bounded in terms of the degrees of intersection
between the graph ofψ and the products of the general fibers of the concerned Iitaka’s
fibrations.

We now assume that Question 5.1 has an affirmative answer for varieties of Kodaira
dimensions 0 and −∞. Then we will next argue heuristically that Question 5.1 also
has an affirmative answer in the general case. In fact, given X and Y two varieties
of the same Kodaira dimension ≥ 0. Let m be the effective constant in Birkar and
Zhang (2016), and ϕX : X ��� I F(X) and ϕ : Y ��� I F(Y ) be the corresponding
Iitaka’s fibrations. If PH0(X ,mKX )∗ and PH0(Y ,mKY )∗ are not isomorphic, then
we conclude that X and Y are not birational, and nothing else needs to be done. So,
we can assume that PH0(X ,mKX )∗ = PH0(Y ,mKY )∗. Then we can construct an
algebraic variety parametrising all isomorphisms from I F(X) to I F(Y ) which are
restrictions of linear automorphisms of PH0(X ,mKX )∗ = PH0(Y ,mKY )∗. Now,
using the assumption that Question 5.1 has an affirmative answer for varieties of
Kodaira dimension 0, we construct for each general fiber of ϕX an algebraic variety
representing all birational maps onto the corresponding fiber of ϕY (under the isomor-
phism between I F(X) and I F(Y ) mentioned in the previous sentence) whose graphs
have degrees bounded effectively in terms of the specific fibers. Now, since the fibers
vary algebraically, we expect that there will be a uniform bound on the degrees of the
graphs mentioned in the last sentence. Then we expect that these separate varieties,
one for each general fiber of ϕX , can be put together to give a variety parametrising
birational maps (of a special form, preserving the given Iitaka’s fibrations) from X to
Y . Combining all the above construction, we see at the same time that Question 5.1
has an affirmative answer.

So, assuming that the heuristic argument in the above paragraph works (which
will, as can be easily seen, require a deeper understanding of Iitaka’s fibrations), for
solving the birationality problem it remains to solve Question 5.1 for varieties of
Kodaira dimensions 0 and −∞. For varieties of Kodaira dimension 0, we speculate
that some generalisation of the argument for elliptic curves in the proof of part (3)
of Proposition 5.2 may be useful. For varieties of Kodaira dimension −∞, it may be
useful to look at the pluri-anticanonical divisors −mKX .
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