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Abstract
We investigate integral domainswith onlyfinitelymanyoverrings and establish several
new sharp inequalities relating the cardinality of the set of all overrings, the Krull
dimension, and the number of maximal ideals. In fact it is shown that knowing any
two of these parameters will induce sharp lower and upper bounds for the third. Similar
results for the length of an integral domain are also obtained. In particular, we show
that if the number of overrings of an integrally closed domain R is a prime number,
then the field of fractions of R has a unique maximal subring.

Mathematics Subject Classification 13B02 · 13B22 · 13B30 · 13E99 · 13F05 · 13F30 ·
13G05 · 13H99

1 Introduction

Let R be an integral domain with field of fractions Frac(R) (also denoted q f (R)).
The set O(R) = [R, Frac(R)], i.e. the set of subrings T of Frac(R) such that
R ⊆ T ⊆ Frac(R) is usually called the set of overrings of R. If O(R) is finite then
R is called an FO domain (Gilmer 2003). Ring extensions with only finitely many
intermediate rings have been named FIP extensions in Dobbs et al. (2005). Several
finiteness conditions on the set of intermediate rings of a ring extension have been
investigated in Jaballah (2010). If R is an FO integrally closed domain (in its field of
fractions Frac(R)) and the set of prime ideals of R is explicitly known and ordered
by the usual set inclusion, then Corollary 2.4 and Algorithm 2.5 of Jaballah (2005)
explain how to compute the number of overrings of R . In the case where no enough
information about the set of prime ideals is available, the present work shows that we
still have sharp approximations on the number of overrings depending on the number
of maximal ideals and the Krull dimension of R. These results will also induce sharp
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approximations of the number of maximal ideals and the dimension. Similar results
are also obtained for the length of R. The search for such results had been already
started in Ayache and Jaballah (1997), where several approximations for the number
and length of chains of intermediate rings in normal pairs, and number and length
of chains of overrings of Prüfer domains have been established. The exact number of
overrings for PID and FO integrally closed domains was established in Jaballah (1997)
and Jaballah (2005), which has been generalized for normal pairs in Ben Nasr and
Jaballah (2008) and Ayache and Jarboui (2008). An algorithm listing overrings was
obtained in Jaballah (2011). For not integrally closed rings, several results have been
recently obtained in Ben Nasr (2016), Ben Nasr and Jaballah (2020), and Jaballah and
Jarboui (2020). More approximations and exact results for the number of intermediate
rings can be found in Jaballah (2012), Jaballah (2013), and Jaballah (2016).

Several results on the links between the cardinality of O(R) and the Krull
dimension of the integral domain R have been obtained by several authors. Sev-
eral characterizations have been recently obtained by Mimouni for domains R with
|O(R)| = n+dim R,when n ≤ 8 for integrally closed domains, see (Mimouni 2009).
We establish in this work the corresponding result for general n. We also establish an
upper bound for the number of maximal ideals.

We obtain in Sect. 1 sharp upper bounds for the number of overrings of an FO
integrally closed domain in Theorem 1. This will allow to obtain a sharp lower bound
for the number of overrings of not necessarily integrally closed domains, Corollary 4.
The particular case where the number of overrings is prime will induce the existence
of a unique maximal subring of Frac(R), Proposition 5 and Example 6.

In Sect. 2, we obtain several approximations for the number of maximal ideals in
Theorem 8, Example 9 and Theorem 10; and the Krull dimension in Corollary 11.

Several inequalities relating the length, the Krull dimension and the number of
maximal ideals are obtained in the last section, Proposition 12 and Corollary 13.

All rings in this work are assumed to be commutativewith identity. The set of proper
prime ideals of the ring R is usually denoted by Spec(R), while Max(R) denotes the
set of its maximal ideals. The Krull dimension of R is defined to be the maximal length
of chains of prime R-ideals, and is denoted by dim(R).

Let P and P ′ be two primes of R such that P ⊂ P ′. The prime P ′ is said to
cover P (in Spec(R)), and we write P ′ cov P , if there is no prime Q of R such that
P ⊂ Q ⊂ P ′. A function α had been defined on Spec(R) by α(P) := 1 if P is
a maximal ideal of R, and α(P) := �P ′cov P (1 + α(P ′)) if P is not maximal. The
function α applied on the spectrum of an integrally closed FO domain R gives the
number of overrings of R, see Corollary 2.4 of Jaballah (2005). Indeed the number of
overrings is given by |O(R)| = α({0}),where {0} denotes the zero-ideal of R. For a
subset I of R, Z(I ) is usually defined to be the set of primes P of R such that I ⊆ P .

2 Approximating the number of overrings

We start with the main result of this work by establishing sharp upper bounds for
the number of overrings, when the dimension and the number of maximal ideals are
known. Notice that according to Theorem 1.5 of Gilmer (2003), an integrally closed
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domain D is an FO domain if and only if D is a finite-dimensional Prüfer domain with
finite maximal spectrum.

Theorem 1 Let R be a Prüfer domain with finite Krull dimension, dim(R), and finite
number m of maximal ideals. Then,

(
2m + dim(R) − 1

) ≤ |O(R)| ≤ (1 + dim(R))m .

Proof If dim(R) = 1, then the inequalities are trivially satisfied and are indeed equal-
ities. Let us assume by induction that the inequalities are satisfied for every Prüfer
FO domain of dimension d with 1 ≤ d ≤ n, and let R be a Prüfer FO domain of
dimension n + 1. We want to show that the inequalities hold true for R as well. That
is,

(
2m + n

) ≤ |O(R)| ≤ (1 + (n + 1))m .

Let {Pt |t = 1, . . . , s} be the set of prime ideals of R covering {0}. We have then,

|O(R)| = α(0) = �P cov {0}(1 + α(P)) = �s
t=1(1 + α(Pt )).

The domain R/Pt is a Prüfer domain. Each α(Pt ) depends on the set Z(Pt ) of
prime ideals of R containing Pt . The set Z(Pt ) is in bijective correspondence, respect-
ing inclusion, with the spectrum of R/Pt . Then α(Pt ) = α(0R/Pt ). Hence α(Pt ) =
|O(R/Pt )|. Using induction and letting nt = dim(R/Pt ) and mt = |Max(R/Pt )| ,
we obtain,

(
2mt − 1 + nt

) ≤ α(Pt ) = |O(R/Pt )|
≤ (1 + nt )

mt .

Then,

�s
t=1

(
2mt + nt

) ≤ �s
t=1(1 + α(Pt ))

≤ �s
t=1(1 + (1 + nt )

mt ).

Each nt ≤ n and nt0 = n for at least one of the indices since dim(R) = n + 1.
Hence,

n + �s
t=1(2

mt ) ≤ �s
t=1(2

mt + nt )

≤ |O(R)| = �s
t=1(1 + α(Pt ))

≤ �s
t=1(1 + (1 + nt )

mt )

≤ �s
t=1(1 + (1 + n)mt )

≤ �s
t=1(1 + (1 + n))mt .

Therefore,

n + �s
t=1(2

mt ) ≤ |O(R)| ≤ �s
t=1(2 + n)mt .
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Finally, using the fact that
∑

mt = m as Spec(R) is treed, we obtain,

n + 2m ≤ |O(R)| ≤ (2 + n)m .

This finishes the proof of the claimed result. ��

Remark 2 Theorem 1 shows that the Krull dimension or the number of maximal ideals
of a Prüfer domain is arbitrarily large, if and only if so is the number of overrings.

Remark 3 The inequalities of Theorem 1 contain several interesting particular cases.

1. If m = 1, then all terms of the inequalities are equal to |O(R)| = 1 + dim(R).
This is the case of valuation domains of finite dimension.

2. If dim(R) = 1, then all terms are equal to |O(R)| = 2m . This is the case of
semi-local one-dimensional Prüfer domains.

For integral domains that are not necessary integrally closed, we have the following
result.

Corollary 4 Let R be an FO integral domain with finite Krull dimension, dim(R), and
finite number m of maximal ideals. Then

|O(R)| ≥ (
2m + dim(R) − 1

)
.

Proof Let R′ be the integral closure of R and m′ = |Max(R′)| the number of maximal
ideals of R′. We have,

|O(R)| ≥ |O(R′)| ≥ (2m′ + dim(R′) − 1) ≥ (
2m + dim(R) − 1

)
.

��

The casewhere the number of overrings is a prime number is particularly interesting
and is presented in the next result and example.We say that T is amaximal subring of R
if T ⊂ R and there is no subring S of R such that T ⊂ S ⊂ R, i.e. [T , R] = {T , R}.
We will show in the next result that when the number of overring is prime, then
Frac(R) has a unique maximal subring.

Proposition 5 If R is an FO integrally closed domain, such that |O(R)| is a prime
number, then R has a unique height 1 prime ideal which is comparable to all prime
ideals of R, and Frac(R) has a unique maximal subring which is comparable to all
overrings of R.
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Proof Since |O(R)| = α({0}) = �P cov {0}(1 + α(P)) is a prime number, then there
is a unique term in the product �P cov {0}(1 + α(P)) and α({0}) = 1 + α(P), where
P is the only prime containing {0}. Hence P is contained in all non-zero primes of R.
Therefore RP contains all localizations RQ for non-zero primes Q of R. Then RP is
contained in R0 = Frac(R) and contains all other overrings as they are intersections
of such localizations RQ since R is a Prüfer domain. This means that RP is the unique
maximal subring of Frac(R). ��
Example 6 Let R be a Prüfer domain whose spectrum is isomorphic to a Y-graph as
in Fig. 1 below. Such an integral domain exists by Theorem 3.1 of Lewis (1973).
As a concrete example we can define R with the following pullback construction of
commutative rings, where Z is the ring of integers and Q is the field of rationals.

R 	 Z2Z ∩ Z3Z + xQ[x](x) → Z2Z ∩ Z3Z
↓ ↓

Q[x](x) → Q[x](x)/xQ[x](x) 	 Q

The domain Z2Z ∩ Z3Z is Prüfer as it is an overring of Z. Therefore the domain
Z2Z ∩Z3Z + xQ[x](x) is also a Prüfer domain by Theorem 2.1 of Bastida and Gilmer
(1973). The spectrum of Z2Z ∩ Z3Z + xQ[x](x) is

{{0}, M = xQ[x](x), P1 = M + 2 (Z2Z ∩ Z3Z) , P2 = M + 3 (Z2Z ∩ Z3Z)}.

Using Corollary 2.4 of Jaballah (2005), we obtain that the number of overrings is
α({0}) = 5. It is clear that the ideal M is the unique height 1 prime ideal of R. The
set of overrings is ordered as in Fig. 2 below. Hence the overring RM is the unique
maximal subring of Frac(R).

Given an integer n ≥ 3, we would like to know whether there exist a domain R
such that |O(R)| = n + dim R, see (Mimouni 2009). For the integrally closed case
and n = 2 we have the following result.

Fig. 1 Spec(R) ordered by
inclusion

123



90 Beitr Algebra Geom (2024) 65:85–96

Fig. 2 A unique maximal
subring

Remark 7 There is no integrally closed domain R of finite dimension such that
|O(R)| = 2 + dim(R).

Proof We necessarily have |O(R)| ≥ 1 + dim(R). We also know that |O(R)| =
1 + dim(R) if and only if R is a valuation domain by Theorem 7 of Mimouni and
Samman (2003). Now if R has at least two maximal ideals, then let P0 = {0} ⊂
P1 ⊂ . . . ⊂ Pd = M be a chain of prime ideals of length d = dim(R), where M is
a maximal ideals of R. Also let N be a second maximal ideal. Then R has at least
d + 3 overrings, namely RP0 ⊃ RP1 ⊃ . . . ⊃ RPd = RM , RN and RN ∩ RM . Hence
|O(R)| ≥ 3 + dim(R). Therefore there is no integrally closed domain R such that
|O(R)| = 2 + dim(R). ��

3 Maximal ideals, dimension and overrings

Motivated by Theorem 2.5 of (Mimouni 2009), where it is shown that if R is an integral
domain with finite Krull dimension, dim R, n an integer with n ≥ 2, and |O(R)| =
n + dim R, then |Max(R)| ≤ n − 1. We give in this section sharp approximations for
the number of maximal ideals.

Theorem 8 Let R be an integrally closed domain with finite Krull dimension d ≥ 1,
and let n be a positive integer. If |O(R)| = n + d, then the following statements hold
true:

1. The number of maximal ideals is finite and satisfies the inequalities:

logd+1(n + d) ≤ |Max(R)| ≤ log2(n + 1).

2. R has exactly m = logd+1(n+d) maximal ideals if and only if n = (d+1)m −d and
R is a Prüfer domain with spectrum isomorphic to a tree consisting of m chains each
containing d + 1 elements and meeting only at their respective minimal elements.

3. R has exactly m = log2(n +1) maximal ideals if and only if n = 2m −1 and R is a
Prüfer domain with spectrum isomorphic to a tree consisting of a chain containing
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d elements and connected at the top element with m additional edges to each of
the m maximal ideals.

Proof (1) Let d be the dimension of R, and let m be the number of maximal ideals.
Then by Theorem 1 we have,

2m + d − 1 ≤ |O(R)| = n + d.

Hence, 2m ≤ n + 1, and m ≤ log2(n + 1). On the other hand and using the same
theorem, we obtain,

n + d = |O(R)| ≤ (d + 1)m .

Therefore,

m ≥ logd+1(n + d).

Finally logd+1(n + d) ≤ m ≤ log2(n + 1) as required.

(2) If the number ofmaximal ideals ism = logd+1(n+d), then n+d = (d +1)m =
|O(R)|.But |O(R)| = α({0})byCorollary 2.4 of Jaballah (2005).α({0}) = (d+1)m is
only possible for Spec(R) isomorphic to a tree consisting of m chains each containing
d + 1 elements and meeting only at their respective minimal elements. On the other
hand if Spec(R) is isomorphic to such a tree, we have α({0}) = (d + 1)m = |O(R)|
as required.

(3) If the number of maximal ideals is m = log2(n + 1), then n = 2m − 1 and
|O(R)| = n + d = 2m + d − 1. But |O(R)| = α({0}) by Corollary 2.4 of Jaballah
(2005). Then α({0}) = 2m + d − 1 is only possible for Spec(R) isomorphic to a tree
consisting of a chain containing d elements and connected at the top with m additional
edges to each of the m maximal ideals.. On the other hand if Spec(R) isomorphic to
such a tree, we have α({0}) = 2m + d − 1 = |O(R)| as required. ��

If d = 1 in part (1) of Theorem 8, then the number of maximal ideals is necessarily
|Max(R)| = m = log2(n + 1). Hence n = 2m − 1 and |O(R)| = 1 + n = 2m .
Therefore if d = 1, then the only possible values for |O(R)| are powers of 2.

To give examples related to the previous results, recall that for each finite tree with a
unique minimal element, there exists a Prüfer domain whose spectrum ordered by the
usual set inclusion is isomorphic to the given tree, see Theorem 3.1 of Lewis (1973).
We give a concrete example that satisfies part (3) of Theorem 8.

Example 9 Let p1, p2, . . . , pm be m distinct prime numbers, consider the domain
T = Zp1Z ∩Zp2Z ∩ . . .∩ZpmZ and define R with the following pullback construction
of commutative rings:

R 	 T + xQ[x](x) → T
↓ ↓

Q[x](x) → Q[x](x)/xQ[x](x) 	 Q
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The integral domain T is a PID with Spec(T ) = {{0}, p1T , . . . , pm T }, which is
ordered as in Fig. 3 below. The domain T is Prüfer as it is an overring ofZ. By Theorem
2.1 of Bastida and Gilmer (1973), we can see that the integral domain T + xQ[x](x)

is also a Prüfer domain with a spectrum consisting of the prime ideals:

{0}, M = xQ[x](x), and Pi = M + pi T , 1 ≤ i ≤ m.

The integral domain R is a Prüfer domain with a spectrum obtained by gluing
Spec(T ) over Spec(Q[x](x)) and is ordered as in Fig. 3. The number of overrings is:

|O(R)| = α({0}) = 1 + 2m .

We also have as in part (3) of Theorem 8:

log2(n + 1) = log2(|O(R)| − d + 1)

= log2(1 + 2m − 2 + 1)

= m

= |Max(R)|.

The next result shows that the right hand inequality in part (1) of Theorem 8 is still
valid for not necessarily integrally closed domains.

Theorem 10 Let R be an integral domain with finite Krull dimension d and n a positive
integer. If |O(R)| = n + d, then the following statements hold true:

1. The number of maximal ideals is finite and satisfies the inequality:

|Max(R)| ≤ log2(n + 1).

2. R has exactly m = log2(n + 1) maximal ideals if and only if n = 2m − 1 and
R is a Prüfer domain with spectrum isomorphic to a tree consisting of a chain
containing d elements and connected at the top with m additional edges to each of
the m maximal ideals.

Fig. 3 Maximal ideals and overrings
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Proof (1) Let R′ be the integral closure of R. Let d = dim R. We have d = dim R =
dim R′ and |O(R)| = n +d ≥ |O(R′)|. Therefore |O(R′)| = n′ +d for some positive
integer n′ ≤ n. Using Theorem 8 we obtain:

|Max(R)| ≤ |Max(R′)| ≤ log2(n
′ + 1) ≤ log2(n + 1).

(2) The equality |Max(R)| = log2(n + 1) would imply the equality:

|Max(R)| = |Max(R′)| = log2(n
′ + 1) = log2(n + 1).

Therefore necessarily n′ = n and |O(R′)| = |O(R)|. Therefore R′ = R and R is
integrally closed. Therefore the statement follows directly from Theorem 8. ��

The following results gives lower and upper bounds for the Krull dimension, when
the number of overrings and the number maximal ideals are known.

Corollary 11 Let R be an integrally closed domain with only finitely many overrings,
and let m = |Max(R)|. Then the Krull dimension dim R of R satisfies the following
inequalities:

−1 + m
√|O(R)| ≤ dim(R) ≤ |O(R)| + 1 − 2m .

Proof Using the left inequality of Theorem 1, we have

(
2m − 1 + dim(R)

) ≤ |O(R)|.

This trivially implies that

dim(R) ≤ |O(R)| + 1 − 2m .

Then the required right hand inequality is proven. Now we use the right hand
inequality |O(R)| ≤ (1 + dim(R))m of the same theorem. We obtain

m
√|O(R)| ≤ (1 + dim(R)) .

This trivially gives the required left hand inequality:

−1 + m
√|O(R)| ≤ dim(R).

This concludes the proof for both inequalities. ��

123



94 Beitr Algebra Geom (2024) 65:85–96

4 Length, dimension and number of maximal ideals

The length l[R, S] of the set [R, S] of intermediate rings is defined to be the supremum
of the length of chains of intermediate rings, see (Jaballah 1999b). The length l[R] of
the ring R is defined to be l(O(R)). We can now give sharp bounds for the length and
the number of prime ideals of an integral domain.

Proposition 12 Let R be an integrally closed domain with only finitely many overrings.
Let m = |Max(R)| and d = dim(R), then the following inequalities are satisfied:

m + d − 1 ≤ l[R] = |Spec(R)| − 1 ≤ md.

Proof Since l[R] = |Spec(R)| − 1 by (Jaballah 1999a, Corollary 3.4), let us prove
the equivalent inequalities:

m + d ≤ |Spec(R)| ≤ md + 1.

It is clear that m + d ≤ |Spec(R)|. So we need only to prove that |Spec(R)| ≤
md + 1. If dim(R) = 1, then the inequality is trivially satisfied and is indeed an
equality. Let us assume by induction that the inequality is satisfied for every FO
integrally closed domain of dimension d = dim(R) with 1 ≤ d ≤ n, and let R be an
FO integrally closed domain of dimension n + 1. We want to show that

|Spec(R)| ≤ m(n + 1) + 1.

Let {Pt |t = 1, . . . , s} be the set of prime ideals of R covering {0}. We have then,

|Spec(R)| = 1 +
∑

P cov {0}

|Z(P)| = 1 +
s∑

t=1

|Z(Pt )|.

The set Z(Pt ) of prime ideals is order isomorphic to Spec(R/Pt ), where R/Pt is
an FO integrally closed domain of dimension ≤ n. Set mt = |Max(R/Pt )|. So by
induction we obtain,

|Z(Pt )| ≤ mt (dim(R/Pt )) + 1 ≤ mt n + 1.

We have
∑s

t=1 mt = m as Spec(R)\{0} is the disjoint union of the Z(Pt ) since
Spec(R) is treed. Then,

|Spec(R)| − 1 =
s∑

t=1

|Z(Pt )| ≤
s∑

t=1

(mt n + 1).

We have s ≤ m since Spec(R) is treed. Therefore,

|Spec(R)| − 1 ≤
s∑

t=1

(mt n + 1)
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≤
(

s∑

t=1

mt

)

n + s = mn + s

≤ mn + m.

That is,

|Spec(R)| ≤ mn + m + 1 = m(n + 1) + 1.

This finishes the proof of the claimed result. ��

Using the precedent Proposition 12, we can easily obtain the following approxima-
tions for the dimension and the number of maximal ideals in terms of the length.

Corollary 13 Let R be an integrally closed domain with only finitely many overrings.
Let m = |Max(R)| and assume that d = dim(R) is a positive integer. Then the
following inequalities are satisfied:

1. l[R]
d ≤ m ≤ l[R] + 1 − d.

2. l[R]
m ≤ d ≤ l[R] + 1 − m.

For not necessarily integrally closed integral domains, we have the following
inequality.

Remark 14 Let R be an integral domain of finite dimension d = dim(R), and only
finitely many m maximal ideals, then,

l[R] ≥ m + d − 1.
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