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Abstract
Given commutative, unital ringsA and B with a ring homomorphismA → B making
B free of finite rank as anA-module,we can ask for a “trace” or “norm”homomorphism
taking algebraic data over B to algebraic data overA. In this paper we we construct a
norm functor for the data of a quadratic algebra: given a locally-free rank-2 B-algebra
D, we produce a locally-free rank-2A-algebra NmB/A(D) in a way that is compatible
with other norm functors and which extends a known construction for étale quadratic
algebras. We also conjecture a relationship between discriminant algebras and this
new norm functor.
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1 Introduction

Given a homomorphism of commutative, unital rings A → B that makes B locally
free of finite rank n as an A-module, there is a zoo of “trace” or “norm” operations
taking algebraic data over B to algebraic data of the same type over A. For example:
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• Given an element b ∈ B, we can take its trace to get an element of A: working
locally so that B has an A-basis, represent multiplication by b as the action of
a square matrix over A, and then take the trace of that matrix. This gives us an
A-linear function TrB/A : B → A.

• Alternatively, we can take the norm of b by taking the determinant of the matrix
by which b acts. This gives a multiplicative function NmB/A : B → A.

• Given a line bundle (a locally free rank-1module)L overB, we can take its “norm”
to get NmB/A(L) = HomA(

∧nB,
∧nL), a line bundle overA. We can also apply

this norm operations to homomorphisms of line bundlesL → L′, and furthermore,
if an endomorphism f : L → L is given by multiplication by b ∈ B, then the
endomorphism NmB/A( f ) of NmB/A(L) is multiplication by the ordinary norm
of b in A.

• More generally, Ferrand (1998) shows how to take an arbitrary B-moduleM and
construct its “norm” NmB/A(M) as an A-module. In the special case that M is
a line bundle this functor agrees with the above definition of NmB/A(M), but in
general ifM is locally free it does not follow that NmB/A(M) is locally free.

In each case, there is a group or monoid operation that the trace or norm preserves.
The ordinary trace preserves addition: TrB/A(b+b′) = TrB/A(b)+TrB/A(b′), while
the ordinary norm preserves multiplication NmB/A(bb′) = NmB/A(b)NmB/A(b′).
On the other hand, the norm for line bundles and other modules is a functor that
preserves tensor products up to isomorphism:NmB/A(M⊗BM′) ∼= NmB/A(M)⊗A
NmB/A(M′).

In case the map of schemes π : Spec(B) → Spec(A) is étale of degree n (meaning
that after a faithfully-flat finite-presentation base change it becomes a trivial degree-n
cover of the form

∐n
i=1 Spec(A) → Spec(A)), then for any sheaf G of abelian groups

on the big étale site over Spec(A) we have a “trace” homomorphism π∗π∗G → G,
for which taking sections over Spec(A) gives us a homomorphism G(B) → G(A).
If G is the additive group Ga,A, represented by the scheme Spec(A[x]), then this
homomorphism is just the ordinary trace map B → A. If G is the multiplicative group
Gm,A represented by Spec(A[x, x−1]), thenwe get the normmap on unitsB× → A×.
It is not hard to extend the argument in Milne (2016, Lemma V.1.12) to sheaves of
commutative monoids, giving us the full multiplicative norm map B → A.

Meanwhile, for the norm of line bundles, one way to think about what is going on
in the case of A → B étale is that line bundles are torsors for Gm , and so we are
applying H1(Spec(A), ·) to the “trace” homomorphism π∗π∗

Gm,A → Gm,A, giving
a function

H1(Spec(A), π∗π∗
Gm,A) → H1(Spec(A),Gm,A)

i.e. H1(Spec(B),Gm,B) → H1(Spec(A),Gm,A)

sending the isomorphism class of a line bundle over B to the isomorphism class of its
norm as a line bundle overA. This, however, forgets the functorial nature of the norm
operation on line bundles. Meanwhile, Ferrand’s extension of the norm functor to all
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B-modules is defined in terms of a universal property (NmB/A(M) is the universalA-
module equipped with a homogeneous degree-n polynomial lawM → NmB/A(M))
and does not readily admit a cohomological interpretation even in the étale case.

However, Waterhouse (1987) uses the cohomological method to define a “trace”
operation for étale quadratic algebras, since they are parameterized by S2-torsors.
Explicitly, if A → B is a rank-n étale algebra in which 2 is a unit, we can describe
this “trace” operation as sending each étale quadratic B-algebra of the form B[√d],
with d ∈ B×, to the étale quadratic A-algebra A [√

NmB/A(d)
]
. It is the goal of

the present paper to extend this construction to a norm functor from the category of
quadratic B-algebras to the category of quadratic A-algebras, regardless of whether
any of the algebras are étale or whether 2 is a unit. This norm operation is defined
for quadratic algebras with a chosen generator in Definition 3.1, made functorial in
Proposition 3.9, and extended to arbitrary quadratic algebras in Definition 4.1.

The main theorems about this norm functor for quadratic algebras are:

1. It commutes with base change (Theorem 4.3).
2. It is “transitive” in the sense that for a tower of algebras A → B → C, taking

the norm of a quadratic C-algebra to get a quadratic B-algebra, then taking the
norm again to get a quadraticA-algebra, gives the same result as regarding C as an
A-algebra and applying the norm operation once (Theorem 4.4).

3. It extends the notion of trace of an S2-torsor in the case that the algebras are étale
(Theorem 4.8).

4. For the unique extension of S2-torsor addition to a monoid operation ∗ on all
quadratic algebras characterized by Voight (2016), the norm functor is a monoid
homomorphism with respect to ∗ (Theorem 4.5).

5. Taking the norm of a quadratic algebra commutes with taking its determinant line
bundle and discriminant bilinear form (Theorems 4.6, 4.7).

However, it is still an open question whether this notion of the norm of a quadratic
algebra is compatible with the notion of discriminant algebra from Biesel and Gioia
(2016) in the sense of Waterhouse (1987); see Conjecture 4.9.

2 Finite-rank and quadratic algebras

We begin with background and notation for concepts related to rank-n algebras in
general and quadratic algebras in particular. In the following, all rings and alge-
bras are commutative and unital, and are denoted by calligraphic capital letters:
A,B, C,D, . . . .

Definition 2.1 Let A and B be rings and A → B a ring homomorphism, so that B is
anA-algebra. We say that B is a rank-n A-algebra if B is projective of constant rank
n as an A-module; equivalently, if there exist a1, . . . , ak ∈ A together generating the
unit ideal such that each localization Bai is isomorphic to A⊕n

ai as Aai -modules.

Definition 2.2 A quadratic A-algebra D is an A-algebra of rank 2. If D is equipped
with a choice of algebra generator x , so that D ∼= A[x]/(x2 − t x + n) for some
elements t, n ∈ A (the trace and norm of x ∈ D), then we call D a based quadratic
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algebra. As a based quadratic algebra is determined up to unique isomorphism by the
ordered pair (t, n), we follow Loos (2007) in using the notation

((t : n]]A:=A[x]/(x2 − t x + n)

for based quadratic algebras (the subscript ring may be omitted if it is clear from
context).

For example, ((1 : 0]]A = A[x]/(x2 − x) ∼= A × A with generating element
(1, 0), and ((0 : 0]]A ∼= A[ε]/(ε2) with generator ε. Note, not every quadratic algebra
admits a singleton generating set, but every quadratic algebra does so locally, so we
can reduce claims about general quadratic algebras to claims about based quadratic
algebras. This is how we will construct norms of quadratic algebras: first for based
quadratic algebras in Sect. 3, then for general quadratic algebras in Sect. 4.

In Definition 2.2, we referred to the trace and norm of an element. We will rarely
need the notion of trace of a general element of a rank-n algebra, but we will make
frequent use of elements’ norms. Because there are somany notions of “norm”wewill
be using in this paper, we will reserve the notation NmB/A for norm functors, applied
to mathematical objects such as line bundles and other modules, and soon quadratic
algebras. To refer to the ordinary norm function for a rank-n algebra A → B, we use
the notation sn as defined below:

Definition 2.3 Let A → B be a rank-n algebra. Then there is a canonical function
sn : B → A, called the norm, defined as follows:

1. If B has a basis as an A-module, and if b is an element of B, then its norm sn(b)
is the determinant of the map B → B given by multiplication by b (which is
independent of choice of basis).

2. If B is a general rank-n A-algebra, and if b ∈ B, then we can define the norm of b
in any localization Ba that is free as anAa-module. These values of sn(b) in each
such Aa glue to give a single well-defined value for sn(b) ∈ A.

Remark 2.4 The norm function sn : B → A is not generally a ring homomorphism,
but rather has the property that if a ∈ A is any element of the base ring, then sn(ab) =
ansn(b). Furthermore, the calculation of sn(b) commutes with base change, making
sn an example of a polynomial law in the sense of Roby (1963). For us, the upshot
of sn being a polynomial law is that it automatically comes with polarized versions
sk1,k2,...,km (b1, b2, . . . bm) for each list of natural numbers k1 + · · · + km = n, defined
by

sk1,k2,...,km (b1, b2, . . . bm):= the coefficient ofλk11 λ
k2
2 . . . λ

km
m in

sn(λ1b1 + λ2b2 + · · · + λmbm)
,

the latter of which is calculated via the norm map of the base changed rank-n algebra
A[λ1, . . . , λm] → B[λ1, . . . , λm]. Phrased another way, the sk1,...,km are defined so
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that we have the following identity:

sn(λ1b1 + · · · + λmbm) =
∑

k1,...,km∈N
k1+···+km=n

λ
k1
1 . . . λkmm sk1,...,km (b1, . . . , bm).

For example, the coefficients of the characteristic polynomial of an element b ∈ B
can be expressed in terms of the polarized forms of the norm function:

sn(λ − b) = sn(λ1 + μb)|μ=−1

=
n∑

k=0

λkμn−ksk,n−k(1, b)

∣
∣
∣
∣
∣
μ=−1

=
n∑

k=0

λk(−1)n−ksk,n−k(1, b).

In particular, the trace of b ∈ B can be calculated as the unique element Tr(b) ∈ A
such that, in every localization making B a free A-module, we have Tr(b)/1 equal to
the trace of thematrix representingmultiplication by b/1, or in terms of the polynomial
law sn it can be expressed as the polarized form s1,n−1(b, 1).

We now prove some of the basic results about the norm functions sn that we will
need later:

Lemma 2.5 The norm functions are multiplicative: IfA → B is a rank-n algebra and
b, b′ ∈ B, then sn(bb′) = sn(b)sn(b′) in A.

Proof We can check locally, so assume that B has an A-basis. Then the n × n matrix
by which multiplication by bb′ acts, with respect to this basis, is the product of the
matrices by which b and b′ act. Taking determinants of both sides, and since the
determinant is multiplicative, we obtain sn(bb′) = sn(b)sn(b′). 
�
Lemma 2.6 The norm functions are transitive: Let A → B be a rank-n algebra and
B → C be a rank-m algebra, so that C is also a rank-mn algebra. For all c ∈ C, we
have sn(sm(c)) = smn(c) as elements of A.

Proof We can work locally on A, so assume that B is free as an A-module. By
Grothendieck (1961, Prop. 6.1.12 on p. 113), since A → B is finite we can also
assume that C is free as a B-module by localizing A. So assume that B is free of rank
n as an A-module and that C is free of rank m as a B-module. Choose an A-basis
θ1, . . . , θn for B and a B-basis φ1, . . . , φm for C.

First consider the m × m matrix (Mi j )i, j with elements in B representing
multiplication by c with respect to basis φ1, . . . , φm , i.e.

cφi =
m∑

j=1

Mi jφ j .
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Then for eachMi j ∈ B, consider the n×nmatrix (Pi jk�)k� representingmultiplication
by Mi j with respect to basis θ1, . . . , θn , i.e.

Mi jθk =
n∑

�=1

Pi jk�θ�.

Then the mn × mn matrix (Pi jk�)(i,k),( j,�), with rows and columns indexed by
{1, . . . ,m} × {1, . . . , n}, represents multiplication by c with respect to the A-basis
φ1θ1, φ2θ1, . . . , φmθn for C:

cφiθk =
m∑

j=1

Mi jφ jθk

=
m∑

j=1

n∑

�=1

Pi jk�φ jθ�

=
∑

( j,�)∈{1,...,m}×{1,...,n}
Pi jk�φ jθ�.

We can regard (Pi jk�)(i,k),( j,�) as an m × m block matrix, where the n × n blocks
that represent multiplication by Mi j all commute with each other (since the elements
Mi j ∈ B all commute, as B is a commutative algebra). Then by Kovacs et al. (1999),
the determinant of (Pi jk�)(i,k),( j,�) is equal to the determinant of the n×nmatrix given
by formally applying them×m determinant formula to the blocks of (Pi jk�)(i,k),( j,�).
In other words,

smn(c) = sn(det((Mi j )i, j )) = sn(sm(c)).


�
Here is a collection of results about the polarized forms of sn :

Lemma 2.7 Let A → B be a rank-n algebra, let n = k1 + · · · + km be a partition of
n, and let b1, . . . , bm ∈ B. Then the following identities hold:

1. (Reordering) If σ : {1, . . . ,m} → {1, . . . ,m} is any permutation, then

sk1,...,km (b1, . . . , bm) = skσ(1),...,kσ(m)
(bσ(1), . . . , bσ(m)).

2. (Homogeneity) If a ∈ A, then

sk1,...,km (ab1, . . . , bm) = ak1sk1,...,km (b1, . . . , bm).

3. (Degeneracy) If k1 = 0, then

sk1,k2,...,km (b1, b2, . . . , bm) = sk2,...,km (b2, . . . , bm).
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4. (Multiplicativity) If b′ ∈ B, then

sk1,...,km (b′b1, . . . , b′bm) = sn(b
′)sk1,...,km (b1, . . . , bm).

Proof 1. (Reordering) This follows from comparing the coefficients of λ
k1
1 . . . λ

km
m =

λ
kσ(1)
σ (1) . . . λ

kσ(m)

σ (m) in sn(λ1b1 + · · · + λmbm) = sn(λσ(1)bσ(1) + · · · + λσ(m)bσ(m)).

2. (Homogeneity) The quantity sk1,...,km (ab1, . . . , bm) is the coefficient of λ
k1
1 . . . λ

km
m

in

sn(aλ1b1 + λ2b2 + · · · + λmbm) =
∑

�1,...,�m∈N
�1+···+�m=n

(aλ1)
�1λ

�2
2 . . . λ

�m
m s�1,...,�m (b1, . . . , bm),

so the coefficient of λ
k1
1 λ

k2
2 . . . λ

km
m is ak1sk1,...,km (b1, . . . , bm), as desired.

3. (Degeneracy) If k1 = 0, then we are looking for the coefficient of λ
k2
2 . . . λ

km
m in

sn(λ1b1 + · · · + λmbm), which since it does not involve λ1 is unchanged if we
base change to give λ1 a concrete value. In particular, we can base change along
A[λ1, . . . , λm] → A[λ2, . . . , λm] : λ1 �→ 0, giving us the coefficient ofλk22 . . . λ

km
m

in sn(λ2b2 + · · · + λmbm), namely, sk2,...,km (b2, . . . , bm).
4. (Multiplicativity) We have that sk1,...,km (b′b1, . . . , b′bm) is the coefficient of

λ
k1
1 . . . λ

km
m in

sn(λ1b
′b1 + · · · + λmb

′bm) = sn(b
′)sn(λ1b1 + · · · + λmbm)

byLemma2.5.The coefficient ofλk11 . . . λ
km
m is therefore sn(b′)sk1,...,km (b1, . . . , bm).


�
Nowwe consider the various senses in which rank-n algebras overA form not just a

set of isomorphism classes, but a category. In general only considering isomorphisms
ofA-algebras is too restrictive, but arbitrary homomorphisms are too ill-behaved; the
right notion for us is that of a universally norm-preserving homomorphism:

Definition 2.8 Let A be a ring and B,B′ two A-algebras of rank n. An A-algebra
homomorphismB → B′ is called norm-preserving if, togetherwith the norm functions
sn , the resulting triangle of functions

B → B′
↘ ↙

A

commutes. We say that the homomorphism is universally norm-preserving if it is
norm-preserving and remains so after arbitrary base change.

Example 2.9 If A is a nonzero ring, then the A-algebra homomorphism A2 → A2

sending (a, a′) to (a, a) is not norm-preserving, since (1, 0) has norm 0 and (1, 1) has
norm 1. Isomorphisms are always universally norm-preserving, but the converse is not
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always true: for example, the inclusion of quadratic Z-algebras Z[√8] ↪→ Z[√2] is
universally norm-preserving but not an isomorphism.

Lemma 2.10 Let A be a ring and ((t : n]]A and ((t ′ : n′]]A be two based quadratic
algebras. For a homomorphism f : ((t ′ : n′]]A → ((t : n]]A sending x �→ ux + c,
the following are equivalent:

1. f is universally norm-preserving,
2. f is norm-preserving,
3. t ′ = ut + 2c and n′ = u2n + uct + c2.

Proof (1) �⇒ (2) is trivial. For (2) �⇒ (3), suppose that f is norm-preserving.
Then the norms of x ∈ ((t ′ : n′]] and f (x) = ux + c ∈ ((t : n]]A are equal; namely

n′ = s2(ux + c)

= s2(ux) + s1,1(ux, c) + s2(c)

= u2s2(x) + ucs1,1(x, 1) + c2s2(1)

= u2n + uct + c2.

Now note that in any quadratic algebra, the trace of any element d is s1,1(d, 1) =
s2(d + 1) − s2(d) − 1, so norm-preserving maps are also trace-preserving. Therefore
the traces of x ∈ ((t ′ : n′]] and f (x) = ux + c ∈ ((t : n]]A are also equal:

t ′ = s1,1(ux + c, 1)

= us1,1(x, 1) + cs1,1(1, 1)

= ut + 2c.

Finally, for (3) �⇒ (1) suppose that t ′ = ut + 2c and n′ = u2n + uct + c2, so that
pux+c(λ) = λ2 − t ′λ + n′ is the characteristic polynomial of ux + c ∈ ((t : n]]. But
for any element b of any rank-n A-algebraB, the homomorphismA[x]/(pb(x)) → B
sending x to b is universally norm-preserving by Biesel and Gioia (2016, Prop. 7.1).


�
Remark 2.11 To specify a universally norm-preserving homomorphism ((t ′ : n′]] →
((t : n]], it suffices to find an element ux + c ∈ ((t : n]] with trace ut + 2c = t ′ and
norm u2n+uc+c2 = n′. Then the characteristic polynomial of ux +c is pux+c(λ) =
λ2 − t ′λ + n′, so because pux+c(ux + c) = 0 we get an algebra homomorphism
((t ′ : n′]] = A[x]/(x2 − t ′x + n′) → ((t : n]] sending x �→ ux + c, which is
automatically universally norm-preserving by Lemma 2.10. For the homomorphism
to be an isomorphism, it is equivalent to require that u be a unit in A.

3 Norms of based quadratic algebras

We will now be considering rank-n algebras A → B and the relationships between
quadratic algebras overA and over B. As a general convention for ease of context, we
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will tend to use lowercase letters like s, t,m, u, c, . . . for elements of A, and capital
letters like S, T , M,U ,C, . . . for elements of B.

As a bit of motivation for the definition of the norm of a quadratic algebra, suppose
we have a rank-n algebra A → B and a based quadratic B-algebra ((T : N ]]B. We
want the discriminant of the norm of ((T : N ]] to be the norm of the discriminant of
((T : N ]]B, namely sn(T 2 − 4N ). So if we have NmB/A((T : N ]]B = ((t : m]]A, we
had better have the identity

t2 − 4m = sn(T
2 − 4N ).

Is there a canonical way to write sn(T 2 − 4N ) as a square minus a multiple of four?
Yes: we can use the polarized forms of sn to expand out sn(T 2 − 4N ):

sn(−4N + T 2) =
n∑

k=0

sk,n−k(−4N , T 2)

=
n∑

k=0

(−4)ksk,n−k(N , T 2)

= sn(T
2) +

n∑

k=1

(−4)ksk,n−k(N , T 2),

since s0,n(N , T 2) = sn(T
2)by Lemma 2.7 (degeneracy),

= [
sn(T )

]2 − 4

[
n∑

k=1

(−4)k−1sk,n−k(N , T 2)

]

,

where we have used Lemma 2.5 to rewrite sn(T 2) as sn(T )2. If we then let t = sn(T )

and m = ∑n
k=1(−4)k−1sk,n−k(N , T 2), we have t2 − 4m = sn(T 2 − 4N ) as desired,

and ((t : m]]A is a good candidate for the norm of ((T : N ]]B. That is indeed the
definition we will use for the norm of a based quadratic algebra:

Definition 3.1 Let B be a rank-n A-algebra, and let ((T : N ]]B be a based quadratic
B-algebra. Then we define the norm of ((T : N ]]B to be the based quadraticA-algebra

NmB/A((T : N ]]B:=
((

sn(T ) :
n∑

k=1

(−4)k−1sk,n−k(N , T 2)

]]

A
.

Remark 3.2 Noting that over the polynomial ring A[λ] we have

sn(λN + T 2) =
n∑

k=0

λksk,n−k(N , T 2),
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and therefore

n∑

k=1

λk−1sk,n−k(N , T 2) = sn(λN + T 2) − sn(T 2)

λ
,

we will sometimes write the norm of ((T : N ]]B as

NmB/A((T : N ]]B =
((

sn(T ) : sn(λN + T 2) − sn(T 2)

λ

∣
∣
∣
∣
λ=−4

]]

A

to denote that the norm entry can be calculated as that fraction in A[λ] and then
evaluated in A along the map A[λ] → A : λ �→ −4. We will often work with
this kind of expression, since it makes some identities clearer, but there is also a

danger: it is tempting, in expressions of the form p(c,λ)
λ

∣
∣
∣
λ=c

where the numerator

is some polynomial in λ that involves c in some of its coefficients, to think “Since
we are setting λ = c at the end anyway, we might as well replace the c with λ to

get p(λ,λ)
λ

∣
∣
∣
λ=c

.” However, if c is a zerodivisor these quantities may not be equal; for

example, working over Z/6Z we have

(λ + 2)(λ + 3)

λ

∣
∣
∣
∣
λ=2

= (λ + 5)|λ=2 = 1,

but

(λ + λ)(λ + 3)

λ

∣
∣
∣
∣
λ=2

= 2(λ + 3)|λ=2 = 4.

However, if upon replacing c with another formal variable ν, the polynomial p(ν, λ)

is still divisible by λ, say as p(ν,λ)
λ

= q(ν, λ), then we have

p(c, λ)

λ

∣
∣
∣
∣
λ=c

= q(c, c) = p(λ, λ)

λ

∣
∣
∣
∣
λ=c

.

We will therefore only use the technique of replacing extra c’s with λ’s when the
divisibility by λ remains even if c is replaced by a formal indeterminate.

Example 3.3 Let A be a ring in which 2 is a unit, such as a number field. Then by
completing the square, all based quadratic algebras overA can be written in the form
A[√d] = A[x]/(x2 − d) = ((0 : −d]]A. What are the norms of based quadratic
algebras of this type? If we have a rank-n algebra A → B (such as a degree-n
extension of number fields), and a quadratic B-algebra B[√D], then its norm is the
quadratic A-algebra

NmB/A((0 : −D]]B =
((

sn(0) : sn(λ(−D) + (0)2) − sn((0)2)

λ

∣
∣
∣
∣
λ=−4

]]

A
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=
((

0 : sn(−λD)

λ

∣
∣
∣
∣
λ=−4

]]

A

=
((

0 : (−1)nλn−1sn(D)

∣
∣
∣
λ=−4

]]

A
= ((0 : −4n−1sn(D)]]A
= A[

√
4n−1sn(D)] = A[2n−1

√
sn(D)]

∼= A[√sn(D)]

since 2 is a unit in A. So the norm of B[√D] is A[√sn(D)].
Example 3.4 At the other extreme, suppose that we have a rank-n algebra A → B in
which 2 = 0, and let D be a quadratic Artin-Schreier extension of B:

D = B[x]/(x2 − x + N ) = ((1 : N ]]B.

Then the norm of D is the quadratic A-algebra

NmB/A((1 : N ]]B =
((

sn(1) :
n∑

k=1

(−4)k−1sk,n−k(N , 12)

]]

A
= ((1 : s1,n−1(N , 1)]]A since(−4)k−1 = 0 for k > 1

= ((1 : Tr(N )]]A.

Therefore the norm of B[x]/(x2 − x + N ) is A[x]/(x2 − x + Tr(N )).

Next we have a few examples that begin to show how this norm operation is related
to the monoid operation ∗ on quadratic algebras in Voight (2016), which is defined
locally for based algebras by

A[x]/(x2 − sx + m) ∗ A[x]/(x2 − t x + n):=
A[x]/(x2 − (st)x + (mt2 + ns2 − 4mn)), (1)

i.e. ((s : m]] ∗ ((t : n]]:= ((st : mt2 + ns2 − 4mn]]. This monoid operation is (up to
isomorphism) commutative and associative,with a two-sided identity given by the split
algebra ((1 : 0]]A ∼= A × A and a zero (absorbing) element given by the degenerate
algebra ((0 : 0]]A ∼= A[ε]/(ε2).
Example 3.5 If A → B is an arbitrary rank-n algebra, then we have NmB/A
((1 : 0]]B = ((1 : 0]]A and NmB/A((0 : 0]]B = ((0 : 0]]A. In other words, the norm of
the split quadratic algebra B×B is again the split algebraA×A, and the norm of the
degenerate quadratic algebra B[ε]/(ε2) is the degenerate algebra A[ε]/(ε2). This is
part of what it means for the norm functor on quadratic algebras to be a homomorphism
of monoids-with-zero under ∗.
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We will prove in Theorem 4.5 that the norm functor is truly a monoid homomor-
phism, and therewewill use the following example showing how themonoid operation
∗ is actually a special case of the norm:

Example 3.6 Given two based quadratic A-algebras ((S : M]]A and ((T : N ]]A, we
can consider their ordinary cartesian product as a based quadratic A × A-algebra

((S : M]]A × ((T : N ]]A ∼= (((S, T ) : (M, N )]]A×A.

SinceA → A×A is an algebra of rank n = 2, we can take the norm of this quadratic
A × A algebra to get a quadratic A-algebra:

Nm(((S, T ) : (M, N )]] = ((s2((S, T )) : s1,1((M, N ), (S, T )2) − 4s2((M, N ))]]

To evaluate these entries we look at the matrices by which (S, T ) and (M, N ) act
on A × A with respect to the standard basis {(1, 0), (0, 1)}. They act by diagonal
matrices:

(S, T ) :
(
S 0
0 T

)

(M, N ) :
(
M 0
0 N

)

so we have s2((S, T )) = det

(
S 0
0 T

)

= ST and s2((M, N )) = det

(
M 0
0 N

)

= MN .

We also need s1,1((M, N ), (S, T )2), which is the coefficient of λμ in s2(λ(M, N )+
μ(S, T )2), i.e. the coefficient of λμ in

det

(
λM + μS2 0

0 λN + μT 2

)

= (λM + μS2)(λN + μT 2)

= λ2MN + λμ(MT 2 + NS2) + μ2S2T 2,

so s1,1((M, N ), (S, T )2) = MT 2+NS2. Therefore the norm of ((S : M]]×((T : N ]]
is

Nm(((S, T ) : (M, N )]] = ((s2((S, T )) : s1,1((M, N ), (S, T )2) − 4s2((M, N ))]]
= ((ST : MT 2 + NS2 − 4MN ]],

which is the composite quadratic algebra ((S : M]] ∗ ((T : N ]] defined by the monoid
operation ∗ in Eq. (1). So the norm of a product of two quadratic algebras is their
composite under the monoid operation ∗. Similarly, the norm of the quadratic A ×
A × A-algebra ((S : M]] × ((T : N ]] × ((U : P]] would be the quadratic A-algebra
((S : M]] ∗ ((T : N ]] ∗ ((U : P]], and so on.

Nextwe show that the normoperation is invariant under base change and is transitive
along towers of algebras:
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Theorem 3.7 The norm operation on based quadratic algebras commutes with base
change: Let A → B be a rank-n algebra, and let ((T : N ]]B be a based quadratic
B-algebra. If C is any A-algebra, then C → C ⊗A B is another rank-n algebra, and

Nm(C⊗AB)/C((T : N ]] ∼= C ⊗A NmB/A((T : N ]].

Proof Since sn is a polynomial law, it and its polarized forms commute with base
change, so the two based quadratic C-algebras agree exactly. 
�
Theorem 3.8 The norm operation on based quadratic algebras is transitive: IfA → B
is a rank-n algebra and B → C is a rank-m algebra, and if ((T : N ]]C is a based
quadratic C-algebra, then NmC/A(((T : N ]]C) ∼= NmB/A(NmC/B(((T : N ]]C)) as
based quadratic A-algebras.

Proof We check that the traces and norms of the canonical generators of NmC/A((T :
N ]] and NmB/ANmC/B((T : N ]] agree. First, the traces of x ∈ NmB/ANmC/B((T :
N ]] and x ∈ NmC/A((T : N ]] are sn(sm(T )) = smn(T ). Second, the norm of x ∈
NmB/ANmC/B((T : N ]] is

sn

(

μ
[
sm (λN+T 2)−sm (T 2)

λ

]

λ=−4
+ sm(T )2

)

− sn(sm(T )2)

μ

∣
∣
∣
∣
∣
∣
∣
∣
μ=−4

,

in which, since we are setting μ equal to − 4 anyway, we might as well set λ equal to

μ instead of − 4 :

=
sn

(

μ
[
sm (λN+T 2)−sm (T 2)

λ

]

λ=μ
+ sm(T )2

)

− sn(sm(T )2)

μ

∣
∣
∣
∣
∣
∣
∣
∣
μ=−4

=
sn

(
μ

[
sm (μN+T 2)−sm (T 2)

μ

]
+ sm(T )2

)
− sn(sm(T )2)

μ

∣
∣
∣
∣
∣
∣
μ=−4

= sn
([sm(μN + T 2) − sm(T 2)] + sm(T )2

) − sn(sm(T )2)

μ

∣
∣
∣
∣
∣
μ=−4

= smn(μN + T 2) − smn(T 2)

μ

∣
∣
∣
∣
μ=−4

,

which is the norm of x in NmC/A((T : N ]], as desired. 
�
Theorem 3.8 may be understood as a kind of functoriality of the norm map with

respect to the underlying algebras. In order to extend the normoperation to all quadratic
algebras, we will also need a functoriality with respect to isomorphisms of based
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quadratic algebras. In Proposition 3.9 we define how the norm map acts on general
norm-preserving homomorphisms of quadratic algebras, and in Proposition 3.11 we
prove that this norm map preserves composition of homomorphisms. The combina-
torial argument at the heart of Proposition 3.9 is the key result that makes this norm
functor well-defined.

Proposition 3.9 Let B be a rank-n A-algebra, and let ((T : N ]] and ((T ′ : N ′]]
be based quadratic B-algebras. If we have an isomorphism (resp. norm-preserving
homomorphism) of B-algebras

f : ((T ′ : N ′]] → ((T : N ]]
: x �→ Ux + C,

then we also have an isomorphism (resp. norm-preserving homomorphism)

NmB/A( f ) : NmB/A((T ′ : N ′]] → NmB/A((T : N ]]

: x �→ sn(U )x +
n∑

k=1

2k−1sk,n−k(C,UT ). (2)

We will also write the constant term above as sn(λC+UT )−sn(UT )
λ

∣
∣
∣
λ=2

, to indicate that

it is the image under the map A[λ] → A : λ �→ 2 of the element (sn(λC + UT ) −
sn(UT ))/λ.

Proof We prove the more general claim in the case that f is a norm-preserving homo-
morphism, noting that if f is an isomorphism, thenU is a unit in B, so sn(U ) is a unit
in A and NmB/A( f ) is an isomorphism too.

First let T̃ = UT and Ñ = U 2N . We can then decompose the norm-preserving
map ((T ′ : N ′]] → ((T : N ]] into two maps ((T ′ : N ′]] → ((T̃ : Ñ ]] sending
x �→ x +C and ((T̃ : Ñ ]] → ((T : N ]] sending x �→ Ux . We will show immediately
after this proposition that the norm operation on norm-preserving homomorphisms
is functorial; it therefore suffices to show that Eq. (2) provides a norm-preserving
homomorphism between the norm algebras in the cases that C = 0 or U = 1.

First consider the caseC = 0, so that we are considering the map ((UT : U 2N ]] →
((T : N ]] sending x �→ Ux . We must show that the map Nm((UT : U 2N ]] →
Nm((T : N ]] sending x �→ sn(U )x is also norm-preserving. Indeed, the trace of
x ∈ Nm((UT : U 2N ]] is sn(UT ) = sn(U )sn(T ), which is also the trace of sn(U )x ∈
Nm((T : N ]]. And their norms match as well: the norm of x ∈ Nm((UT : U 2N ]] is

n∑

k=1

(−4)k−1sk,n−k(U
2N , (UT )2) =

n∑

k=1

(−4)k−1sk,n−k(U
2N ,U 2T 2)

=
n∑

k=1

(−4)k−1sn(U
2)sk,n−k(N , T 2)
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= sn(U )2
n∑

k=1

(−4)k−1sk,n−k(N , T 2),

which is the norm of sn(U )x ∈ Nm((T : N ]].
Now we consider the case U = 1 but C �= 0, so that we are considering the

norm-preserving map ((T + 2C : N + CT + C2]] → ((T : N ]] sending x �→ x +C ,
and we wish to show that the map Nm((T + 2C : N + CT + C2]] → Nm((T : N ]]
sending x �→ x + ∑n

k=1 2
k−1sk,n−k(C, T ) is also norm-preserving. The trace of x in

Nm((T + 2C : N + CT + C2]] is

sn(T + 2C) =
n∑

k=0

sk,n−k(2C, T )

=
n∑

k=0

2ksk,n−k(C, T ) by homogeneity

= sn(T ) + 2
n∑

k=1

2k−1sk,n−k(C, T )

which equals the trace of x + ∑n
k=1 2

k−1sk,n−k(C, T ) in Nm((T : N ]] as desired.
Comparing norms will be more difficult; let us start by considering the norm of x

in Nm((T ′ : N ′]] = Nm((T + 2C : N + CT + C2]], which is

sn(μ(N + CT + C2) + (T + 2C)2) − sn((T + 2C)2)

μ

∣
∣
∣
∣
μ=−4

= sn(μN + μCT + μC2 + T 2 + 4CT + 4C2) − sn(T 2 + 4CT + 4C2)

μ

∣
∣
∣
∣
μ=−4

If we replace each instance of 4 in the numerator by a new variable ν, then the result
is still divisible by μ and so we may set ν = −μ without changing the final value of
the quotient:

= sn(μN + μCT + μC2 + T 2 − μCT − μC2) − sn(T 2 − μCT − μC2)

μ

∣
∣
∣
∣
μ=−4

= sn(μN + T 2) − sn(T 2 − μCT − μC2)

μ

∣
∣
∣
∣
μ=−4

.

It will be convenient to evaluate the result instead by first replacing μ with −λ2 and
then setting λ = 2, so all together the norm of x in Nm((T ′ : N ′]] is

sn(T 2 + λ2CT + λ2C2) − sn(T 2 − λ2N )

λ2

∣
∣
∣
∣
λ=2

.
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Now let us consider the norm of x + sn(λC+T )−sn(T )
λ

∣
∣
∣
λ=2

in Nm((T : N ]] =
((

sn(T ) : sn(μN+T 2)−sn(T 2)
μ

∣
∣
∣
μ=−4

]]

, which is

sn(μN + T 2) − sn(T 2)

μ

∣
∣
∣
∣
∣
μ=−4

+ sn(T )
sn(λC + T ) − sn(T )

λ

∣
∣
∣
∣
λ=2

+
(
sn(λC + T ) − sn(T )

λ

∣
∣
∣
∣
λ=2

)2

which we can expand as a single expression in λ as

=
⎛

⎝
sn(T 2) − sn(T 2 − λ2N )

+ λsn(λCT + T 2) − λsn(T 2)

+ sn(λ2C2 + 2λCT + T 2) − 2sn(λCT + T 2) + sn(T 2)

⎞

⎠ /λ2

∣
∣
∣
∣
∣
∣
λ=2

.

The difference between the norm of x in Nm((T ′ : N ′]] and the norm of its image
in Nm((T : N ]] is therefore

⎛

⎝
sn(T 2) − sn(T 2 + λ2CT + λ2C2)

+ λsn(λCT + T 2) − λsn(T 2)

+ sn(λ2C2 + 2λCT + T 2) − 2sn(λCT + T 2) + sn(T 2)

⎞

⎠ /λ2

∣
∣
∣
∣
∣
∣
λ=2

,

a quantity which we will show vanishes, so that the two norms are actually equal and
the homomorphism Nm((T ′ : N ′]] → Nm((T : N ]] is actually norm-preserving.

First, note that we can rearrange the terms in the numerator to obtain

(
(2 − λ)sn(T 2) + (λ − 2)sn(λCT + T 2)

+ sn
(
2(λCT ) + (T 2 + λ2C2)

) − sn
(
λ(λCT ) + (T 2 + λ2C2)

)
)

/λ2
∣
∣
∣
∣
λ=2

,

and the numerator does vanish when we set λ = 2, which is compelling but not reason
enough to prove that it still vanishes after dividing by λ2 and then setting λ = 2. (For
example, over Z/4Z we have (λ−2)(λ+2)

λ2
|λ=2 = 1, not 0.) However, if we can show

that the numerator is divisible by λ2(λ − 2), then it will definitely still vanish after
dividing by λ2 and setting λ = 2. We will show that this is indeed the case by dividing
formally by λ − 2 and showing that the result is still divisible by λ2. We have

(
(2 − λ)sn(T 2) + (λ − 2)sn(λCT + T 2)

+ sn
(
2(λCT ) + (T 2 + λ2C2)

) − sn
(
λ(λCT ) + (T 2 + λ2C2)

)
)

λ − 2

= −sn(T
2) + sn(λCT + T 2) − sn

(
λ(λCT ) + (T 2 + λ2C2)

) − sn
(
2(λCT ) + (T 2 + λ2C2)

)

λ − 2

= −sn(T
2) + sn(λCT + T 2) −

n∑

k=0

sk,n−k(λ(λCT ), T 2 + λ2C2) − sk,n−k(2(λCT ), T 2 + λ2C2 − 2)

λ − 2
.

= −sn(T
2) + sn(λCT + T 2) −

n∑

k=0

λk sk,n−k(CT , T 2 + λ2C2)
λk − 2k

λ − 2
.

To decide whether this quantity is divisible by λ2, we work in A[λ]/(λ2) and see
whether the result is zero. Modulo λ2, we have −sn(T 2) + sn(λCT + T 2) =
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λs1,n−1(CT , T 2), and in the sum, the k = 0 term vanishes anyway and the k > 1
terms all have factors of λk = 0. Therefore the total becomes

≡ λs1,n−1(CT , T 2) − λs1,n−1(CT , T 2 + λ2C2)
λ − 2

λ − 2
(mod λ2)

≡ λs1,n−1(CT , T 2) − λs1,n−1(CT , T 2) (mod λ2)

= 0.

Therefore the difference between the norm of x in Nm((T ′ : N ′]] and its image in
Nm((T : N ]] really does vanish, so the map Nm((T ′ : N ′]] → Nm((T : N ]] preserves
both the trace and norm of x , and is therefore a norm-preserving homomorphism. 
�
Example 3.10 For example, let A → B be a rank-n algebra and let f : B2 → B2

be the “swap” map of quadratic algebras B-algebras sending (b, b′) �→ (b′, b). (In
terms of based quadratic algebras, this is the map ((1 : 0]]B → ((1 : 0]]B sending
x �→ −x + 1.) If n is odd, then NmB/A( f ) : A2 → A2 is also the swap map; if n is
even it is the identity map.

Proof Applying the normmap to f : ((1 : 0]]B → ((1 : 0]]B : x �→ −x +1, we obtain

NmB/A( f ) : x �→ sn(−1)x + sn(λ − 1) − sn(−1)

λ

∣
∣
∣
∣
λ=2

= (−1)nx + (λ − 1)n − (−1)n

(λ − 1) − (−1)

∣
∣
∣
∣
λ=2

= (−1)nx + (λ − 1)n−1 + (−1)(λ − 1)n−2 + · · · + (−1)n−1
∣
∣
∣
λ=2

= (−1)nx + 1 − 1 + · · · + (−1)n−1.

Now if n is even, this works out to x �→ 1x + 0, the identity map. And if n is odd, this
becomes −x + 1, the swap map A2 → A2. 
�
Proposition 3.11 The assignment f �→ NmB/A( f ) in Proposition 3.9 is functorial: if
we have a commuting triangle of univerally norm-preserving homomorphisms between
quadratic B-algebras

((T ′ : N ′]]
↗ ↘

((T ′′ : N ′′]] −→ ((T : N ]]

then the resulting triangle of norm-preserving A-algebra homomorphisms

NmB/A((T ′ : N ′]]
↗ ↘

NmB/A((T ′′ : N ′′]] −→ NmB/A((T : N ]]

also commutes.
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Proof Let us suppose that the homomorphisms ((T ′′ : N ′′]] → ((T ′ : N ′]] →
((T : N ]] are defined as follows:

((T ′′ : N ′′]] → ((T ′ : N ′]] → ((T : N ]]
x �→ Ux + C

x �→ V x + D

so that the composite homomorphism is

((T ′′ : N ′′]] → ((T : N ]]
x �→ V (Ux + C) + D

= VUx + (VC + D)

To check that the norm operation is functorial, we must check that the composite
of the two norms of homomorphisms

Nm((T ′′ : N ′′]] → Nm((T ′ : N ′]] → Nm((T : N ]]
x �→ sn(U )x + sn(λC+UT )−sn(UT )

λ

∣
∣
∣
λ=2

x �→ sn(V )x + sn(λD+VT ′)−sn(VT ′)
λ

∣
∣
∣
∣
λ=2

compose to equal the norm of the composite homomorphism

Nm((T ′′ : N ′′]] → Nm((T : N ]]
x �→ sn(VU )x + sn(λ(VC+D)+VUT )−sn(VUT )

λ

∣
∣
∣
λ=2

.

The actual composite expands as

x �→ sn(V )

(

sn(U )x + sn(λC +UT ) − sn(UT )

λ

∣
∣
∣
∣
λ=2

)

+ sn(λD + VT ′) − sn(VT ′)
λ

∣
∣
∣
∣
λ=2

= sn(VU )x + sn(λVC + VUT ) − sn(VUT )

λ

∣
∣
∣
∣
λ=2

+ sn(λD + VUT + 2VC) − sn(VUT + 2VC)

λ

∣
∣
∣
∣
λ=2

where we have used the multiplicity of sn and the fact that T ′ = UT + 2C since the
original homomorphism ((T ′ : N ′]] → ((T : N ]] is norm-preserving (see Lemma
2.10). We can combine the two constant terms into one larger sum (replacing a couple
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of extra 2’s by λ, since they will be set equal to 2 again anyway and the divisibility by
λ does not depend on them already equaling 2) as follows:

sn(λVC + VUT ) − sn(VUT )

λ

∣
∣
∣
∣
λ=2

+ sn(λD + VUT + 2VC) − sn(VUT + 2VC)

λ

∣
∣
∣
∣
λ=2

= sn(λVC + VUT ) − sn(VUT ) + sn(λD + VUT + λVC) − sn(VUT + λVC)

λ

∣
∣
∣
∣
λ=2

= sn(λD + VUT + λVC) − sn(VUT )

λ

∣
∣
∣
∣
λ=2

So in all, the composite map of norms Nm((T ′′ : N ′′]] → Nm((T ′ : N ′]] → Nm((T :
N ]] sends

x �→ sn(VU )x + sn(λ(VC + D) + VUT ) − sn(VUT )

λ

∣
∣
∣
∣
λ=2

which is exactly the norm of the composite map ((T ′′ : N ′′]] →
((T ′ : N ′]] → ((T : N ]] sending x �→ VUx + (VC + D), as desired. 
�

To show that the norm operation on general quadratic algebras is transitive, we will
also need transitivity for the norm operation on homomorphisms:

Proposition 3.12 The norm map on homomorphisms is also transitive: ifA → B is a
rank-n algebra, and B → C is a rank-m algebra, and f : ((T ′ : N ′]] → ((T : N ]] is
a norm-preserving homomorphism of based quadratic C-algebras, then

NmB/A(NmC/B( f )) = NmC/A( f ).

Proof Let us suppose that f : ((T ′ : N ′]] → ((T : N ]] sends x �→ Ux + C . Then on
the one hand, we have

NmC/B( f ) : x �→ sm(U )x + sm(λC +UT ) − sm(UT )

λ

∣
∣
∣
∣
λ=2

so, since x ∈ NmC/B((T : N ]] has trace sm(T ), we have that NmB/A(NmC/B( f ))
sends

x �→ sn(sm(U ))x +
sn

(
μ

sm (λC+UT )−sm (UT )
λ

∣
∣
∣
λ=2

+ sm(U )sm(T )
)

− sn(sm(U )sm(T ))

μ

∣
∣
∣
∣
∣
∣
∣
μ=2

= smn(U )x +
sn

(

μ
sm (λC+UT )−sm (UT )

λ

∣
∣
∣
λ=μ

+ sm(UT )

)

− sn(sm(UT ))

μ

∣
∣
∣
∣
∣
∣
∣
∣
μ=2
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= smn(U )x +
sn

(
μ

sm (μC+UT )−sm (UT )
μ

+ sm(UT )
)

− smn(UT )

μ

∣
∣
∣
∣
∣
∣
μ=2

= smn(U )x + sn
(
sm(μC +UT ) − sm(UT ) + sm(UT )

) − smn(UT )

μ

∣
∣
∣
∣
∣
μ=2

= smn(U )x + smn(μC +UT ) − smn(UT )

μ

∣
∣
∣
∣
μ=2

,

which is exactly where NmC/A( f ) sends x . 
�

4 Norms of quadratic algebras

We now have all the results we need in order to define the norm of a general quadratic
algebra and prove that it is well-defined:

Definition 4.1 Given a rank-n A-algebra B, we define the norm of a general quadratic
B-algebra D as follows:

1. Choose elements a1, . . . , ak ∈ A, together generating the unit ideal, such that each
Dai is free as a Bai -module.

2. Choose generators for each Dai to obtain isomorphisms Dai
∼= ((Ti : Ni ]]Bai

.
3. Over overlaps Aai a j , use Proposition 3.9 to convert the isomorphisms ((Ti :

Ni ]]Bai a j
∼= Dai a j

∼= ((Tj : N j ]]Bai a j
into isomorphisms

NmBai a j /Aai a j
((Ti : Ni ]]Bai a j

∼= NmBai a j /Aai a j
((Tj : N j ]]Bai a j

.

4. Use these isomorphisms to glue the norms of the based quadratic Aai -algebras
NmBai /Aai

((Ti : Ni ]] into a single quadratic A-algebra, called NmB/A(D).

Lemma 4.2 The construction of NmB/A(D) in Definition 4.1 is well-defined.

Proof There are two things to check: that the norms of the based quadratic algebras
NmBai /Aai

((Ti : Ni ]] do, in fact, glue together to yield a quadraticA-algebra, and that
the resulting algebra is independent (up to isomorphism) of the choices of the ai and
generators for Dai .

First we check that the quadratic algebras do glue; this is an example of faithfully flat
descent. We claim that the cocycle condition is satisfied; namely, over triple overlaps
Aai a j ak , the following triangle of isomorphisms commutes:

Nm((Tj : N j ]]
↗ ↘

Nm((Ti : Ni ]] −→ Nm((Tk : Nk]]

Then there must be an A-module which we call NmB/A(D), equipped with isomor-
phisms NmB/A(D)ai

∼= NmBai /Aai
((Ti : Ni ]] and unique up to unique isomorphism.

This A-module automatically inherits the property of being locally free of rank 2, as
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well as the structure of an A-algebra from the unit and multiplication maps for each
of its localizations, so NmB/A(D) is a quadratic A-algebra as desired.

Now we check that the claim is true: the triangle does commute by Proposition
3.11 because the corresponding triangle of quadraticBai a j ak -algebra homomorphisms
commutes, since the isomorphisms between them come from chosen isomorphisms
with Dai a j ak :

((Tj : N j ]]
↗ ↘

((Ti : Ni ]] −→ ((Tk : Nk]]

Second, we check independence of the choices of the ai and generators for Dai :
suppose that we had a second collection of elements a′

1, a
′
2, . . . and isomorphisms

Da′
i
∼= ((T ′

i : N ′
i ]]. Then we could combine the two collections into one and construct

a common gluing of all the Nm((Ti : Ni ]] and Nm((T ′
i : N ′

i ]]. In particular, the result
will be isomorphic to the gluings obtained from each family separately, so the norm
is independent of choice of generator. 
�

We can now boost our results on the norm operation for based quadratic algebras
to this new, more general setting:

Theorem 4.3 The norm operation on general quadratic algebras commutes with base
change: Let A → B be a rank-n algebra, and let D be a quadratic B-algebra. If C
is any A-algebra, then C → C ⊗A B is another rank-n algebra, and C ⊗A D is a
quadratic C ⊗A B-algebra with

Nm(C⊗AB)/C(C ⊗A D) = C ⊗A NmB/A(D).

Proof We already know by Theorem 3.7 that this holds locally, so we need only check
that taking the norms of the gluing isomorphisms also commutes with base change.
But the gluing isomorphisms are also built out of polarized forms of the polynomial
law sn , so this is again automatic. 
�
Theorem 4.4 The norm operation is transitive: If A → B is a rank-n algebra and
B → C is a rank-m algebra, and if D is a quadratic C-algebra, then NmC/A(D) ∼=
NmB/A(NmC/B(D)).

Proof We have already shown in Theorem 3.8 that this holds for norms of based
quadratic algebras; it remains to show that the isomorphisms used to glue together the
norms of based localizations also agree, but this holds by Proposition 3.12. 
�

We can now use transitivity of the norm operation to show that NmB/A is a
homomorphism with respect to the monoid operation ∗ on quadratic algebras:

Theorem 4.5 The norm operation is a homomorphism with respect to the monoid
operation ∗ on isomorphism classes of quadratic algebras: If A → B is a rank-n
algebra andD andD′ are quadraticB-algebras, thenNmB/A(D∗D′) ∼= NmB/A(D)∗
NmB/A(D′).
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Proof Consider the tower of algebras A → B → B2 and the quadratic B2-algebra
D × D′. We can take its norm to produce the quadratic A-algebra

NmB2/A(D × D′) ∼= NmB/A(NmB2/B(D × D′))
∼= NmB/A(D ∗ D′).

On the other hand, we can also factor the algebra mapA → B2 asA → A2 → B2,
for which transitivity of the norm operation gives

NmB2/A(D × D′) ∼= NmA2/A(NmB2/A2(D × D′))
∼= NmA2/A(NmB/A(D) × NmB/A(D′))
∼= NmB/A(D) ∗ NmB/A(D′).

(In the second line, we have used base-change invariance of the norm operation to
construct the norm over each factor separately, and in the third line, we have invoked
Example 3.6) Comparing these two expressions for NmB2/A(D × D′), we obtain
NmB/A(D ∗ D′) ∼= NmB/A(D) ∗ NmB/A(D′), as desired. 
�

Our last results are that this notion of norm of quadratic algebras commutes with
taking determinant line bundles and discriminant bilinear forms:

Theorem 4.6 The norm operation commutes with taking determinant line bundles: If
A → B is a rank-n algebra andD is a quadratic B-algebra, then ∧2

A NmB/A(D) =
NmB/A(

∧2
B D).

Proof If L is a line bundle (rank-1 module) over B, then its norm NmB/A(L) is the
line bundle obtained by the following process analogous to Definition 4.1:

1. Choose a set of elements ai ∈ A generating the unit ideal such that each localization
Lai is free as an Bai -module.

2. Choose generators for each Lai to obtain isomorphisms φi : Lai
∼= Bai .

3. Over overlaps Aai a j , we have isomorphisms (φi )a j ◦ (φ−1
j )ai : Bai a j

∼= Lai a j
∼=

Bai a j . Each such isomorphism is given by multiplication by a unit Ui j ∈ Bai a j ;
take the norm of Ui j to get units sn(Ui j ) ∈ Ai j .

4. Glue together free rank-1 Aai -modules, using multiplication by sn(Ui j ) as the
isomorphisms on overlaps, to get a single rank-1 A-module, called NmB/A(L).

Now suppose L = ∧2 D. We will follow along steps 1 through 4 of Definition 4.1
and see that

∧2 NmB/A(D) agrees with the above construction of NmB/A(L).
Since the determinant line bundle of a based quadratic algebra ((T : N ]]B is free of

rank 1 with canonical generator 1∧ x , completing steps 1 and 2 of Definition 4.1 also
completes steps 1 and 2 of constructing the line bundle norm NmB/A(L). For step 3,
suppose that for each i, j ∈ {1, . . . , k} we have an isomorphism ((Ti : Ni ]]Bai a j

∼=
Dai ak

∼= ((Tj : N j ]]Bai a j sending x �→ Ui j x + Ci j . Then taking exterior powers, we

have isomorphisms
∧2

((Ti : Ni ]]Bai a j
∼= ∧2 Dai ak

∼= ∧2
((Tj : N j ]]Bai a j sending
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1 ∧ x �→ Ui j · (1 ∧ x). This means that multiplication by Ui j is also the composite
isomorphism Bai a j

∼= Lai a j
∼= Bai a j .

To construct NmB/A(D), we apply Proposition 3.9 to the isomorphisms ((Ti :
Ni ]]Bai a j

∼= ((Tj : N j ]]Bai a j sending x �→ Ui j x + Ci j to get isomorphisms

Nm((Ti : Ni ]]Bai a j
∼= Nm((Tj : N j ]]Bai a j

: x �→ sn(Ui j )x + sn(λCi j +Ui j Tj ) − sn(Ui j Tj )

λ

∣
∣
∣
∣
λ=2

which we use as gluing maps to construct NmB/A(D). Taking the exterior powers of
these maps, we obtain isomorphisms sending 1 ∧ x �→ sn(Ui j ) · (1 ∧ x), meaning
that

∧2 NmB/A(D) is obtained by gluing together free rank-1 Aai -modules with the
gluing isomorphisms given by multiplication by sn(Ui j ). That is exactly the gluing
which produces NmB/A(L), as claimed. 
�
Theorem 4.7 Taking the norm commutes with taking discriminants: if A → B is
a rank-n algebra and D is a quadratic B-algebra with discriminant bilinear form
δD : (

∧2
BD)⊗2 → B, then the discriminant bilinear form of the quadraticA-algebra

NmB/A(D) agrees with the norm of δD as a map of line bundles.

Proof Note that this only makes sense because by Theorem 4.6 we have
an isomorphism

∧2 Nm(D) = Nm(
∧2D), so the norm of the line bundle

homomorphism δD : (
∧2D)⊗2 → B can be viewed as a homomomorphism

Nm(δD) : (
∧2Nm(D))⊗2 → A. Then we can check locally that this agrees with

δNm(D), so assume without loss of generality that D = ((T : N ]].
With respect to the canonical basis 1 ∧ x for

∧2D, we have that δD is just
multiplication by T 2 − 4N . The norm of this map is therefore multiplication by
sn(T 2 − 4N ).

On the other hand, with respect to the canonical basis δNm(D) is multiplication by

sn(T )2 − 4

[
sn(λN + T 2) − sn(T 2)

λ

]

λ=−4

= sn(T )2 +
[
sn(λN + T 2) − sn(T

2)
]

λ=−4

= sn(T
2) + sn(T

2 − 4N ) − sn(T
2)

= sn(T
2 − 4N ),

which agrees with Nm(δD) as desired. 
�
In particular, if a quadratic B-algebraD is étale (its discriminant bilinear form is an

isomorphism (
∧2D)⊗2 ∼−→B), then its norm NmB/A(D) is also an étale quadratic

A-algebra. Since étale quadratic algebras are equivalent to S2-torsors, we may ask if
the norm operation agrees with the trace map for S2-torsors:

Theorem 4.8 On étale quadratic algebras, the norm operation reduces to the ordinary
trace for S2-torsors.
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Proof Let A → B be a rank-n algebra. Since a split étale B-algebra is isomorphic to
B2 ∼= ((1 : 0]]B, and NmB/A((1 : 0]]B = ((1 : 0]]A ∼= A2, we know that since the
norm operation commutes with base change, therefore the norm of any étale quadratic
algebra is still étale. It remains to show that the norm of a B-algebra automorphism
of B2 is its trace as an automorphism of A2. Any B-algebra automorphism of B2 is
locally either the identity map B2 → B2 (which is sent to the identity mapA2 → A2)
or the swap map B2 → B2 sending (b, b′) �→ (b′, b). By Example 3.10, the norm of
the swap map is either the identity (if the rank n is even) or again the swap map (if
n is odd). In other words, the norm of the swap map is the swap map composed with
itself n times, which is exactly the trace of the swap map, as desired. 
�

Finally, we have the following conjectured relationship between norms and dis-
criminant algebras which was the motivation for constructing the norm functor for
quadratic algebras in the first place:

Conjecture 4.9 Let � be the discriminant algebra operation of Biesel and Gioia
(2016), sending rank-n algebras A → B to quadratic algebras A → �B/A. Now let
A → B be a rank-n algebra and B → C be a rank-m algebra, so thatA → C is also
a rank-mn algebra. Is it the case that

�C/A ∼= NmB/A(�C/B) ∗ �∗m
B/A?

It is known that Conjecture 4.9 holds in case A → B and B → C are étale; see
Waterhouse (1987, Theorem 4) for a proof.
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