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Abstract
We study rotational surfaces with constant Minkowski Gaussian curvature and rota-
tional surfaces with constant Minkowski mean curvature in a 3-dimensional normed
space with rotationally symmetric norm. We have a generalization of the catenoid,
pseudo-sphere and Delaunay surfaces.

Keywords Rotational surface · Normed space · Birkhoff orthogonal · Birkhoff-Gauss
map · Minkowski Gaussian curvature · Minkowski mean curvature

Mathematics Subject Classification 53A35 · 53A10 · 52A15 · 52A21 · 46B20

1 Introduction

It is interesting to generalize differential geometry of curves and surfaces in Euclidean
spaces to that in normed spaces, or generally, in gauge spaces (cf. Balestro et al.
2019a, b, 2020a, b, c, d, 2021; Busemann 1950; Guggenheimer 1965), where how to
compensate for the lack of the notion of angle is the problem, and the notion ofBirkhoff
orthogonality plays an important role. For surfaces in 3-dimensional normed spaces,
the notions of Birkhoff-Gauss map, Minkowski Gaussian curvature and Minkowski
mean curvature are particularly important (cf. Balestro et al. 2019b, 2020c, d, 2021).

In this paper, we study rotational surfaces in a 3-dimensional normed space
with rotationally symmetric norm, in particular, rotational surfaces with constant
Minkowski Gaussian curvature and rotational surfaces with constantMinkowski mean
curvature.

This paper is organized as follows. In Sect. 2, following Balestro et al. (2020c), we
recall some basic facts on surfaces in 3-dimensional normed spaces. In Sect. 3, we
give a basic computation for rotational surfaces in a 3-dimensional normed space with
rotationally symmetric norm. In Sect. 4, we consider rotational minimal surfaces in the
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3-dimensional normed space. In Sect. 5, we discuss rotational surfaces with non-zero
constantMinkowskiGaussian curvature in the 3-dimensional normed space. In Sect. 6,
we study rotational surfaces with non-zero constant Minkowski mean curvature in the
3-dimensional normed space, which can be seen as a generalization of the Delaunay
surfaces (Delaunay 1841).

The author wishes to thank the referee for useful suggestion.

2 Preliminaries

In this section, following Balestro et al. (2020c), we recall some basic facts on surfaces
in 3-dimensional normed spaces.

Let (R3, ‖ · ‖) be a 3-dimensional normed space whose unit ball B and unit sphere
S are defined by

B = {x ∈ R
3; ‖x‖ ≤ 1}, S = {x ∈ R

3; ‖x‖ = 1}.

In the following, we assume that S is smooth and strictly convex, that is, S is a smooth
surface and S contains no line segment.

Remark. We do not assume that S has positive Euclidean Gaussian curvature as
in Balestro et al. (2020c), because we treat the case where S has points with zero
Euclidean Gaussian curvature.

Let v be a non-zero vector in R3 and � be a plane in R3. We say that v is Birkhoff
orthogonal to � (denoted by v �B �) if the tangent plane of S at v/‖v‖ is �.

Let M be a surface immersed in (R3, ‖ · ‖). Let TpM be the tangent plane of M
at p ∈ M . There exists a vector η(p) ∈ S such that η(p) �B TpM , which gives a
local smooth map η : U ⊂ M → S called the Birkhoff-Gauss map. It can be global if
and only if M is orientable. We define the Minkowski Gaussian curvature K and the
Minkowski mean curvature H of M at p by

K = det
(
dηp

)
, H = 1

2
trace

(
dηp

)
.

We say that M is flat if K = 0 identically, and minimal if H = 0 identically.
A surface which is homothetic to the unit sphere S is called a Minkowski sphere. A

Minkowski sphere has positive constant Minkowski Gaussian curvature and non-zero
constant Minkowski mean curvature.

3 Rotational surfaces

Let

S =
{
(x1, x2, x3) ∈ R

3|
(
x21 + x22

)m + x2m3 = 1
}
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where m is a positive integer. It is given by rotating x2m1 + x2m3 = 1 around x3-axis.
Then there exists a norm ‖ · ‖ on R

3 whose unit sphere is the above S. Set

�(x1, x2, x3) :=
(
x21 + x22

)m + x2m3 .

Throughout this paper, we consider this 3-dimensional normed space (R3, ‖ · ‖). The
case where m = 1 is the Euclidean case. We assume that m ≥ 2 in the following.

Let M be a surface in (R3, ‖ · ‖) which is rotational around x3-axis, and is
parametrized by

f (u, v) = (α(u) cos v, α(u) sin v, β(u))

where α > 0, α′ 
= 0 and β ′ 
= 0. Then

fu = (
α′ cos v, α′ sin v, β ′) , fv = (−α sin v, α cos v, 0).

The Birkhoff-Gauss map η = η(u, v) is characterized by the condition

(grad(�))η =
(

∂�

∂x1
(η),

∂�

∂x2
(η),

∂�

∂x3
(η)

)
= μ fu × fv,

where μ is a positive function and × denotes the standard cross product in R
3. Then

we can get

η = A− 1
2m

(
−(β ′)

1
2m−1 cos v,−(β ′)

1
2m−1 sin v, (α′)

1
2m−1

)

where

A := (
α′) 2m

2m−1 + (
β ′) 2m

2m−1 .

We can compute that

ηu = − 1

2m − 1
A− 2m+1

2m (α′)−
2m−2
2m−1 (β ′)−

2m−2
2m−1 (α′β ′′ − α′′β ′) fu (3.1)

and

ηv = − 1

α
A− 1

2m (β ′)
1

2m−1 fv. (3.2)

Thus we have

K = 1

(2m − 1)α
A−m+1

m (α′)−
2m−2
2m−1 (β ′)−

2m−3
2m−1 (α′β ′′ − α′′β ′) (3.3)
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and

H = − 1

2(2m − 1)α
A− 2m+1

2m (β ′)−
2m−2
2m−1

×
{
α(α′)−

2m−2
2m−1 (α′β ′′ − α′′β ′) + (2m − 1)Aβ ′} . (3.4)

Letting β(u) = u, we have

ηu = 1

2m − 1

((
α′) 2m

2m−1 + 1

)− 2m+1
2m

(α′)−
2m−2
2m−1 α′′ fu, (3.5)

ηv = − 1

α

((
α′) 2m

2m−1 + 1

)− 1
2m

fv, (3.6)

K = − 1

(2m − 1)α

((
α′) 2m

2m−1 + 1

)−m+1
m

(α′)−
2m−2
2m−1 α′′, (3.7)

and

H = 1

2(2m − 1)α

((
α′) 2m

2m−1 + 1

)− 2m+1
2m

×
{
α(α′)−

2m−2
2m−1 α′′ − (2m − 1)

((
α′) 2m

2m−1 + 1

)}
. (3.8)

By (3.7), we see that K = 0 if and only if α′′ = 0. So we have the following.

Proposition 3.1 A rotational surface in (R3, ‖ · ‖) parametrized by

f (u, v) = (α(u) cos v, α(u) sin v, u)

where α > 0, α′ 
= 0 is flat if and only if it is a circular cone.

4 Rotational minimal surfaces

Let (R3, ‖ · ‖) be the 3-dimensional normed space as in Sect. 3. Let M be a rotational
surface in (R3, ‖ · ‖) parametrized by

f (u, v) = (α(u) cos v, α(u) sin v, u)

where α > 0 and α′ 
= 0.
By (3.8), the rotational surface M is minimal if and only if

α(α′)−
2m−2
2m−1 α′′ − (2m − 1)

((
α′) 2m

2m−1 + 1

)
= 0. (4.1)
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From the Eq. (4.1), we have

2m − 1

α
= α′′

(α′)2 + (α′)
2m−2
2m−1

.

Multiplying by 2α′ we have

2(2m − 1)
α′

α
= ((α′)2)′

(α′)2 + (α′)
2m−2
2m−1

,

and

2(2m − 1) logα =
∫

((α′)2)′

(α′)2 + (α′)
2m−2
2m−1

du.

Letting

(α′)
2

2m−1 =: Z

for the right-hand side, we have

2 logα =
∫

Zm−1

Zm + 1
dZ = 1

m
log

(
Zm + 1

) + c1

= 1

m
log

(
(α′)

2m
2m−1 + 1

)
+ c1

for a constant c1. Then

dα

du
= ± 1

c2m−1
2

(
α2m − c2m2

) 2m−1
2m

for a positive constant c2, and

u(α) = ±
∫ α

c2

c2m−1
2

(
ρ2m − c2m2

) 2m−1
2m

dρ + c3

for a constant c3, where α > c2. Here we note that since

0 <
2m − 1

2m
< 1,

the above integral converges and

lim
α→c2

∫ α

c2

c2m−1
2

(
ρ2m − c2m2

) 2m−1
2m

dρ = 0.

123



28 Beitr Algebra Geom (2024) 65:23–41

Then we have the following.

Theorem 4.1 A rotational surface in (R3, ‖ · ‖) given by

f̄ (α, v) = (α cos v, α sin v, u(α))

where α > 0 is minimal if and only if

u(α) = ±
∫ α

c2

c2m−1
2

(
ρ2m − c2m2

) 2m−1
2m

dρ + c3

for constants c2 > 0 and c3, where α > c2.

Now, let us set

u±(α) := ±
∫ α

c2

c2m−1
2

(
ρ2m − c2m2

) 2m−1
2m

dρ + c3

for constants c2 > 0 and c3, where α > c2, and we consider the behavior of the graph
of u±(α). Since m ≥ 2,

lim
α→∞

∫ α

c2

c2m−1
2

(
ρ2m − c2m2

) 2m−1
2m

dρ = d1

for some positive value d1. So we have

lim
α→c2

u±(α) = c3, lim
α→∞ u+(α) = c3 + d1, lim

α→∞ u−(α) = c3 − d1.

The function u+(α) is an increasing function and

lim
α→c2

u′+(α) = ∞.

Similarly, u−(α) is a decreasing function and

lim
α→c2

u′−(α) = −∞.

Let α+(u) be the inverse function of u+(α). It is an increasing function on (c3, c3+d1)
and

lim
u→c3

α+(u) = c2, lim
u→c3+d1

α+(u) = ∞, lim
u→c3

α′+(u) = 0.
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Let α−(u) be the inverse function of u−(α). It is a decreasing function on (c3−d1, c3)
and

lim
u→c3

α−(u) = c2, lim
u→c3−d1

α−(u) = ∞, lim
u→c3

α′−(u) = 0.

We define a function α̂(u) on (c3 − d1, c3 + d1) by

α̂(u) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α+(u), c3 < u < c3 + d1

α−(u), c3 − d1 < u < c3

c2, u = c3

.

Then α̂(u) is a C1-function on (c3 − d1, c3 + d1) such that

α̂′(u) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α′+(u), c3 < u < c3 + d1

α′−(u), c3 − d1 < u < c3

0, u = c3

.

For u ∈ (c3 − d1, c3) ∪ (c3, c3 + d1), α̂(u) satisfies the Eq. (4.1). Then, noting that
m ≥ 2, we can see that

lim
u→c3

(α̂′(u))−
2m−2
2m−1 α̂′′(u) = 2m − 1

c2

and

lim
u→c3

α̂′′(u) = 0.

Thus the function α̂(u) is a C2-function on (c3 −d1, c3 +d1). Also by (3.5) and (3.6),
we find that the Birkhoff-Gauss map can be C1-extended for u ∈ (c3 − d1, c3 + d1).

Therefore, we have the following.

Theorem 4.2 Under the notation above, the rotational surface in (R3, ‖ · ‖)
parametrized by

f̂ (u, v) = (α̂(u) cos v, α̂(u) sin v, u), (u, v) ∈ (c3 − d1, c3 + d1) × [0, 2π ]

is minimal.

Remark. The above surface can be seen as a generalization of the catenoid in the
Euclidean 3-space. But we should note that the range of u is bounded.
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5 Non-zero constant Gaussian curvature

Let (R3, ‖ · ‖) be the 3-dimensional normed space as in Sect. 3. Let M be a rotational
surface in (R3, ‖ · ‖) parametrized by

f (u, v) = (α(u) cos v, α(u) sin v, u)

where α > 0 and α′ 
= 0.
By (3.7), if K is a non-zero constant, then

− 1

2m − 1

((
α′) 2m

2m−1 + 1

)−m+1
m

(α′)−
2m−2
2m−1 α′′ = Kα. (5.1)

Multiplying by 2α′ we have

− 2

2m − 1

(
(
α′) 2m

2m−1 + 1

)−m+1
m

(α′)
1

2m−1 α′′ = K (α2)′.

Integrating it we have

((
α′) 2m

2m−1 + 1

)− 1
m = Kα2 + c1 (> 0)

for a constant c1. Then

dα

du
= ±

{
1 − (Kα2 + c1)m

} 2m−1
2m

(Kα2 + c1)
2m−1

2

,

and we get the following.

Theorem 5.1 A rotational surface in (R3, ‖ · ‖) given by

f̄ (α, v) = (α cos v, α sin v, u(α))

where α > 0 has non-zero constant Minkowski Gaussian curvature K if and only if

u(α) = ±
∫

(Kα2 + c1)
2m−1

2

{
1 − (Kα2 + c1)m

} 2m−1
2m

dα

for a constant c1.

Now, let us set

u±(α) := ±
∫

(Kα2 + c1)
2m−1

2

{
1 − (Kα2 + c1)m

} 2m−1
2m

dα
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for a constant c1, and we discuss the behavior of the graph of u±(α). It suffices to
consider the case where K = 1 or K = −1.

(i) The case K = 1. We have c1 < 1 and

u±(α) = ±
∫

(α2 + c1)
2m−1

2

{
1 − (α2 + c1)m

} 2m−1
2m

dα.

(i-1) The case c1 = 0. In this case we have

u±(α) = ±
∫

α2m−1

(
1 − α2m

) 2m−1
2m

dα = ∓(1 − α2m)
1
2m + c2

for a constant c2. It satisfies

α2m + (u±(α) − c2)
2m = 1.

So the resulting surface can be smoothly extended to a Minkowski sphere, which is a
parallel translation of the unit sphere S.

(i-2) The case 0 < c1 < 1. In this case, we have 0 < α <
√
1 − c1 and we can

write

u±(α) = ±
∫ α

√
1−c1

(ρ2 + c1)
2m−1

2

{
1 − (ρ2 + c1)m

} 2m−1
2m

dρ + c3

for a constant c3. Since

0 <
2m − 1

2m
< 1,

the above integral converges. Set

d1 := − lim
α→0

∫ α

√
1−c1

(ρ2 + c1)
2m−1

2

{
1 − (ρ2 + c1)m

} 2m−1
2m

dρ (> 0).

Then

lim
α→0

u+(α) = c3 − d1, lim
α→0

u−(α) = c3 + d1, lim
α→√

1−c1
u±(α) = c3.

The function u+(α) is an increasing function and

lim
α→√

1−c1
u′+(α) = ∞.
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The function u−(α) is a decreasing function and

lim
α→√

1−c1
u′−(α) = −∞.

Let α+(u) be the inverse function of u+(α). It is an increasing function on (c3−d1, c3)
and

lim
u→c3−d1

α+(u) = 0, lim
u→c3

α+(u) = √
1 − c1, lim

u→c3
α′+(u) = 0.

Let α−(u) be the inverse function of u−(α). It is a decreasing function on (c3, c3+d1)
and

lim
u→c3+d1

α−(u) = 0, lim
u→c3

α−(u) = √
1 − c1, lim

u→c3
α′−(u) = 0.

We define a function α̂(u) on (c3 − d1, c3 + d1) by

α̂(u) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α+(u), c3 − d1 < u < c3

α−(u), c3 < u < c3 + d1

√
1 − c1, u = c3

.

Then α̂(u) is a C1-function on (c3 − d1, c3 + d1) such that

α̂′(u) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α′+(u), c3 − d1 < u < c3

α′−(u), c3 < u < c3 + d1

0, u = c3

.

For u ∈ (c3 − d1, c3) ∪ (c3, c3 + d1), α̂(u) satisfies the Eq. (5.1) for K = 1. Then,
noting that m ≥ 2, we can see that

lim
u→c3

(α̂′(u))−
2m−2
2m−1 α̂′′(u) = −(2m − 1)

√
1 − c1

and

lim
u→c3

α̂′′(u) = 0.

Thus the function α̂(u) is a C2-function on (c3 −d1, c3 +d1). Also by (3.5) and (3.6),
we find that the Birkhoff-Gauss map can be C1-extended for u ∈ (c3 − d1, c3 + d1).

On the other hand, we have

lim
u→c3−d1

α̂(u) = 0, lim
u→c3+d1

α̂(u) = 0
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and

lim
u→c3−d1

α̂′(u) = (1 − cm1 )
2m−1
2m

c
2m−1

2
1

, lim
u→c3+d1

α̂′(u) = − (1 − cm1 )
2m−1
2m

c
2m−1

2
1

.

So the surface has singularities at (0, 0, c3 − d1) and (0, 0, c3 + d1).
(i-3) The case c1 < 0. In this case, we have

√−c1 < α <
√
1 − c1 and

u±(α) = ±
∫ α

√
1−c1

(ρ2 + c1)
2m−1

2

{
1 − (ρ2 + c1)m

} 2m−1
2m

dρ + c4

for a constant c4. As in the case (i-2), we can see that the graphs of u+(α) and u−(α)

are connected smoothly at α = √
1 − c1. But the surface has singularities at points

where α = √−c1.
(ii) The case K = −1. We have c1 > 0 and

u±(α) = ±
∫

(c1 − α2)
2m−1

2

{
1 − (c1 − α2)m

} 2m−1
2m

dα.

(ii-1) The case 0 < c1 ≤ 1. In this case, we have 0 < α <
√
c1 and

u±(α) = ±
∫ α

√
c1

(c1 − ρ2)
2m−1

2

{
1 − (c1 − ρ2)m

} 2m−1
2m

dρ + c5

for a constant c5. Then

lim
α→√

c1
u±(α) = c5, lim

α→√
c1
u′±(α) = 0.

(ii-1-1) When c1 = 1, since

1 <
2m − 1

m
< 2,

we have

lim
α→0

u±(α) = ∓∞.

The corresponding surface has singularities at points where α = 1, and it can be seen
as a generalization of the pseudo-sphere in the Euclidean 3-space.

(ii-1-2) When 0 < c1 < 1, we have

lim
α→0

u±(α) = c5 ∓ d2

123



34 Beitr Algebra Geom (2024) 65:23–41

where

d2 := − lim
α→0

∫ α

√
c1

(c1 − ρ2)
2m−1

2

{
1 − (c1 − ρ2)m

} 2m−1
2m

dρ (> 0),

and

lim
α→0

u′±(α) = ± c
2m−1

2
1

(1 − cm1 )
2m−1
2m

.

So the surface has singularities at points where α = √
c1 and α = 0.

(ii-2) The case c1 > 1. In this case, we have
√
c1 − 1 < α <

√
c1 and

u±(α) = ±
∫ α

√
c1−1

(c1 − ρ2)
2m−1

2

{
1 − (c1 − ρ2)m

} 2m−1
2m

dρ + c6

for a constant c6. By the discussion as before, the graphs of u+ and u− can be C2-
connected at α = √

c1 − 1. But the surface has singularities at points where α = √
c1.

6 Non-zero constant mean curvature

Let (R3, ‖ · ‖) be the 3-dimensional normed space as in Sect. 3. Let M be a rotational
surface in (R3, ‖ · ‖) parametrized by

f (u, v) = (α(u) cos v, α(u) sin v, u)

where α > 0 and α′ 
= 0.
By (3.8), if H is a non-zero constant, then

1

2m − 1
α

((
α′) 2m

2m−1 + 1

)− 2m+1
2m

(α′)−
2m−2
2m−1 α′′ −

((
α′) 2m

2m−1 + 1

)− 1
2m

= 2Hα. (6.1)

Multiplying by −α′ we have

− 1

2m − 1
α

((
α′) 2m

2m−1 + 1

)− 2m+1
2m

(α′)
1

2m−1 α′′ + α′
((

α′) 2m
2m−1 + 1

)− 1
2m = −H(α2)′.

Integrating it we can get

α

((
α′) 2m

2m−1 + 1

)− 1
2m = c1 − Hα2 (> 0)
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for a constant c1. Then

dα

du
= ±

{
α2m − (c1 − Hα2)2m

} 2m−1
2m

(c1 − Hα2)2m−1 ,

and we get the following.

Theorem 6.1 A rotational surface in (R3, ‖ · ‖) given by

f̄ (α, v) = (α cos v, α sin v, u(α))

where α > 0 has non-zero constant Minkowski mean curvature H if and only if

u(α) = ±
∫

(c1 − Hα2)2m−1

{
α2m − (c1 − Hα2)2m

} 2m−1
2m

dα

for a constant c1.

Set

u±(α) := ±
∫

(c1 − Hα2)2m−1

{
α2m − (c1 − Hα2)2m

} 2m−1
2m

dα.

To study the behavior of the graph of u±(α), it suffices to consider the case where
H = ±1. The signature of H changes if the orientation of the parametrization changes.
So we treat the both cases H = 1 and H = −1.

(i) The case H = 1. In this case, we have c1 > 0,

b1 :=
√
1 + 4c1 − 1

2
< α <

√
c1

and

u±(α) = ±
∫ α

√
c1

(c1 − ρ2)2m−1

{
ρ2m − (c1 − ρ2)2m

} 2m−1
2m

dρ + c±
2

for a constant c±
2 . This integral converges as α tends to

√
c1, and since 0 < (2m −

1)/2m < 1, it converges also as α tends to b1. Set

d1 := − lim
α→b1

∫ α

√
c1

(c1 − ρ2)2m−1

{
ρ2m − (c1 − ρ2)2m

} 2m−1
2m

dρ (> 0).

Then

lim
α→b1

u+(α) = c+
2 − d1, lim

α→b1
u−(α) = c−

2 + d1, lim
α→√

c1
u±(α) = c±

2 .
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The function u+(α) is an increasing function and

lim
α→b1

u′+(α) = ∞, lim
α→√

c1
u′+(α) = 0.

The function u−(α) is a decreasing function and

lim
α→b1

u′−(α) = −∞, lim
α→√

c1
u′−(α) = 0.

(ii) The case H = −1. We have

u±(α) = ±
∫

(c3 + α2)2m−1

{
α2m − (c3 + α2)2m

} 2m−1
2m

dα

for a constant c3. Here we use c3 instead of c1 because we will later choose c3 different
from c1.

(ii-1) The case c3 = 0. Then

u±(α) = ±
∫

α2m−1

(1 − α2m)
2m−1
2m

dα = ∓(1 − α2m)
1
2m + c4

for a constant c4. It satisfies

α2m + (u±(α) − c4)
2m = 1.

So the surface can be smoothly extended to a Minkowski sphere, which is a parallel
translation of the unit sphere S.

(ii-2) The case c3 > 0. In this case, we have 0 < c3 < 1/4,

b2 := 1 − √
1 − 4c3
2

< α <
1 + √

1 − 4c3
2

=: b3

and

u±(α) = ±
∫ α

b2

(c3 + ρ2)2m−1

{
ρ2m − (c3 + ρ2)2m

} 2m−1
2m

dρ + c5

for a constant c5. This integral converges as α tends to b2 and b3. Set

d2 := lim
α→b3

∫ α

b2

(c3 + ρ2)2m−1

{
ρ2m − (c3 + ρ2)2m

} 2m−1
2m

dρ.

Then

lim
α→b2

u±(α) = c5, lim
α→b3

u+(α) = c5 + d2, lim
α→b3

u−(α) = c5 − d2.
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The function u+(α) is an increasing function and

lim
α→b2

u′+(α) = ∞, lim
α→b3

u′+(α) = ∞.

The function u−(α) is a decreasing function and

lim
α→b2

u′−(α) = −∞, lim
α→b3

u′−(α) = −∞.

Let α+(u) be the inverse function of u+(α). It is increasing on (c5, c5 + d2) and

lim
u→c5

α+(u) = b2, lim
u→c5+d2

α+(u) = b3, lim
u→c5

α′+(u) = lim
u→c5+d2

α′+(u) = 0.

Let α−(u) be the inverse function of u−(α). It is decreasing on (c5 − d2, c5) and

lim
u→c5

α−(u) = b2, lim
u→c5−d2

α−(u) = b3, lim
u→c5

α′−(u) = lim
u→c5−d2

α′−(u) = 0.

We define a function α̂(u) on [c5 − d2, c5 + d2] by

α̂(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

α+(u), c5 < u < c5 + d2

α−(u), c5 − d2 < u < c5

b2, u = c5

b3, u = c5 ± d2

.

Then it is a C1-function on [c5 − d2, c5 + d2] such that

α̂′(u) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α′+(u), c5 < u < c5 + d2

α′−(u), c5 − d2 < u < c5

0, u = c5, c5 ± d2

.

For u ∈ (c5 − d2, c5) ∪ (c5, c5 + d2), α̂(u) satisfies the Eq. (6.1) for H = −1. Then,
noting that m ≥ 2, we can see that

lim
u→c5

(α̂′(u))−
2m−2
2m−1 α̂′′(u) = (2m − 1)(1 − 2b2)

b2
,

lim
u→c5±d2

(α̂′(u))−
2m−2
2m−1 α̂′′(u) = (2m − 1)(1 − 2b3)

b3

and

lim
u→c5

α̂′′(u) = lim
u→c5±d2

α̂′′(u) = 0.
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So the function α̂(u) is a C2-function on [c5 − d2, c5 + d2]. By (3.5) and (3.6), the
Birkhoff-Gauss map can be C1-extended for u ∈ [c5 − d2, c5 + d2].

We note that α̂(u) has the same derivatives at the end points u = c5 − d2 and
u = c5 + d2. Thus we can extend α̂(u) periodically as a C2-function onR as follows:

α∗(u + 2kd2) := α̂(u), u ∈ [c5 − d2, c5 + d2], k ∈ Z,

and we get the following.

Theorem 6.2 Under the notation above, the rotational surface in (R3, ‖ · ‖)
parametrized by

f ∗(u, v) = (α∗(u) cos v, α∗(u) sin v, u), (u, v) ∈ R × [0, 2π ]

has constant Minkowski mean curvature −1.

Remark. The surface in Theorem 6.2 can be seen as a generalization of the unduloid
(Delaunay 1841).

(ii-3) The case c3 < 0. In this case we have

√−c3 < α <
1 + √

1 − 4c3
2

=: b4

and

u±(α) = ±
∫ α

b4

(c3 + ρ2)2m−1

{
ρ2m − (c3 + ρ2)2m

} 2m−1
2m

dρ + c6

for a constant c6. This integral converges as α tends to
√−c3 and b4. Set

d3 := − lim
α→√−c3

∫ α

b4

(c3 + ρ2)2m−1

{
ρ2m − (c3 + ρ2)2m

} 2m−1
2m

dρ (> 0).

Then

lim
α→√−c3

u+(α) = c6 − d3, lim
α→√−c3

u−(α) = c6 + d3, lim
α→b4

u±(α) = c6.

The function u+(α) is an increasing function and

lim
α→√−c3

u′+(α) = 0, lim
α→b4

u′+(α) = ∞.

The function u−(α) is a decreasing function and

lim
α→√−c3

u′−(α) = 0, lim
α→b4

u′−(α) = −∞.
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In the following, we will connect the curves in the cases (i) and (ii-3). For distin-
guishment, we denote u±(α) in the case (i) by u1±(α), and u±(α) in the case (ii-3)
by u2±(α).

We take the graph G1 of u1+(α) for b1 < α <
√
c1. Next, choosing c3 := −c1 and

c6 := c+
2 − d3, we take the graph G2 of u2−(α) for

√−c3 = √
c1 < α < b4 = 1 + √

1 + 4c1
2

.

Then G1 and G2 are C1-connected at (α, u) = (
√
c1, c

+
2 ).

Next we take the graph G3 of u2+(α) for
√
c1 < α < b4. Then G2 and G3 are

C1-connected at (α, u) = (b4, c
+
2 − d3).

Finally, letting c−
2 := c+

2 −2d3, we take the graphG4 of u1−(α) for b1 < α <
√
c1.

Then G3 and G4 are C1-connected at (α, u) = (
√
c1, c

+
2 − 2d3). Thus we get a C1-

curve 
 which is constructed by connecting G1, G2, G3 and G4.
With respect to the parameter u, H = 1 for the G1 and G4 parts, and H = −1 for

the G2 and G3 parts. On the other hand, with respect to the parameter α, H = 1 for
the G1 and G2 parts, and H = −1 for the G3 and G4 parts. Then, with respect to a
parametrization of 
 in the order of G1, G2, G3 and G4, we have H = 1 for all parts.

TheC2-connectedness ofG2 andG3 is shown by the discussion as before. Similarly
we can see that G1 and G4 are C2 at α = b1.

Let us prove the C2-connectedness of G1 and G2. We define a function û(α) on
(b1, b4) by

û(α) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u1+(α), b1 < α <
√
c1

u2−(α),
√
c1 < α < b4

c+
2 , α = √

c1

.

Then it is a C1-function on (b1, b4) such that

û′(α) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u′
1+(α), b1 < α <

√
c1

u′
2−(α),

√
c1 < α < b4

0, α = √
c1

.

For α ∈ (b1,
√
c1) ∪ (

√
c1, b4), û(α) satisfies the Eq. (3.4) for "H = 1", where α is

the parameter and β = û(α). Then, noting that m ≥ 2, we can see that

lim
α→√

c1

(
û′(α)

)− 2m−2
2m−1 û′′(α) = −2(2m − 1)
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and

lim
α→√

c1
û′′(α) = 0.

So the function û(α) is a C2-function on (b1, b4). By (3.1) and (3.2), the Birkhoff-
Gauss map can be C1-extended for α ∈ (b1, b4). Thus the C2-connectedness of G1
and G2 is proved. The C2-connectedness of G3 and G4 is proved similarly.

Now we have obtained a C2-curve 
 which is constructed by connecting G1, G2,
G3 and G4. The curve 
 has the same derivatives at the end points. Then, as in the
case (ii-2), we can extend it periodically as a C2-curve 
∗, which can be parametrized
as (α∗(t), β∗(t)) for t ∈ R.

Theorem 6.3 Under the notation above, the rotational surface in (R3, ‖ · ‖)
parametrized by

f ∗(t, v) = (α∗(t) cos v, α∗(t) sin v, β∗(t)), (t, v) ∈ R × [0, 2π ]

has constant Minkowski mean curvature 1.

Remark. (i) The surface in Theorem 6.3 can be seen as a generalization of the
nodoid (Delaunay 1841).

(ii) By "Mathematica" we know that: (a) When c1 = −c3 = 2 and m = 2, d1 =
0.34459... and d3 = 0.65540..., (b) When c1 = −c3 = 2 and m = 3, d1 = 0.33886...
and d3 = 0.66113..., and (c) When c1 = −c3 = 6 and m = 2, d1 = 0.40710... and
d3 = 0.59289.... Thus the curve 
 is not closed in those cases.

References

Balestro, V., Martini, H., Shonoda, E.: Concepts of curvatures in normed planes. Expo. Math. 37, 347–381
(2019a)

Balestro, V., Martini, H., Teixeira, R.: Surface immersions in normed spaces from the affine point of view.
Geom. Dedicata 201, 21–31 (2019b)

Balestro, V., Martini, H., Sakaki, M.: Curvature types of planar curves for gauges. J. Geom. 111, no. 1,
Paper No.12, 12 pp (2020a)

Balestro, V., Martini, H., Sakaki, M.: Differential geometry of spatial curves for gauges, São Paulo. J. Math.
Sci. 14(2), 496–509 (2020b)

Balestro, V., Martini, H., Teixeira, R.: Differential geometry of immersed surfaces in three-dimensional
normed spaces. Abh. Math. Semin. Univ. Hambg. 90, 111–134 (2020c)

Balestro, V.,Martini, H., Teixeira, R.: On curvature of surfaces immersed in normed spaces.Monatsh.Math.
192, 291–309 (2020d)

Balestro, V., Martini, H., Teixeira, R.: Some topics in differential geometry of normed spaces. Adv. Geom.
21, 109–118 (2021)

Busemann, H.: The foundations on Minkowskian geometry. Comment. Math. Helv. 24, 156–187 (1950)
Delaunay, C.: Sur la surface de revolution dont la courbure moyenne est constante. J. Math. Pures Appl. 6,

309–320 (1841)
Guggenheimer, H.: Pseudo-Minkowski differential geometry. Ann. Mat. Pure Appl. 70, 305–370 (1965)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123



Beitr Algebra Geom (2024) 65:23–41 41

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Rotational surfaces in a 3-dimensional normed space
	Abstract
	1 Introduction
	2 Preliminaries
	3 Rotational surfaces
	4 Rotational minimal surfaces
	5 Non-zero constant Gaussian curvature
	6 Non-zero constant mean curvature
	References




