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Abstract
A commutative ring R is said to be amorphic ring if for each a ∈ R there exists b ∈ R
such that ann(a) = Rb and ann(b) = Ra. In this paper, we extend the notion of
morphic rings to modules and we study the introduced concept by comparing it with
some related notions.

Keywords Comorphic ring · Comorphic module

Mathematics Subject Classification 13A15

1 Introduction

Throughout, all rings considered are commutative with nonzero identity and all mod-
ules are unital. A ring R is said to be a von Neumann regular if, for every x ∈ R,
there is y ∈ R such that x = x2y, or equivalently, if every principal (resp. finitely
generated) ideal of R is generated by an idempotent (Wang and Kim 2016, Theorem
3.6.13). Recently, the notion of von Neumann regular rings was extended to modules
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in Jayaram and Tekir (2018). An R-module M is said to be von Neumann regular if,
for each m ∈ M , there exists a ∈ R such that Rm = aM = a2M . The concepts of
regular von Neumann rings have been widely studied and several generalizations of
these rings have been given and studied in recent years (see for example, Alkan et al.
2018; Nicholson and Sánchez Campos 2004; Kist 1963). In Nicholson and Sánchez
Campos (2004), Nicholson and Sánchez Campos introduced the concept of morphic
rings (over associative rings). A commutative ring R is called a morphic ring if, for
every element a ∈ R, R/Ra ∼= annR(a) (isomorphism of R-modules). It is proved
that R is morphic if and only if, for every a ∈ R, there exists b ∈ R such that
Ra = annR(b) and annR(a) = Rb (Nicholson and Sánchez Campos 2004, Lemma1).
Morphic (associative) rings have been widely studied and many variants of this notion
have been proposed and studied in recent papers. Among these variants, the concepts
of quasi-morphic rings (Camillo and Nicholson 2007) and comorphic rings (Alkan
et al. 2018) which are equivalent to the concept of morphic rings over commutative
rings.
In 2005, Nicholson and Sánchez Campos extended the notion of morphic rings to
modules (Nicholson and Sánchez Campos 2005). An endomorphism α of a module M
is called morphic if M/α(M) ∼= ker(α). The module M is called a morphic module if
every endomorphism of M is morphic. Note that the endomorphisms of the R-module
R are only the multiplication morphisms. So, clearly, a ring R is morphic if and only
if R is a morphic R-module.

In this article, we extend, in another way, the notion of morphic rings to modules.
An R-module M is said to be a morphic module if, for each m ∈ M , there exists
a ∈ R such that Rm = annM (a) and annR(m) = Ra + annR(M). We investigate
many properties of this notion. Among other results, we show that a ring R is morphic
if and only if it a morphic R-module (Example 1). Some other classes of examples
of morphic modules are given in Examples 2, 3, and 4. It is also proved that the
intersection of two (finite number of) cyclic submodules of a morphic module is again
cyclic (Proposition1 and Corollary1). Theorem 1 gives a characterization of morphic
modules. Let M be an R-module. A submodule N of M is called a Baer submodule
if m ∈ N implies that annM (annR(m)) ⊆ N (see Jayaram et al. 2021). Proposition 4
shows that every submodule of a morphic module is a Baer submodule. Recall that a
module is called a Bézout module if its finitely generated submodules are all cyclic.
If M is a non-torsion morphic module, then M is a Bézout module (Corollary 3).
Theorem 3 shows that every finitely generated von Neumann regular module is also a
morphic module with equivalence if M is a torsion-free module (Proposition 6). We
end this paper with some results about the stability of the notion of morphic modules
under homomorphisms, direct products of modules, and localization of modules.

2 Main results

We begin by recalling the key definition of this paper.

Definition 1 An R-module M is said to be a morphic module if, for each m ∈ M ,
there exists a ∈ R such that Rm = annM (a) and annR(m) = (a) + annR(M)
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The first definition of morphic rings was in the associative context. The definition
above deals with a generalization of morphic rings but only in the commutative case.
In this case, all modules (resp. ideals) are bi-modules (resp. bi-ideals).

Example 1 A commutative ring R is a morphic ring if and only if it is a morphic
R-module.

Example 2 Every simple module is morphic. In particular, for each prime integer p,
Zp is a morphic Z-module.

Example 3 Let n ≥ 2 be an integer. Consider the Z-module Zn . Let m ∈ Z.
If gcd(m, n) = 1 then Zm = Zn = annZn (0) and annZ(m) = annZ(Zn) =
(0) + annZ(Zn). Assume now that gcd(m, n) = d > 1 and write n = dn′ and
m = dm′ for some n′,m′ ∈ Z. We have Zm = Zd = annZn (n

′), and furthermore
annZ(m) = n′

Z = (n′) + annZ(Zn). Accordingly, Zn is a morphic Z-module. More
generally, every cyclic group of finite order is a morphic Z-module.

Example 4 LetG be a finite abelian group. By the Structure Theorem of Finite Abelian
Groups,G is isomorphic, as aZ-module, to M = Zp

α1
1

×Zp
α2
2

×· · ·×Zpαr
r
where pi ’s

are prime integers (which may not be distinct) and αi ≥ 1 for each i = 1, 2, . . . , n.
Assume that G is a morphic Z-module. Then, so is M . We claim that all pi ’s are
distinct, that is G is cyclic. Suppose that pi = p j for some i �= j . For example,
suppose that p1 = p2. Firstly, suppose that α1 = α2. Set m = (1, 0, 0, . . . , 0) ∈ M .
There exists a ∈ Z such that Zm = annM (a) and annZ(m) = (a) + annZ(M).
Thus, (a) ⊆ annZ(m) = (pα1

1 ). Hence, annM (pα1
1 ) ⊆ annM (a) = Zm. However,

(0, 1, 0, . . . , 0) ∈ annM (pα1
1 )\Zm, a contradiction. So, we may assume for exam-

ple that α1 < α2. Set m = (0, 1, 0, . . . , 0) ∈ M . There exists a ∈ Z such that
Zm = annM (a) and annZ(m) = (a) + annZ(M). Thus, (a) ⊆ annZ(m) = (pα2

1 ).
Hence, annM (pα2

1 ) ⊆ annM (a) = Zm. However, (1, 0, 0, . . . , 0) ∈ annM (pα2
1 )\Zm,

a contradiction. Consequently, p1 �= p2, and so by the same way we get that all pi ’s
are distinct. Keeping in mind Example 3, we conclude that a finite abelian group G is
a morphic Z-module if and only if G is a cyclic group.

Proposition 1 Let R be a ring. If M is a morphic R-module then, the intersection of
two cyclic submodules of M is also cyclic.

Proof Let m, m′ ∈ M . Since M is a morphic R-module, then Rm = annM (a),
annR(m) = (a) + annR(M), Rm′ = annM (a′) and annR(m′) = (a′) + annR(M) for
some a, a′ ∈ R. We have also Ram′ = annM (c) and annR(am′) = (c) + annR(M)

for some c ∈ R. We will show that Rm ∩ Rm′ = Rcm′. Let x ∈ Rm ∩ Rm′, then
x = rm = r ′m′ for some r , r ′ ∈ R. It follows that r ′m′ ∈ Rm = annM (a). Hence,
r ′(am′) = ar ′m′ = 0. Then, r ′ ∈ annR(am′) = (c) + annR(M). So, r ′ = αc + b for
some α ∈ R and some b ∈ annR(M). Then, x = r ′m′ = (αc + b)m′ = αcm′, and
so we conclude that x ∈ Rcm′. Thus, Rm ∩ Rm′ ⊆ Rcm′. For the other inclusion, it
suffices to show that Rcm′ ⊆ Rm. We have cam′ = 0. Then, cm′ ∈ annM (a) = Rm.
Thus, Rcm′ ⊆ Rm, as desired. 	


By induction, we obtain the following result.
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Corollary 1 Let R be a ring. If M is a morphic R-module then, the intersection of finite
number of cyclic submodules of M is also cyclic.

Corollary 2 If R is a morphic ring, the intersection of finite number of principal ideals
of R is again principal.

Proposition 2 Let M be a morphic R-module and m, m′ ∈ M. If Rm ∩ Rm′ = (0),
then Rm ⊕ Rm′ = R(m + m′).

Proof Since M is a morphic R-module, there exists a ∈ R such that R(m + m′) =
annM (a). Thus, a(m + m′) = 0 and so am = −am′ ∈ Rm ∩ Rm′ = (0). Hence, m,
m′ ∈ annM (a) = R(m +m′), and then Rm + Rm′ ⊆ R(m +m′). The other inclusion
is trivial. So, since Rm ∩ Rm′ = (0), we get Rm ⊕ Rm′ = Rm + Rm′ = R(m +m′).

	

Theorem 1 Let M be an R-module. The following are equivalent:

(1) M is a morphic R-module.
(2) For every finitely generated submodule N of M, there exists a ∈ R such that

N = annM (a) and annR(N ) = (a) + annR(M).

Proof The implication (2) ⇒ (1) is clear.
(1) ⇒ (2) Let N be a submodule of M and let n be the minimal number of generators
of N , and then proceed by induction on n. The induction start is just the definition
of morphic modules. If n ≥ 1, set N = ∑n

i=1 Rmi and J = ∑n
i=1 Rmi . It is clear

that {mi }n−1
i=1 is a minimal set of generators of J . The induction hypothesis yields that

J = annM (a1) and annR(J ) = (a1) + annR(M) for some a1 ∈ R. Since M is a
morphic R-module, we get that Rmn = annM (a2), annR(mn) = (a2) + annR(M),
Ra1mn = annM (a3), and annR(a1mn) = (a3) + annR(M) for some a2, a3 ∈ R.
Set a = a1a3. We claim that N = annM (a). Let x ∈ annM (a). Then, a1a3x = 0.
Therefore, a1x ∈ annM (a3) = Ra1mn . Write a1x = αa1mn for some α ∈ R. We
have a1(x −αmn) = 0. Then, x −αmn ∈ annM (a1) = J . So, x −αmn = j for some
j ∈ J . Then, x = j + αmn , and so x ∈ N . Thus, annM (a) ⊆ N . Now, let x ∈ N .
Then, x = j + βmn for some j ∈ J and β ∈ R. So, ax = a1a3 j + a1a3αmn = 0,
and then x ∈ annM (a). Thus, N ⊆ annM (a). Consequently, N = annM (a).
We claim that annR(N ) = (a) + annR(M). First, it is clear that (a) + annR(M) =
(a1a3) + annR(M) ⊆ annR(J ) ∩ annR(mn) = annR(N ). Let t ∈ annR(N ) =
annR(J ) ∩ annR(mn). Then, t ∈ annR(J ) implies that t = sa1 + u for some s ∈ R
and u ∈ annR(M). Since tmn = 0 we have 0 = (sa1 + u)mn = sa1mn , and so
s ∈ annR(a1mn) = (a3) + annR(M). Then, there exist v ∈ R and w ∈ annR(M)

such that s = a3v + w and so t = v(a1a3) + wa1 + u ∈ (a1a3) + annR(M). Thus,
annR(N ) ⊆ (a)+ annR(M). Consequently, annR(N ) = (a)+ annR(M). So, we have
the desired result. 	


Let M be an R-module. The set of all torsion elements of M is denoted by T (M) =
{m ∈ M : annR(m) �= 0}. M is said to be a torsion-free module if T (M) = {0}, and
M is said to be a torsion module if T (M) = M . Hence, M is said to be a non-torsion
module if M �= T (M).
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Proposition 3 Let M be a non-torsion R-module. If M is a morphic R-module, then
R is a morphic ring.

Proof Suppose that M is a non-torsion morphic module. Choosem ∈ M − T (M) and
a ∈ R. Then note that annR(am) = annR(a) and annR(M) = 0. Since M is morphic,
there exists b ∈ R such that annR(am) = (b) + annR(M) = (b) and annM (b) =
Ram. So we have annR(a) = (b) and thus (a) ⊆ annR(b). Let r ∈ annR(b). Then
we have rb = 0 and so rm ∈ annM (b) = Ram. Then there exists s ∈ R such that
rm = sam which implies that (r − sa)m = 0. As annR(m) = 0, we get r ∈ (a) and
so annR(b) ⊆ (a) which completes the proof. 	


Let M be an R-module. A submodule N of M is called a Baer submodule if
m ∈ N implies that annM (annR(m)) ⊆ N ( Jayaram et al. 2021). Recall from Jayaram
et al. (2021) that a submodule N of M is said to be an annihilator submodule if
N = annM (annR(N )). Note that a cyclic submodule Rm is a Baer submodule if and
only if it is an annihilator submodule. For various informations of Baer submodules
and annihilator submodules, the reader may consult (Jayaram et al. 2021; Jayaram
et al. 2021; Jayaram et al. 2022).

Proposition 4 Let M be a morphic R-module. Then,

(1) Every finitely generated submodule N of M is an annihilator submodule.
(2) Every submodule N of M is a Baer submodule.

Proof (2) Suppose that N is a finitely generated submodule of M . By Theorem 1,
N = annM (a) and annR(N ) = (a) + annR(M). Thus, (a) ⊆ annR(N ) implies
that annM (annR(N )) ⊆ annM (a) = N . Moreover, N ⊆ annM (annR(N )). Thus,
annM (annR(N )) = N . So N is an annihilator submodule. of M .
(2) Let m ∈ N . Since Rm is a finitely generated submodule of M , by (1), we get that
annM (annR(m)) = Rm ⊆ N . Hence, N is a Baer submodule of M . 	


Recall that a module is called a Bézout module if its finitely generated submodules
are all cyclic. A ring R is called a Bézout ring if R is Bézout R-module. That is every
finitely generated ideal is principal.

Corollary 3 Let M be a non-torsion R-module. If M is a morphic R-module, then M
is a Bézout module.

Proof Let N be a finitely generated submodule of M and m ∈ M − T (M). Since
annR(M) = 0, by Theorem 1, there exists a ∈ R such that annR(N ) = (a) and
N = annM (a). On the other hand, by Proposition 3, R is a morphic ring and so
there exists b ∈ R such that (a) = annR(b) and (b) = annR(a). Thus, annR(N ) =
(a) = annR(b) = annR(bm). So, N = annM (annR(N )) = annM (annR(bm)). By
Proposition 4, annM (annR(bm)) = Rbm. Consequently, N = Rbm. 	


Since a ring is always a non-torsion R-module, we obtain the commutative version
of (Camillo and Nicholson 2007, Theorem 15).

Corollary 4 Every morphic ring is a Bézout ring.
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Theorem 2 Let M be a morphic module. Consider the following conditions:

(1) M satisfies the DCC on cyclic submodules.
(2) R satisfies the ACC on {annR(m) : m ∈ M}.
(3) M satisfies the DCC on finitely generated submodules.
(4) R satisfies the ACC on {annR(N ) : N is finitely generated submodule of M}.

Then, (1) ⇔ (2) ⇐ (3) ⇔ (4). Furthermore, if M is a non-torsion module, then
(1) ⇔ (2) ⇔ (3) ⇔ (4).

Proof (1) ⇒ (2) Consider the following ascending chain of ideals

annR(m1) ⊆ annR(m2) ⊆ · · · ⊆ annR(mn) ⊆ · · ·

where mi ∈ M . By Proposition 4, Rmi = annM (annR(mi )) for each i . Thus, we
obtain the following descending chain of cyclic submodules of M :

Rm1 ⊇ Rm2 ⊇ · · · ⊇ Rmn ⊇ · · ·

Thus, by hypothesis, there exists an integer k ≥ 1 such that Rmk = Rmn+k for each
n ≥ 0. This gives annR(mk) = annR(mk+n), as needed.
(2) ⇒ (1) is similar to (1) ⇒ (2).
(3) ⇔ (4) Similar to (1) ⇔ (2) (by using Proposition 4).
(3) ⇒ (1) Trivial.
If M is a non-torsion morphic module, then the desired result follows from Corollary
3. 	


Let M be an R-module. M is said to be a wq-regular module if for each m ∈ M ,
there is an a ∈ R such that annM (annR(m)) = annM (a) (see Jayaram et al. 2021).
The ring R is called wq-regular ring if R is wq-regular R-module.

Proposition 5 Every morphic module is a wq-regular module.

Proof Let m ∈ M . Since M is a morphic module, then there exists a ∈ R such that
Rm = annM (a) and annR(m) = (a) + annR(M). Hence, annM (annR(m)) = Rm =
annM (a), and so M is wq-regular module. 	

Corollary 5 Every morphic ring R is wq-regular ring.

The converse part of the two previous results is not always true as witnessed by
the ring Z which is clearly a wq-regular but not a morphic ring (since it is a non-field
domain).

Recall that a commutative ring R is said to be a von Neumann regular ring if for
each a ∈ R there exists x ∈ R such that a = a2x . In this case e = ax is an idempotent
element. It is easy to see that a ring R is a von Neumann regular ring if each principal
ideal of R is generated by an idempotent element. Jayaram and Tekir extended the
notion of idempotent elements in commutative rings to modules and they studied von
Neumann regular modules in terms of this extension. Let M be an R-module. Recall
from Jayaram and Tekir (2018) that an element a ∈ R is said to be M-vn-regular
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(resp. weak idempotent relatively to M) if aM = a2M (resp. am = a2m for each
m ∈ M). Note that for a given R-module M and for every a ∈ R, we have the
following implications:

a is an idempotent ⇒ a is a weak idempotent ⇒ a is an M-vn-regular element

Note that if M is a faithful R-module (i.e. annR(M) = 0) then the right arrow is
reversible. However, these three classes of elements of R are not equal in general.

Example 5 For the Z-module Z6,

(1) 4 is a weak idempotent element which is not idempotent.
(2) 2 is a Z6-vn-regular which is not a weak idempotent element.

Following (Jayaram and Tekir 2018), an R-module M is said to be a von Neumann
regular module if, for each m ∈ M, there exists an M-vn-regular element a ∈ R such
that Rm = aM .

Theorem 3 Every finitely generated von Neumann regular module is also a morphic
module.

Proof Let M be a finitely generated von Neumann regular R-module andm ∈ M . By
[Jayaram and Tekir, 2018, Lemma 5], Rm = eM for some weak idempotent element
e ∈ R. Hence, (1 − e)Rm = (1 − e)eM = 0, and so (1 − e) ∈ annR(m). It follows
that (1 − e) + annR(M) ⊆ annR(m). Now, let t ∈ annR(m). Then, tm = 0 and so
teM = 0. Thus, te ∈ annR(M), and then t = te + t(1 − e) ∈ (1 − e) + annR(M).

Hence, annR(m) = (1 − e) + annR(M). Since (1 − e)Rm = 0, we also have Rm ⊆
annM (1 − e). Now, let y ∈ annM (1 − e), that is (1 − e)y = 0. This gives y = ey ∈
eM = Rm, and thus Rm = annM (1 − e). Hence, M is a morphic module. 	

Corollary 6 Every von Neumann regular ring is a morphic ring.

The converse of previous Theorem is not always true as shown by the following
example.

Example 6 (1) Let p be a prime integer and consider the Z-module Zp2 . Suppose that
Zp2 is a von Neumann regular module. Hence, pZp2 = Zp = aZp2 = a2Zp2

for some integer a. Write a = pm for some m ∈ Z. Then, a2 = 0. Hence,
pZp2 = (0), a contradiction. Thus, Zp2 is not a von Neumann regular module.
However, by Example 3, it is a morphic module.

(2) The ring Z4 is a morphic ring but not a von Neumann regular ring.

Proposition 6 Let M be a torsion-free R-module. Then the following statements are
equivalent:

(1) M is a morphic module.
(2) M is a simple module.
(3) M is a von Neumann regular module
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Proof (1) ⇒ (2)Let 0 �= m ∈ M . SinceM is amorphicmodule, then Rm = annM (a)

and annR(m) = (a) + annR(M) for some a ∈ R. As M is a torsion-free R-module,
we have annR(m) = (0) and so a = 0. Hence, Rm = annM (0) = M . Consequently,
M is a simple module.
(2) ⇒ (1) Follows from Example 2.
(2) ⇔ (3) Follows from (Jayaram and Tekir 2018, Proposition 1). 	


Recall that an R-module M is said to be a reduced module if, whenever a ∈ R and
m ∈ M such that am = 0, we have aM ∩ Rm = 0 (Lee and Zhou 2004).

Proposition 7 Let M be a finitely generated R-module. Then, M is a reduced multi-
plication morphic module if and only if M is a von Neumann regular module.

Proof The “only if” part follows from Theorem 3 and (Jayaram et al. 2021, Theorem
3.10). Suppose that M is a reduced multiplication morphic module and letm,m′ ∈ M
such that annR(m) = annR(m′). Since M is a morphic module, then Rm = annM (a)

and annR(m) = (a) + annR(M) for some a ∈ R. Thus, a ∈ annR(m) = annR(m′).
Hence, am′ = 0. So, m′ ∈ annM (a) = Rm. Similarly, m ∈ Rm′. Hence, Rm = Rm′.
Using (Jayaram et al. 2021, Theorem 3.10), we conclude that M is a von Neumann
regular module. 	


Proposition 8 Let {Ri }i∈� be a family of rings and Mi be an Ri module for each
i ∈ �. Set R = ∏

i∈� Ri and M = ∏
i∈� Mi . Then, the following statements are

equivalent:

(1) M is a morphic R-module.
(2) Mi is a morphic Ri -module for each i ∈ �.

Proof (1) ⇒ (2) Let i be a fixed element of � and let x ∈ Mi . Set m = (m j ) j∈�

such that mi = x and m j = 0 for each j �= i . There exists a ∈ R such that
Rm = annM (a) and annR(m) = Ra + annR(M). Write a = (a j ) j∈�. Since am = 0,
we get ai x = 0. Hence, Ri x ⊆ annMi (ai ) and Riai + annRi (Mi ) ⊆ annRi (x). Let
y ∈ annMi (ai ) and set m′ = (m′

j ) j∈� such that m′
i = y and m′

j = 0 for each j �= i .
We have am′ = 0. Thus, m′ ∈ Rm. Hence, y ∈ Ri x , and so annMi (ai ) ⊆ Ri x .
Consequently, Ri x = annMi (ai ). Now, let α ∈ annRi (x) and set b = (b j ) j∈� such
that bi = α. Then, bm = 0. Hence, b ∈ annR(m) = Ra+annR(M). Write b = ra+c
with c = (c j ) j∈� ∈ annR(M) and r = (r j ) j∈� ∈ R. Hence, α = ri ai + ci with
ci ∈ annRi (Mi ). So, α ∈ Riai + annRi (Mi ). Thus, annRi (x) ⊆ Riai + annRi (Mi ).
Hence, annRi (x) = Riai + annRi (Mi ). Consequently, Mi is a morphic Ri -module.
(2) ⇒ (1) Let m = (m j ) j∈� ∈ M . For each j ∈ �, there exists a j ∈ R j such that
R jm j = annMj (a j ) and annR j (m j ) = R ja j + annR j (Mj ). Set a = (a j ) j∈�. Thus,

Rm =
∏

j∈�

R jm j =
∏

j∈�

annMj (a j ) = annM (a),
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and

annR(m) = ∏
j∈� annR j (m j )

= ∏
j∈�

(
R ja j + annR j (Mj )

)

= ∏
j∈� R ja j + ∏

i∈� annR j (Mj )

= Ra + annR(M).

Accordingly, M is a morphic R-module. 	

Proposition 9 Let f : M → M ′ be a monomorphism of R-modules. If M ′ is a
morphic R-module then so is M.

Proof Let m ∈ M . For m′ = f (m) ∈ M ′, there exists a ∈ R such that
Rm′ = annM ′(a) and annR(m′) = (a) + annR(M ′). We have 0 = am′ =
f (am). Thus, am = 0 since f is a monomorphism. Hence, Rm ⊆ annM (a) and
Ra+annR(M) ⊆ annR(m). Letm′′ ∈ annM (a). Then, a f (m′′) = f (am′′) = 0. Thus,
f (m′′) ∈ annM ′(a) = Rm′. So, f (m′′) = r f (m) = f (rm) for some r ∈ R. Thus,
m′′ = rm ∈ Rm. Hence, annM (a) ⊆ Rm. So, annM (a) = Rm. Let b ∈ annR(m).
Then, bm′ = f (bm) = 0. Thus, b ∈ annR(m′) = (a)+annR(M ′) ⊆ (a)+annR(M).
So, annR(m) ⊆ (a) + annR(M). Consequently, annR(m) = (a) + annR(M). Thus,
M is a morphic R-module. 	

Corollary 7 Every submodule of a morphic module is also morphic.

Let R be a ring, M be an R-module, and N be a proper submodule of M . Recall that
N is called a maximal submodule of M if it is maximal (with respect to set inclusion)
among all proper submodules of M . Recall also that N is said to be a prime submodule
of M if, for every a ∈ R, the induced homothety ha : M/N → M/N , ha(x) = a.x ,
is either injective or zero. It is well know that every maximal submodule of a module
M (if there exists) is also a prime submodule of M .

Theorem 4 Let M be an R-module and N a submodule of M . Then the following are
equivalent:

(1) N is a maximal submodule of M .

(2) N is prime submodule and M/N is a simple R-module.
(3) N is prime submodule and M/N is a morphic R-module.

Proof (1) ⇒ (2) N is clearly a prime submodule of M . Let m ∈ M . Since N is a
proper submodule of M (as a maximal submodule of M), we can considerm ∈ M\N .
We have M = N + Rm. Thus, M/N = Rm. Hence, M/N is a simple R-module.
(2) ⇒ (3) Clear.
(3) ⇒ (1) Let m ∈ M\N . There exists a ∈ R such that Rm = annM/N (a) and
annR(m) = (a)+annR(M/N ). Since N is prime, the homothety ha : M/N → M/N ,
ha(x) = a.x , is either injective or zero. Note that ker(ha) = annM/N (a) = Rm. Since
m /∈ N , we have ker(ha) �= (0). Thus, Rm = ker(ha) = M/N . Thus, M = Rm + N ,
and so N is a maximal submodule of M . 	
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Theorem 5 Let M be a morphic R-module and S be a multiplicatively closed subset
of R. Then S−1M is a morphic S−1R-module.

Proof Let m
s ∈ S−1M where m ∈ M and s ∈ S. Since M is a morphic module, there

exists a ∈ R such that Rm = annM (a) and annR(m) = Ra + annR(M). Thus,

(
S−1R

) m

s
=

(
S−1R

) m

1
= S−1(Rm) = S−1 (annM (a)) = annS−1M (a/1) .

Moreover,

annS−1R

(m

s

)
= annS−1R

(m

1

)

= S−1 (annR(m))

= S−1 (Ra + annR(M))

= S−1 (Ra) + S−1 (annR(M))

= (a/1) + annS−1R(S−1M).

Therefore, S−1M is a morphic S−1R-module. 	


We end this paper with following open question.
Question:What is the relation between morphic modules introduced in this paper and
morphic modules in the sense of Nicholson and Sánchez Campos (2005)?
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