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Abstract

In this paper, we introduce a new class of additive codes over finite fields, viz. multi-
twisted (MT) additive codes, which are generalizations of constacyclic additive codes.
We study their algebraic structures by writing a canonical form decomposition and
provide an enumeration formula for these codes. By placing ordinary, Hermitian and
* trace bilinear forms, we further study their dual codes and derive necessary and
sufficient conditions under which a MT additive code is self-dual and self-orthogonal.
We also derive a necessary and sufficient condition for the existence of a self-dual MT
additive code over a finite field, and provide enumeration formulae for all self-dual and
self-orthogonal MT additive codes over finite fields with respect to the aforementioned
trace bilinear forms. We also obtain several good codes within the family of MT
additive codes over finite fields.
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Mathematics Subject Classification 94B15

1 Introduction

Aydin and Haliovi¢ (2017) introduced and studied multi-twisted (MT) codes over finite
fields, which are generalizations of several well-known classes of linear codes, such
as constacyclic codes (Berlekamp 1968) and quasi-cyclic (QC) codes (Townsend and
Weldon 1967; Ling and Solé 2001), having rich algebraic structures and containing
record-breaker codes. In the same work, they studied 1-generator MT codes over finite
fields. They also presented several methods to construct these codes and also provided
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bounds on their minimum distances. They also obtained MT codes with best-known
parameters [33, 12, 12] over 3, [53, 18, 21] over s, [23, 7, 13] over [F7 and optimal
parameters [54, 4, 44] over [F;. Apart from this, they proved that the code parameters
[53, 18, 21] over Fs5 and [33, 12, 12] over F3 can not be attained by constacyclic and
quasi-cyclic codes, which suggests that this larger class of MT codes is more promis-
ing to find codes with better parameters than the current best known linear codes.
Later, Sharma et al. (2018) thoroughly investigated algebraic structures of MT codes
over finite fields and their dual codes with respect to the Euclidean inner product, and
enumerated all MT codes over finite fields. They also derived a necessary and suffi-
cient condition for the existence of a self-dual MT code and provided enumeration
formulae for all self-orthogonal and self-dual MT codes over finite fields with respect
to the Euclidean inner product. They also showed that MT codes over finite fields can
be viewed as direct sums of certain concatenated codes, which gives rise to a method
to construct these codes. They also derived a lower bound on their minimum Ham-
ming distances using their multilevel concatenated structures. They also developed a
generator theory for these codes, obtained a BCH type lower bound on their minimum
Hamming distances, and derived some sufficient conditions under which a MT code
is Euclidean self-dual, self-orthogonal and linear with complementary-dual (LCD).
In a recent work, Sharma and Chauhan (2019) studied dual codes of MT codes over
finite fields with respect to the Hermitian inner product. They also derived a necessary
and sufficient condition for the existence of a self-dual MT code and enumerated all
self-orthogonal, self-dual and LCD MT codes over finite fields with respect to the
Hermitian inner product. Besides this, they counted all LCD MT codes with respect
to the Euclidean inner product. In another related work, Sharma and Kaur (2018b)
provided explicit enumeration formulae for all self-dual, self-orthogonal and LCD
QC codes over finite fields with respect to the Euclidean inner product.

In another direction, additive codes over the finite field F4 were introduced and
studied by Calderbank et al. (1998) as a natural generalization of linear codes. They
investigated dual codes of additive codes over [F4 with respect to the trace inner product.
They also constructed quantum error-correcting codes from self-orthogonal additive
codes over F4. Later, Bierbrauer and Edel (2000) and Rains (1999) generalized and
studied additive codes over arbitrary finite fields. Huffman (2007) introduced and
studied cyclic additive codes of odd lengths over [F4 by writing a canonical form decom-
position for these codes, and enumerated all such codes. Besides this, he provided
explicit enumeration formulae for all self-dual and self-orthogonal cyclic additive
codes over [F4 with respect to the trace inner product. Huffman (2008) extended this
work for cyclic additive codes of even lengths over 4. In another work, Huffman
(2010) generalized this work for cyclic additive codes of length n over the finite field
F,r, where t > 2 is an integer, ¢ is a prime power, and 7 is a positive integer with
gcd(n, q) = 1. By placing ordinary and Hermitian trace bilinear forms on F”,, he
studied their dual codes, derived necessary and sufficient conditions for the existence
of a self-dual cyclic additive code and provided enumeration formulae for all self-
orthogonal and self-dual cyclic additive codes over F . When ¢ = 2, he explicitly
determined all self-dual and self-orthogonal cyclic additive codes of length n over 2
with respect to both ordinary and Hermitian trace bilinear forms on IFZZ. Later, for
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any integer t > 2 satisfying + % 1 (mod p), Sharma and Kaur (2017) introduced a
new trace bilinear form on ]FZ“ viz. * trace bilinear form. They studied dual codes
of cyclic additive codes of length n over Fr and provided enumeration formulae for
all self-dual and self-orthogonal cyclic additive codes with respect to * trace bilinear
form. In another work, Sharma and Kaur (2018a) studied LCD cyclic additive codes
of length n over Fyr and provided enumeration formulae for all LCD cyclic additive
codes with respect to ordinary, Hermitian and x trace bilinear forms. Cao et al. (2015)
further generalized cyclic additive codes to constacyclic additive codes of length n
over [F, when ¢ is a prime number and gcd(n, ¢) = 1. They also studied their dual
codes with respect to the ordinary trace bilinear form on F”,. In the same work, they
investigated the existence of a self-orthogonal and a self-dual negacyclic additive code
of length n over F ;. They also derived necessary and sufficient conditions for a nega-
cyclic additive code of length n over F > to be self-dual or self-orthogonal. Further,
for any integer r > 2, Kaur and Sharma (2017) developed the theory of constacyclic
additive codes over [+ by writing a canonical form decomposition for these codes.
They also studied their dual codes and provided explicit enumeration formulae for
all self-dual, self-orthogonal and LCD cyclic additive codes with respect to ordinary,
Hermitian and * trace bilinear forms on F”,.

The main goal of this paper is to introduce and study MT additive codes over finite
fields and their dual codes with respect to ordinary, Hermitian and * trace bilinear
forms. We shall also derive necessary and sufficient conditions for the existence of
a self-dual MT additive code and provide explicit enumeration formulae for all self-
dual and self-orthogonal MT additive codes with respect to each of the three above-
mentioned trace bilinear forms. For this, throughout this paper, let I, be the finite

field of order ¢ and characteristic p, and let r > 2 be an integer. Let m, ma, ..., my
be positive integers coprime to ¢, and let n = m| +my + --- + my. Let Q =
(w1, wa, ..., wye), where wi, wy, - -+, wy are non-zero elements of IF,. This paper

is structured as follows: In Sect. 2, we introduce and study Q-MT additive codes
of length n over the finite field F: and their dual codes with respect to ordinary,
Hermitian and * trace bilinear forms by writing a canonical form decomposition for
these codes. In Sect. 3, we derive necessary and sufficient conditions under which an
Q-MT additive code of length n over Fy: is self-dual or self-orthogonal with respect
to the aforementioned trace bilinear forms (Theorem 3.1). We also enumerate all self-
orthogonal (3-MT additive codes of length n over F,r (Theorem 3.2). We also derive
necessary and sufficient conditions for the existence of a self-dual Q-MT additive
code of length n over Fy, and provide enumeration formulae for all self-dual Q-MT
additive codes of length n over [+ with respect to ordinary, Hermitian and * trace
bilinear forms (Theorem 3.3). We also obtain several good codes within the family of
MT additive codes over finite fields (Table 1).

2 Multi-twisted additive codes over finite fields and their dual codes
In this section, we shall define and study multi-twisted (MT) additive codes over

finite fields and their dual codes with respect to three different trace bilinear forms.
To do this, we assume, throughout this paper, that I, is the finite field of order ¢
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and characteristic p. Let n = m| + my + --- + my, where my,ma, ..., my are
positive integers coprime to g. Let wq, wa, ..., wy be non-zero elements of I,
and let Q = (wi, Wy, ..., w¢) and Q' = (wl_l, wz_l, ...,w[l). Let us define

W = ]_[le Wi, where W; = F,[x]/(x" — w;) for 1 < i < £. The set W can be
viewed as an [F; [x ]-module under componentwise addition and scalar multiplication,
and is called the Q-multi-twisted (MT) module. Now an Q-multi-twisted (MT) code
C of length n over IF,; is defined as an [F; [x]-submodule of 1V (see Aydin and Haliovi¢
2017; Sharma et al. 2018).

Next let + > 2 be an integer, and let us define V = ]_[le V;, where V; =
Fgr[x]/{(x™ — w;) for 1 < i < £. Note that the set V can be viewed as an I, [x]-
module under componentwise addition and scalar multiplication. Now an Q-MT
additive code of length n over I+ is defined as an F;[x]-submodule of V. Equiva-
lently, an Q-MT additive code of length n over IF;+ is defined as an ' -linear subspace

of IFZ, satisfying the following property: (ot1,0, 01,1, .-, Q1 m;—1; 02,0, 02,15 - - -,
Q2my—13 " 500, Qg ls-.-»Ueme—1) € C implies that (wiaym—1,01,0,...,
Oy =25 W20 gy 15 020, -+ » A2 my—25 =+ 3 Wellg my—1, 0,05 - - - Cg,my—2) € C. In

particular, Q-MT additive codes of length n over F,+ coincide with cyclic additive
codes of length n = m; over Fyr when £ = 1 and w; = 1 (Huffman 2010), while
O-MT additive codes of length n over I+ coincide with wi-constacyclic additive
codes of length n = mj over ]Fq: when ¢ = 1 (Cao et al. 2015; Kaur and Sharma
2017).

From now on, we shall represent elements of the quotient ring Fq[x]/(F (x)) by
their representatives in Fq[x] of degree strictly less than the degree of F(x) and we
shall perform their addition and multiplication modulo F(x), where Fq is the finite
field of order Q and F'(x) is a non-zero, non-constant polynomial in F [x]. Moreover,
we shall represent the vector o € IFZ, aS (01,00 01,1y« oo s Ol my—15 """ 5 0L,05 000,15 -+,
a¢m,—1) and further identify the vector o € F;, with the element a(x) =
(@1(x), @2(x), ..., ap(x)) € V, where ; (x) = & 0+t 1 X+ - -+tj m,—1x" L € V)
forl <i <.

In order to study the algebraic structure of O-MT additive codes of length n over [F 1,

let g1(x), g2(x), ..., g-(x) be all the distinct irreducible factors of the polynomials
XM —wp, xM —ws, ..., X" —wginFy[x]. For ] <u <rand1 <i < ¢, letus
define

P I ifg,(x) | x™ — w;inFy[x];
“1 710 otherwise.

Then for 1 < i < £, we see that x™ — w; = H;zl gu(x)€i is the irreducible
factorization of the polynomial x — w; in IF,; [x]. Now by applying Chinese Remain-
Fq [x]

der Theorem, we see that VW, ~ EBZ:I €,,;Fy for all i, where F, =

(gu(x))
1 <u <r.Nextforl <u < r,ifd, = degg,(x), then F, is the ﬁlilite field

of order qd“. Further, for 1 < u < r, by Lemma | of Huffman (2010), we note
that the polynomial g, (x) can be factorized into irreducible polynomials over Fy:
of the same degree. For each u, let g,(x) = gu.0(x)8u.1(x) "+ &gu.q,—1(x) be the
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irreducible factorization of the polynomial g, (x) in Fy[x], where a, = ged(z, dy)
and deg g, (x) = dy/ay, = D, for 0 < j < a, — 1. From this, it follows that for
1 <i < ¢, theirreducible factorization of the polynomial x —w; over Fy: is given by

XM —w; = [1,—, ]_[‘]l“: Bl 8u,j (x)€wi. Further, by applying Chinese Remainder The-

_ F :[x

orem again, we get V; ~ @, _, EB‘/’.”:OI €u,iFu,j for each i, where F,, ; = %
8u,jX

is the finite field of order q’D” for]l <u <rand0 < j < qa, — 1. More precisely,

a,—1

the ring isomorphism from V; onto €),,_, D<o €wiFu,jis given by
roa,—1
ai(x) > <eu,ia,-(x) + <gu,j(x))) for each a; (x) € V.

u=1 j=0

In view of this, the ring isomorphism from V onto &B,_, @‘J'-”:B]

<€u,1fu,j, €unFujsr-os€uoFu,j ) is given by

gu,j
roa,—1
(@1(x), 02 (%), - @e(0)) = Y Y (€101 (X) + (8, (X)), €u 202 (x)
u=1 j=0

H(8u, j (X)) -+ €ueae(x) 4 (gu, j (X))

foreach (a;(x), aa(x),...,a¢(x)) € V.For1l <u < r,letusdefine¢, = Zle €uis
ay—1

and let G, = € G j. We note that the set G, can be viewed as a vector space
j=0

over J, under componentwise addition and scalar multiplication, and we observe the
following:

Theorem2.1 For 1 <u <r, G, = Guo® Gu1 ® -+ ® Gu,a,—1 is a vector space
having dimension €,t over F,.

Since V ~ G = @;zl Gy, from now on, we shall identify each element
(o1 (x), a2(x), ..., ar(x)) € V with the element A = (A1, Az, ..., A,) € G, where
Ay = (Ao, Auts ooy Aug,—1) € Gy foreach u. Herefor 1 <u <rand0 < j <
(D) 2) (£)

A .. ,Au’j), where

u,j> Y tu,jo
A,(j!)j =€y, (x) + (g, j(x)) € €, F,,  for each i. More precisely, if W denotes the
isomorphism from V onto G, then we shall write W (a (x), a2 (x), ..., ar(x)) = A.
We further observe that the set G can be viewed as an [F,;[x]-module under compo-
nentwise addition and scalar multiplication.
In view of the above discussion, we have the following canonical form decompo-
sition of each (O-MT additive code of length n over .

a, — 1, the element A, ; € G, ; is given by A, ; = (A

Theorem 2.2 (a) Let C(C V) be an Q-MT additive code of length n over Fyi. For
1 < u < r, let us define C, = CNG,. Then for each u, C, is an F,-linear

@ Springer



292 Beitr Algebra Geom (2022) 63:287-320

subspace of G,. Furthermore, the code C has a unique direct sum decomposition
C = B,_, Cu. (The subspaces Cy, Ca, ..., C are called constituents of the code
C.)

(b) Conversely, if D, is an F,-linear subspace of G, for 1 < u < r, and if D =
> —_1 Dy, then we have D = ,,_, Dy and D is an Q-MT additive code of
length n over F

Proof The proof is straightforward. O

The above theorem shows that F,,-linear subspaces of G,,, 1 < u < r, are building
blocks of all Q-MT additive codes of length n over F . Now to count all Q-MT
additive codes of length n over Fyr, we recall the following well-known result.

Lemma 2.1 For any prime power Q and positive integers B, K satisfying B < K,

the number of distinct B-dimensional subspaces of a K-dimensional vector space
B-1 (Qft_1)

b=0 W, (recall

over Fq is given by the Q-binomial coefficient [lé]ﬂ =11

that the Q-binomial coefficient [g] Qs assigned the value 1). As a consequence,
the total number of distinct subspaces of a K-dimensional vector space over F¢ is

In the next theorem, we enumerate all the distinct Q-MT additive codes of length
n over Fy:.

Theorem 2.3 The total number of distinct Q-MT additive codes of length n over F
iS given by NQ = H;=l ( Zu:to [ézt]qdu) N

Proof It follows immediately from Theorems 2.1 and 2.2, and by Lemma 2.1. O

Remark 2.1 There are QO-MT additive codes over Iqu that can also be viewed as A-MT
additive codes, where Q) # A. For example, letg = 5, t =2, m; = 4, my = 2, and

let @ be a primitive element of Fzs. Let C be the F5[x]-submodule of Mz]) X (11;2%);])

with the generating set {(a> + ax 4+ a'>x? 4+ a®x>, 1 + x)}. One can easﬂy observe
that the code C can also be viewed as an [F5[x]-submodule of F25 x2]> X 21;225 5 . That is,
the code C is a (2, 3)-MT additive code as well as a (2, 2)-MT addltive code of length
6 over [F55. Thus the total number of distinct MT additive codes of length n over F

is not equal to (¢ — 1)“Ng.

Huffman (2010) and Sharma and Kaur (2017); Kaur and Sharma (2017) studied
dual codes of constacyclic additive codes of length n over IF,,+ with respect to ordinary,
Hermitian and * trace bilinear forms on F”,, which are as defined below:

The ordinary trace bilinear form on IE";, isamap (-, )o : IFZ, X IFZ, — I, defined
as

n ¢ mi—1
(. Blo =D Trg glew) =Y > Tryr (i nBin)
k=1 i=1 h=0
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foralla, 8 € F”,, where Tryr 4 denotes the trace map from IFq: ontoF,. By Lemma 5 of
Huffman (201 Oq), we see that the ordinary trace bilinear form (-, -)( is a non-degenerate
and symmetric bilinear form on IF‘;‘,.

To define the Hermitian trace bilinear form on IF;‘,, we assume that the integer ¢ is
even. Letus write 7 = 29U = 2AU with A = 297!, where a > 1 and the integer U is
odd. One can easily observe that there exists a non-zero element y € F 24 satisfying
y+ qu = 0. Note that the element y lies in F;r and satisfies qug = (—1)8y foreach
integer ¢ > 1. The Hermitian trace bilinear form on ]FZ, isamap (-, -), : ]F’;, X IE"Z, —
F,, defined as

l m[fl

n

/2 /2

(. By = Trggvaul ) =D Y Trgg(veinpl,)
k=1

i=1 h=0

foralle, B € ]FZ,. By Lemma 5 of Huffman Huffman (2010), we note that the Hermi-
tian trace bilinear form (-, -),, is a non-degenerate, reflexive and an alternating bilinear
form on IFZ .

To define the * trace bilinear form on IFZ,, let g be a power of the prime p, and
let# # 1 (mod p). Then the map ¢ : Fyr — Fyr, defined as ¢(a) = i_:ll a?" =
Tryt 4(a) — a foreach a € Fr, is an Fy-linear vector space isomorphism. Now the *
trace bilinear form on IE‘Z, isamap (-, )y : IE‘Z, X IFZ, — F,, defined as

n ¢ mi—1
(o, B =D Trgr gk (Bi) =D Y Trgr (i nd(Bin))
k=1 i=1 h=0

foralla, B € IFZ,. By Lemma 3.2 of Sharma and Kaur (2017), we see that the * trace
bilinear form (-, -), is a non-degenerate and symmetric bilinear form on IFZ,, and is
alternating in the case when ¢ is even.

Now we shall study dual codes of (-MT additive codes of length n over F: with
respect to these three trace bilinear forms on IFZ,. For this, let § € {0, *, y}, and let
Ts be the set of (i) all integers + > 2 when § = 0, (ii) all integers ¢t > 2 satisfying
t #% 1 (mod p) when § = %, and (iii) all even integers t > 2 when § = y. From now
on, lett € Ty be fixed. If C is an Q-MT additive code of length n over Iqu, then its
§-dual code C is defined as 14 = {a € IE‘Z, : {a,c)s = 0 forall ¢ € C}. One can
easily observe that the §-dual code C% is an Q'-MT additive code of length n over
[F,. Equivalently, the §-dual code C L5 is an [, [x]-submodule of the O'-MT module
V' =TIi_, Vi, where V) = Fi[x]/(x™ — w; ") for 1 <i < ¢.

Let m be the least positive integer such that the polynomial
lem [x™ — Wy, x™2 — wa, ..., x™ — wg] divides x™ — 1 in Fy[x]. We observe that
m = lem[m; 0 (w1), my0(w2), ..., m¢O(wy)] and that Tey = T, = I, where [
is the identity operator on IB‘;’, and O(w;) denotes the multiplicative order of w; for
each i. Next let Q = ¢¢ withe > 1, 7 € {1, —1}, and let 6 be an integer satisfying
0 <6 < e — 1. Now for each monic divisor F(x) = ZZ;(I) apx + x4 of x™ — 1
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inFa[x], let FT(x) = ag Zh 0 Lapxd=h 4 ag ! denote the reciprocal polynomial of
F(x), and let us define

d—1 4
> al xh x4 ifr =1,
Fxy={"=" ,,
~q" N~ 4" d—n =4
ay” Y a, x*"+ay” ifm=-1.
h=0
. Falx] Folx] h
Now the map 7,0 » : 7y — Ty defined as ‘L'qen( e Oahx )
q- (l)aZ X" foreach Y920 apx" € <%(X—)i,1sar1nglsomorphlsm (herex ! = x™
when 7 = —1). Moreover, the ring isomorphism 7 .o , is the inverse of 7,0 ;. In

particular, when F(x) = x"™ — wi_l € Fyi[x], we see that I?(x) = x"™ — wi,
where 1 < i < {. Further, for 1 <i < £, the ring isomorphism ‘L’l 1 V — V is
defined as 7y 1 (B (x)) = B;(x~ 1) for each B;(x) € V/, where x| = w; 1x €
V;. The map 71— can be further extended to the map 7 1 : V’ — )V as
11, 1(B(x) = (t1,-1(B1(x), T1,—1(B2(x)), ..., T1,~1(Be(x))) for each B(x) =
(B1(x), B2(x), ..., Be(x)) € V'. Onthe other hand, when F(x) = x™ — 1, we see that
f(x) = x" — 1, and hence the map 71 1 : F,[x]/ {(x™ — 1) — ]F g[x1/ (x™ — 1) is
defined as 1'1,71(22";01 apx™y = Z:o] apx~" foreach Y "7, ahx e Fylx]/ (x™ —1),
where x 7! = x""Hin F, [x]/ (x™ — 1).

In order to study algebraic structures of §-dual codes of O-MT additive codes over
[, for§ € {0, *, y}, we define the map (-, )5 : V X V' — Fylx]/(x™ —1) as follows:

For a(x) € V and B(x) € V', let us define

¢ ot—1 m_y
2 Wi (x’ﬁi __w,.> Tgn,1 (ai ()71,-1(Bi (X))> when é = 0;
i=1pu=0
¢ -l .

@), peNs=1 3 X wi (k) 7, 1<az ) Z thr (B (x))) when 5 = #;
i=1pu=0
¢ =1
2 2w (ﬁ,__l ) T, 1()/011 (T2, 1 (Bi (x))> when § = y.
i=1pu=0

Here the quotient rmg ,,,[ }> is viewed as an F [x]-module.
In the following lemma we relate the map ( -)s with the bilinear form (-, )5 on
IE‘;’, and study its basic properties for each § € {0, %, y}.

Lemma2.2 Let a(x),aj(x) € V, B(x), B1(x) € V' and f(x), g(x) € Fylx]/{(x™ —
1). Then for 6 € {0, x, y}, the following hold.

@ @), B0))s = S0g e, TE,(B))sx*, where TX (B) denotes the k™ Q'-MT
shift of B € IFZ,.

(b) (x(x), B(x)+B1(x))s = (a(x), B(x))s+(a(x), B1(x))s and (a(x)+ay(x), B(x))s =
(a(x), B(x))s + (@1(x), B(x))s.
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©) (f(a(x), B(x))s = fx)(a(x), B(x))s and (a(x), g(x)B(x))s = T1,—-1(g(x))
(ae(x), B(x))s-

(d) (a(x), B(x))s = T1,-1(B(x), a(x))s for § € {0, *}, while (x(x), B(x))y =
—11,—1((B(x), a(x))y)
and (a(x), t1,—1(a(x))), = 0.

(e) (-, -)s is non-degenerate.

Proof Working in a similar manner as in Lemma 6 of Huffman (2010) when § € {0, y}
and as in Lemma 3.3 of Sharma et al.Sharma and Kaur (2017) when § = *, the desired
result follows. |

From the above discussion, we deduce the following:

Theorem 2.4 Let C(C V) be an Q-MT additive code of length n over F:. Then for
8 € {0, *, y}, the 8-dual code C-(C V') of the code C is an Fy[x]-submodule of V'
and is given by C = {B(x) € V' : (a(x), B(x))s = 0 for all a(x) € C}.

Now we shall further study duality properties of Q-MT additive codes of length n
over IFr. To do this, working as above, we see that V' >~ G’ = D,_, G, where G, =

@?“:61 gl’l’jforl <u<r. Herewehaveg’ = (eu 1.7-'T , €u. 2]_-’r cees €y, @]:T )

F
Where]-";j = ﬁforl <u <rand0<J < a, — 1. In view of this, from now
’ gu/x

on, we shall identify each element (81 (x), B2(x), ..., Be(x)) € V' with the element
= (B1,Ba,...,B,) € G, where B, = (By,0, Bu,1, - - -, Bu,a,—1) € G, for each u.
Moreover forl <u <rand0 < j <aq, — 1, the element Bu j € g 1s given by

Bu.j = (B(l) B® . .. B(()) where B() = €, fi(x) + gu /(x)) € e,“]-'T for

u,j’> ~u,j’ u,
eachi. More/prem/sely, if @’ denotes the 1somorph1sm from )’ onto G, then we jshall
write W' (B1(x), B2(x), ..., Be(x)) =

Now for § € {0, *, '}, we shall further relate the sesquilinear form (-, -)s on V x V'’
with the corresponding map [-, -]s on G x G’ and study its properties. Towards this,
we see that if ¢,; = 1 for some u and 7, then g,(x) divides x™ — w; in Fy[x],

which implies that x™ = w; in F,. This further implies that w; (w;l) =

xMi—w;
m o
h . .
Zh 0 w hohmi r’,’l—’l in F,. Moreover, for F(x) = g, ;j(x) € Fg[x], we

have F(x) = gu,jro(x) if 7 = 1, while F(x) = g; j+8(x) if 1 = —1, (here
the subscript j + 6 is considered modulo a,). Therefore the ring isomorphism
F ¢[x] F i [x] Dy, —
T ey (F"( ) is defined as 7,0 (Zk 2o anX ) Zh 0 a 4 o
D,—1 h Frlx]
TCh Dheo anx" € ooy
F(x) = gu(x), and hence the ring isomorphism 71— : f,j — JF, is defined as
=1 =1
Tl,—l(ZZ:o xh) = Zh 0 " apx " for all ZZ:O anxh € F.
In view of the above discussion, we observe that for § € {0, %, y}, the sesquilinear
form (-, -)s corresponds to the map [-, -1s : G x G' — @), _, Fy, which is defined as
follows:

Furthermore, for F(x) = g; (x) € Fylx], we have
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For § = 0, the map [-, -]o is defined as

aj—1(t/ar1)—1

A, Bl = (z—q, DS ,La1+_f,1(¢4§{1,1,.n,_lasgfglj>),
j=0 u=0
j=0

1 (t/a—1 .
/wz-f—j’] (A;l‘)azj T1,—1 (Bglz j)> .
ar—1(

i )
l ]:0

n=

2
aXr_);)—l

~ HMN
§|§,

| =

fqp,ar+j’1<Aer 7]1'] _I(B}Ell j)>> (21)

3

i=1

/
n

For § = %, the map [-, -], is defined as

I/ m ay—1(/a)—1
[A, B]* = .A B]o + <Zl m_, ( ZO ZO ‘L'q/m]ﬂ 1(»/41 al— j))
= = H=!
aj—1(t/ar)—1
(> > tqgalw,l(n,—l(l?ili,l /)))>
j=0 o=0

ar—1 (t/ax)—1 _
( Z Z M@HJ(AS,)@_/'))

j=0 u=0

MN
§|§

1

az 1(t/ax)—1
Y T (i (BY), ,))))

j:O o=0

- ar—1(t/a;)—1

TR (OIS DI CN)
mj ;

i=1 j=0 =0
a,—1(t/ar)—1

(> rqoa,ﬂ-,l(n_l(Bﬁ;_,>))>>. 22)
j=0 o=0

Further, for ¢ = (g1,82.....8) € D, ‘7-";, let us define 71, —1(g) =

(t1,-1(81), T1,-1(82), - ., T1,-1(8)) € B, Fu.
In the following lemma, we show that the map [-,]s : G x ¢’ — €, _, Fu is a
reflexive and a non-degenerate 71,—1-sesquilinear form for § € {0, *}.

Lemma23 Let A, A' € G, BB €G', f € @, Fu andlet g € @,_, Fu. Then
for & € {0, x}, the following hold.

(a) [A+ A", Bls =[A, Bls +[A", Bls and [A, B+ B'ls = [A, Bls + [A, B'ls.
() [fA, Bls = flA, Bls and [A, gBls = t1,—1(g)[A, Bls.
(© [A, Bls = 71,—1([B, Als).

(d) [-, -1s is non-degenerate.
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Proof Proofs of parts (a)—(c) are trivial. To prove (d), let A € G be such that
[A, Bls = 0 for all B € G'. We assert that A = 0. Suppose, on the contrary,
that A is non-zero. As W is the isomorphism from V onto G and W' is the isomor-

phism from V' onto G’, there exist unique elements (| (x), @2(x), ..., a¢(x)) € V

and (B1(x), Ba(x), ..., Be(x)) € V' satisfying W (e (x), @2(x), ..., ae(x)) =

and W' (B1(x), B2(x), ..., Be(x)) = B. Now since A is non-zero, we note that
= (Au.0. Au1, .., Aua,—1) # 0 for some u, 1 < u < r. From this, we see that

€un = land ap(x) # Oforsome h, 1 < h < £.Letus write ap(x) = Z,?;al ah,kxk.
As ap(x) # 0, we note that oy ;. # 0 for some k. Since Tr: , is a non-zero and an
onto map, there exist ¢, d € Fyr satisfying Tryr , (ap rc) # 0and Tryr ,(d) # 0. Now
let us take B;(x) = 0 for 1 < i(# h) < ¢, and let us take B (x) = ¢ when § = 0,
while let us take B, (x) = ¢~ (da ) when § = .

Now when § = 0, we see that 71,—1(Br(x) = c. This, by (2.1), implies that

[A, Blp = — Zk 20 Tr 1,q(@n, kc)xk = 0, which is a contradiction. This shows

mp
that the map [, -]o is non-degenerate.
When 6 = %, we see that 71 _1(Br(x)) = ¢~ 1(doz o). By (2.2), we obtain

[A, Bl, = mﬂh S Ty g ek (67 (da, D)k = m—h S 20 iy (k0.

which is a contradiction. This shows that the map [-, -], is non-degenerate. O
Finally, for § = y, themap [, -], : G x ¢’ — €D, Fu is defined as
aj—1(t/a1)—1

[A B]y = (Z —611 Z Z ;ta1+/ I(V'Agl)a] —J qr -1 (Bil,)é—j))’

j=0 u=0

l ay—1 (t/azx)—1
(@) @)
Y 3 (A (8))
ar—l(t/a,) 1
i) )
z WL X (v (B))) e

§|§

§|§

In the following lemma, we show that the map [-, -], : G X g — EB;:] Fuis a
reflexive and a non-degenerate 71, _1-sesquilinear form.

Lemma24 Let A, A €G, BB e€q, fe®, | Fu andletg € P, _, .7-";. Then
the following hold.

(@ [A+ A, Bl, =[A Bl, +[A,Bl, and [A, B+ B'], = [A, Bl, +[A, B'],.
() [fA, Bl = flA,Bly and [A, gBl, = 11, -1(8)[A, Bl,.

(© [A, Bly, = —t1—1(IB, Aly).

(d) [, -1y is non-degenerate.

Proof Proofs of parts (a) and (b) are trivial. To prove (c), we first recall thatr = 2AU,

where U is odd. One can easily observe that y4° = y4V = (=1)Yy = —y. From
this and by (2.3), part (c) follows immediately.
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Now it remains to show that the map [, -],, is non-degenerate. For this, let A € G
be such that [A, B], = 0 forall B € G'. We assert that A = 0.

Suppose, on the contrary, that A is non-zero. Since A is non-zero, we note that
Ay = (Auo, Aty ooy Aug,—1) # 0 for some u, 1 < u < r. From this, we see that
€un = land oy (x) # Oforsome h, 1 < h < £.Letus write oy (x) = Z,?:“al ah,kxk.
As ap(x) # 0, we note that oy x # 0 for some k. Since Tr,: , is a non-zero and

an onto map, there exists § € FFr satisfying Try q(yah,ké‘;‘ﬂ) # 0. Now let us take
Bi(x)=0 for 1< 1(75 h) <¢, and let us take B, (x) = &. Then we see, by (2.3), that

[A Bl, = — Zk 0 Trq q(ran, ksqz)x # 0, which is a contradiction.

This shows that the 7, _-sesquilinear form [-, -],, is non-degenerate. O

The following proposition is useful in investigating the algebraic structures of §-
dual codes of O-MT additive codes of length n over IE‘qz for each § € {0, %, y}.

Proposition 2.1 Leta(x) € Vand B(x) € V' beidentifiedwith A = (A1, Az, --- , A,)
€ Gand B = (B1,Ba, ..., B,) € G, respectively. Then for § € {0, x, v}, we have
[A, Bls = 0 if and only if [A,, B,ls =0for1 <u <r.

In the following theorem, we relate the constituents of an Q-MT additive code with
that of its §-dual code, where § € {0, %, y}.

Theorem2.5 Let C = C1 ® G @ - © G and CH = P o @ --- @ ¢,
where C, = C NG, andC,gg) = CLs NG, forl <u <r.Thenforl <u <r, we
have € = (B, € G, : [Au, Bls = 0 forall A, € C,} = Ci* and dim 24 G =

d1m]_. Cl = e t —dimg, C, for 1 < u < r.(Throughout this paper, dimr V denotes
the dimension of a vector space V over the field F.)

Proof To prove the result, let 1 < u < r be fixed. Now we first observe, by Proposi-
tion 2.1, that C) = {B, € G, : [ Ay, Buls = 0 forall A, € C,} = Ci.
To prove the second part, let k, = dimg,C,. Here we assert that dim}_JCul 8 =
€t —ky. )
To prove the assertion, for each non-zero A € Gy, letusdefineamapg4 : G, — F,

as 9 4(B) = [B, Als for each B € G),. One can easily observe that ¢ 4 is an ]—"J-linear
transformation. Further, working as in Theorem 2.1, we note that g; 1S an €,t-

dimensional vector space over f; foreachu.Sofor 1 < u < r, by the rank-nullity the-
orem, we see that Nullity (¢ 4) = dim(ker(¢_4)) is either €, or €, — 1, where ker(p 4)
denotes the kernel (or the null-space) of ¢ 4. Further, if {4, Az, ..., Ak, } is an F,-
basis of C,, then one can easily observe that ker(¢ 4,) Nker(¢ 4,) N-- - ﬂker((pAku ) =
C;H? and that dim . (C:H) = dim i (ker(p 4)Nker(9.4,)N- - -Nker(¢ 4,,)) = €ut —ku
foreachu. As .7-'; ~ quu , we getdimp, (C,,“) > (e,t—ky)d,. Nextitis easy to see that
diqu ©) = ZZ: 1 kydy, . Further, by Theorem 4.2.4(ii) of Ling and Xing (2004), we
getdimp, (C) = nt —dimp, (C) =1 Y} €udu— iy kudy = Y 1 (€ut —ki)d,.
L5y — (et —ky)d,,, which
gives dim . (CM“) = eyt — ky = €,t — dimg,C, for each u. O

Now as dimp, (Cul‘;) > (eut —ky)dy,, we musthave dimp, (C;
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In the following section, we shall study algebraic structures of self-orthogonal and
self-dual QO-MT additive codes of length n over I with respect to the aforementioned
71,—1-sesquilinear forms [-, -Jo, [+, -]« and [-, -], on G x Gg'.

3 Self-dual and self-orthogonal QO-MT additive codes over finite fields

Let C be an Q-MT additive code of length n over [Fyr. For é € {0, *, y}, the code Cis
said to be (i) 8-self-dual if it satisfies C = C and (ii) §-self-orthogonal if it satisfies
C C C'. Now we shall study all §-self-dual and §-self-orthogonal Q-MT additive
codes of length n over Fy:. To do this, we proceed as follows:

Let f(x) be a non-zero polynomial in Fq[x], and let fT(x) be its recipro-
cal polynomial. The polynomial f(x) is said to be self-reciprocal if it satisfies
f(x) = fT(x). We say that two non-zero coprime polynomials f(x), g(x) €
Falx] form a reciprocal pair if they satisfy f7(x) = g(x). Now we recall
that gj(x), g2(x), ..., g-(x) are all the distinct irreducible factors of the poly-
nomials x"! — wy, x™ — wa,...,x™ — w¢ in Fylx], and that g,(x) =
H?“z _01 8u,j(x) is the irreducible factorization of the polynomial g, (x) in Fg:[x] for
I < u < r. That is, the polynomials gjo(x), g1.1(x),..., 8l.a;—1(x), g2.0(x),
82.1(x), ..., 82.a0—1(x), ..o+, 8r0(x), 8- 1(X), ..., &r.a—1(x) are all the distinct
irreducible factors of the polynomials x™! — wy, x™2 — w2, ..., x" — wg in F i [x].
Further, by Lemma 2 of Huffman (2010), we observe that if for some « and j, the poly-
nomial g, ;(x) is self-reciprocal, then the polynomial g, ;41 (x) is also self-reciprocal,
where the subscript j + 1 is considered modulo a,. As a consequence, if for a given
u, the polynomial g, ;(x) is self-reciprocal for some j (0 < j < a, — 1), then the
polynomial g, (x) is also self-reciprocal, (but the converse is not true in general). More-
over, for 1 < u,u’ < r, if there exist integers &, h’ satisfying 0 < h, h’ < a, — 1 and
Sun(x) = g];,’ (%), then we have g, (x) = gl, (x). In view of this and by reordering
8u,j (x)’s (if required), we assume that

® 21,0(x), 81,1(x), .oy 8lLay—1(X), o, 8oy 0(%), 8ey,1(X), .o, 8eyap —1(x) are
all the distinct self-reciprocal irreducible factors,
L gel+1,0(x)a gZH—],O(x)’ cees g€1+1,del+1—l(x)’ ng.:,_],a(,]H_] (xX),...---, gez,o(X),

8er 00 Beriay—1 (), 8L, 4 ()
are the irreducible factors forming reciprocal pairs, and

® 2er+1,0(0)s 8er1,1(X)s -+ Bertliaeyp—1(X)s - - 2 8e3,0(%), 83 1(X), ...,
ge3’ae3_1(x) are the remaining irreducible factors (i.e., neither they are self-
reciprocal nor do they form reciprocal pairs)

of the polynomials x™! — wy, x™? — wa, ..., x™* — wy in Fy[x]. Note that r =
ey +e3—ej.
Forei +1 <w <eyand1 <i < ¢, letus define

o1 if g;’j(x) | x™ — w; in F [x] for some j;

6w,i

o otherwise.
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We also note thatfore; +1 <w <epand1 <i </, ifgz) J.(x) | x™ — w; for some

J, then g; i1 () | x™i — ;. From this, we get

el ay—1 ay—1 s ez  ag—1
W —wi o= [T soj0 H [T swiowig), ;@ [T T g0
v=1 j=0 w=ej+1 j=0 s=ey+1 j=0
and
el ay—1 ay—1 as—
il
o = 1T e 11T sy s 1 1w
v=1 j=0 w=e1+1 j=0 s=ex+1 j=0

For each relevant v, w, s and j, we note that

Foj= % >Fpy, Fuj= % ~Fyiou,
q' F,:
= (g_[(]» e N R
F, F
Lz@%%zmﬁ’ﬂzwﬁigﬂ“

Now by applying the Chinese Remainder Theorem, we see that

er ay—1
(@@ (EU]-7:1;]’6112-7:11]’~~-»€v,6-7:v,j)>

v=1 j=0

ay—1
< @ @ {(Gw,lfw,ja Gw,wa,j, -~-a€w,€-7:w,j>

w=e;+1 j=0

gw,j
CCERE )
w‘]7 wj,..., w(
G
ez ag—1
(8 (wrens cn)
s=ex+1 j=0 G
.V,_]
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(68%)+(& Bmert)o( & &)

v=1 j=0 w=e1+1 j=0 s=ex+1 j=0
el ey €3

:(EB%)@( P (gw@g;j,))ea( o, g) 3.1
v=1 w=e1+1 s=ex+1

where G, (resp. G, g; and Gy) is a vector space over F, (resp. Fy, .7-',1 and Fy) for
each v (resp. w and s).
In an analogous manner, we have

er ay—l1
<@@ (Evlfv]:6v2]:vj:~~,5v,féfv,j>>

v=1 j=0
ay—
T T T
( D D { (ewsl}"w,j, € s Fu g€ Fun )
w=e;+1 j=0 Hw.j
<6w 1-7:10] €w 2-7:10] ew,EFJ)’j>}>
H,
ez as—1
@( @ @(es,l}—lj,ex,Z}—lj,-~-a€s,€-7:3’j>)
s=ex+1 j=0
gl
e1 ay—1 ay—1 e3 ag—1
¥
- (DDo)o( D Duon))s( © @)
v=1 j=0 w=ej+1 j=0 s=ex+1 j=0
ey e €3
=(@gv)@( D (HwéBHL)>EB< D g;), (32)
v=1 w=e|+1 s=ex+1

where G, (resp. Hy, 'HZ) and QST) is a vector space over JF,, (resp. Fy, ]—'J) and }"ST)
for each v (resp. w and s). We also recall that for 1 < u <r, ¢, = Zf 1 €,,i and
dimz, G, = €,t. Further, for e; + 1 < w < e, we see that ife; = Zf 1 €piv then
dim g G, = dimg, Hy = €)1.
Hereafter, we shall identify each element a(x) = (o1 (x), aa(x), ..., a¢(x)) € V
with the element A = (.A], Aoy ooy Aeyy Aoy, ALH’ e Aoy, Alz, Aert1, Aey12,
Ae3) € G, where Av = (AUO Av la .- Av,av—l) € Gy, Ay = (Aw,Oa Aw,l,
Awa,-1) € Gu, Al = (AL A AL L) e G and A =

(AS‘OvAg‘ 1seoos Asa—1) €Gsforl <v<ej,e1+1 <w <erander+1 <s < e3.

Here for each relevantv w, s and j, we have Av = (A(l) A(z) .. .A(E)) €Gu,js
1 2 {4 1 2 {4

ij _(AEU)]’ f‘))j"' A())EQWJ’ (AZ)(])’AZ)(‘])"”’AI'U(,‘])) gIL),j
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1 2 {4
and A = (AL AP LAY € Gy with AV, = e i (x) + (80,5(0) €
eu,fv,, ,4<'> = ew,-ai<x> + (g i) € ewiFuj. AT = €l ei(x) +

(g () el Fu and A = e e (x) + (g5, (x)) € €1 Fyj for 1 <i < L.
Similarly, each element ,B(x) (B1(x), B2(x), ..., Be(x)) € V' is identified with
B = (Bi,B,... Bel,BelH Bl 1o Bey Bl Beyt. Beya, ... Bey) € G,
where Bv = (Bv 0, B v 1, .-, By alfl) € Gy, By = (Bw,Oa Bw,lwust,auﬁl) €
Huw. B, = B 0. B ..., B, ) € Hi,and By = (By0. Byt ... Bya,—1) €
Qs forl < v <e,e1+1 <w< ezandez—i—l <y < e3 Herealso for
each relevant v, w, s and j, we have B, ; = (BU i B(z) ) € Gu,j, Bu,j =
(ng,g,g?,,.. By € Huy Bl = (B;)(ll),l?;(zj),.. BW)) e H

1 2) {4 .
Byj = BB, B e with BY, = i Bi(0) + (g0, () € evlfv],

BY . = €l i) + (8w () € €) ;Fuj. BL) = ewifi(x) + (8], ;) €
ewl}—T v and B = e iBi(x) + (g ](x)) €e i, forl <i<d

Further, by Theorem 2.2 and by (3. 1) we see that each Q-MT additive code C € G
of length n over F: has a unique representation of the form

€] e e3
=(@Da)e( P Cuac)) e D ). (3.3)
v=1 w=er+1 s=ex+1

where C, (resp. Cy, C:L and Cy) is a subspace of G, (resp. Gy, g; and Gy) over F,
(resp. Fu, }"ﬂ; and Fy) for each v (resp. w and s). Furthermore, for § € {0, *, y} and
forall A € G and B € G/, the sesquilinear forms [, -], defined by (2.1)-(2.3), can be
rewritten as

[A Blo = (R1,Ra, ..., Reys Rey+1, R

[A Bl = (S1 = Ri.....Se; = Rey. Ser41 — Rey 41, Sy 4
S Rez S Rl Se2+l _Rez-H ~~~~~ 323 _Reg),

Serr Sh Sert1: Sertar -2 Se) — A, Blo.
(3.5)

= (51,8, ..., Se] Sc|+] 8L1+1 ~~~~~

and

(A Bl, = (T1.Ta. ... Toy. Toy 11, T,

e1+1> > 7;25 TT 7;24-17 7;2+25 ey 7;’3)5

ey’
3.6)
whereforl <v <ej,e1+1<w<eyande; +1<s <e3,

ay—1(t/ay)—1 .
(X% (Aot ))

j=0  u=0

m
= E _61)
m;

i=1
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¢ m ay—1(t/ay)—1 () )
1 l
Rw = Z m_ ( Z Z quaw+/ 1( waw_jrl'il(Bwa _]))>’
i=1 j=0 u=0
Y4 m ay—1 (f/au)) 1 i) @
1
RL} = Zm_ ( Z Z q;ww+j’1<Aw ay— ]T - (Bw G~ j)))’
i=1 j=0 u=0
m as—l(t/dv) 1
Ry 2T (4l ma )
i=1 j=0 pu=0
¢ m ay—1(t/ay)—1
o E (£ )
i=1
ay—1 (f/av)71
(55 st _,»))
j=0 o=0
Y ay—1(t/ay)—1 .
So=Yrmei((X X il )
io1 " j=0 pn=0
ay—1 (f/aw)71
"
(Z Z Tqaaurﬁ'j’l(‘[l,*l(Bw(lzw j))>>
j=0 o=0
m ay—1(t/ay)—1
. (@)
=Xl (XX sl )
i=1"" Jj=0 =0
aw—l(t/“w)71 .
(X % el ),
j=0
)4 m as—1 (t/as)—1
s=Yma((X X meenil, )
i=1 j=0 p=0
as—1(r/as)—1
X( Z fqanJrj,l(tl —I(BEL _/))>>
j=0 o0=0
Y4 m ay—1(t/ay)—1 )
l
T, = Z m—l < Z Z Tynavti| l(yAva _iTq, _1(3 j))),
i=1
V4 m au;*l(l/uw) 1 T()
Ty = m_ ( Z Z Tgrawi, 1<V‘Aw)a —tht/z _1(8 l ]')>>7
i=1 ! Jj=0 u=0
V4 m awfl(l/aw) 1
=Y " (z 3 ( AT By ﬂ))’
i=1 ! j=0 u=0
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m as—1 (t/as)—1
= Z JEs,i( Z Z uaerj 1<'}/A21a —j qt/2 71(6() )))

i=1"" j=0  u=0

Moreover, by (3.4)-(3.6) and by applying Theorem 2.5, we see that the §-dual code
C13(C @) of the code C is given by

el e €3
oL — (EBQS) ® ( P «i- @C#)) ® ( &y CS“), (3.7)
v=1

w=ej+1 s=ex+1

where Cj‘ 8 C @, is the orthogonal complement of C, with respect to [, 1516, xa,
forl < v < ey, C,f,“; - ’HL is the orthogonal complement of C, with respect
o [, Is . , CE)L‘S C H, is the orthogonal complement of CZ) with respect to

wXYw

[, ']‘”H g fore;+1 < w < ey, and CSL‘3 - QST is the orthogonal complement of Cg
with respec%to [-, -Is; R forep;+1 < s < e3. Here [, ']3fguxgu (resp. [, -Is;. + .
[+, -1s FH <ol and [-, ]i; g ) denotes the restriction of the sesquilinear formw[-, s

to Gy, x G, (resp. Hw X Gy, Hy X QZJ and gj x Gs) for 1 < v < e; (resp. for
e1+l<w<erander+1<s <e3).

Now forej +1 < w < epand 0 < j < ay, — 1, let us define Ky ; =
Guw,j N Hy,j = (ew,le'}- (Fwjs - s €w, (6 oFu, ]> and ICI)’]- = QIW. N le =
(ew,le fu'}],.. ewge f ) Next let Ky = Gy NHy = @?“;EIICUJ,],

u—l ¢ i
Ki =G nHi = @a ICL)], = Zi:lew»ieju,i’ and let n,, = Kyt for
e1 + 1 < w < er. One can easily observe that /Cy, (resp. ICL) is an n,,-dimensional
vector space over J, (resp. F, T) fore; + 1 < w < ep. It is easy to observe that
the restriction [-, -]3; o of the form [-, -]s to KCy X ICL is a reflexive and a non-

K x Ky

degenerate 71 _-sesquilinear form.

Next one can easily see that x + 1 and x — 1 are the only irreducible self-
reciprocal polynomials over finite fields of odd degree, and that all other irreducible
self-reciprocal polynomials over finite fields are of even degrees. More precisely, for
l<v=<eand0 < j <ay—1,if deg gy j(x) = D, is odd, then we must have
D, = 1and g, ;(x) is either x + 1 or x — 1. Further, it is easy to observe thatd, =1
if and only if D, = 1.

Moreover, for 1 <v <ejand0 < j < a, — 1, one can easily observe that the map
71,—1 : Fu,j — Fyp,j is an automorphism of F,, ; satisfying 1'12'_1 = 11,1, the identity
map. That is, the map 71— is either the identity automorphism or the automorphism
of Fy,; of order 2. In view of this and using the fact that F, = @a“_l Fo,j, we see
that the map 71— is either the identity automorphism or the automorphlsm of Fy of
order 2, where 1 < v < ¢;.

Next for 1 < v < e, letusdefine /1 = {v : 1 < v < e,dy, = 1} and

={v:1 < v < e,d, iseven}. Note that {1,2,...,¢e1} = J U J2. Now

A
A
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the following three lemmas are useful in studying and counting all §-self-dual and
d-self-orthogonal O-MT additive codes of length n over F: for each § € {0, , y}.

Lemma3.1 For1 <v <ejand0 < j < a, — 1, the following hold.

(@) The map t1,—1 : Fy,j — Fu,j is the identity automorphism if and only if v € J.
(b) The map 71,1 is the automorphism of F, ; of order 2 if and only if v € [J;.

Proof (a) If v € J, then we have d, = D, = 1, from which it follows that 7| _;
is the identity map on F, ; >~ F,. To prove the forward part, let us suppose
that 1,1 is the identity automorphism of 7, ;. Here we assert that v € J;. Since
71,—1 is the identity map on F,, ;, we have x 4 (gy j (X)) = 71, —1(x +(gv,; (X)) =
x4 (gv,j(x)). This gives x — xle (gv,j(x)). Note that there exists an integer
i (1 <i < ) such that g, j(x) divides x™ — w;, which implies that x™ =
w; (mod gy ;j(x)), and hence x4 (gv,j (X)) = wi_lx’”i_l + (gv,j(x)). From
this, it follows that g, ;(x) divides w;ix? — x™i_ This implies that g, ;(x) divides
wix2—xMi 4 xMi —w; = w;(x2—1). As 8w, j (x) isamonic irreducible polynomial
over ]qu, we see that g, j(x) is either x + 1 or x — 1, which gives D, = 1. This
shows that v € 7.

(b) It follows immediately from part (a) and the fact that the map 71 _ is either the
identity automorphism of F,_ ; or the automorphism of 7, ; having order 2.

m}

Lemma 3.2 For 1 < v < ey, the following hold.

(a) The map t1,—1 is the identity automorphism of F, if and only if v € J.
(b) The map 1 —1 is the automorphism of F, of order 2 if and only if v € J>.

Proof Working in a similar manner as in Lemma 3.1, the desired result follows. O

Lemma 3.3 Lett > 2 be an even integer. For 1 < v < ey, the following hold.

(a) The integer é = m is even if and only if v € J.
(b) Ifv e Ja, then we have j + % = j + % (mod ay) for all integers j.

Proof (a) We know that D, = 1 if and only if d,, = 1.
Now if v € J1, then we have d,, = 1, which gives a, = gcd(t, d,) = ged(z, 1) =
1. This implies that the integer - = 7 is even.

To prove the forward part, suppose that the integer é is even. Since a, =

gcd(t, dy), we have gcd(aLv, Z—;’) = gcd(at—u, D,) = 1, which implies that the
integer D, must be odd. This further implies that d, = D, = 1, from which it
follows that v € 7.

(b) Now if v € 7>, then the integer d,, must be even, and hence a, = gcd(z, d,) is
an even integer. Further, by part (a), we see that the integer at—v is odd. In view of

this, we have £ — % = a, x %((ILU — 1) =0 (mod ay). From this, it follows that

j+5=j+% (mod a,) for all integers ;.
|
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In the following lemma, we study some basic properties of the restriction map
[ ']Nguxgv foreach§ € {0, %, y}and 1 <v <ej.

Lemma3.4 Let 1 < v < e be fixed.

(@) Forv € Jy and § € {0, %}, the map [-, 1816, xg, IS a symmetric and a non-
degenerate bilinear form on G,, i.e., (Gy, [-, ']5fgvxgu) is an orthogonal space of
dimension e,t over F, >~ F,.

(b) For v € J» and § € {0, *}, the map [-, ']3fguxgv is a non-degenerate and a
Hermitian t1,_1-sesquilinear form on G,, i.e., (Gy, [+, -1 ngxgv) is a unitary space
of dimension €,t over F, =~ quv.

(c) Forv € Jy,themap -, -1y g, g, is an alternating, reflexive and a non-degenerate
bilinear form on G,, i.e., (Gy, [+, -] [gngU) is a symplectic space of dimension €t
over Fy =~ IFy.

(d) For v € J, the map [-, ']Vfgvxgv is a non-degenerate, reflexive and a skew—
Hermitian t1 _1-sesquilinear form on G,.

Proof One can easily verify that the map [, 18516, xay is a 71, _-sesquilinear form
on G, for each v. Now to show that the map [-, 1516, xa, is non-degenerate, let us
suppose that [A,, Byls = 0 for all B, € G,. Here we assert that 4, = 0. Let
C'=(Ci,...,Cy,...,Ce)beanarbitrary element of G’ with C,, = B,.. Note that as B3,
runs over G,, the element C' runs over G’. Alsolet. A = (0, ..., 0, fL, 0,...,0)€a.
pth
Then we see that [A, C'ls = [Ay, Byls = 0 for all C € G'. By Lemmas 2.3-2.4, we
see that the sesquilinear form [, -] is non-degenerate on G x G’. From this, it follows
that A = 0, which gives 4, = 0.

Further, when § € {0, x}, one can easily observe that [A,, Byls = tl,,l([BU, Av],g)
for all A,, B, € G,. From this and by applying Lemma 3.1, parts (a) and (b) follows
immediately.

Now to prove (c), let v € J;. Here we have d, = Dy = ay = 1 and F, o >~ F.
We also see, by Lemma 3.2, that the map 71— is the identity automorphism of F,.
Further, we observe that [A,, B,1, = —[B,, Au], forall Ay, B, € G,. In particular,
we have [A,, 4,1, = —[Ay, Ayl,, which gives 2[A4,, A,], = 0forall 4, € G,.
From this, it follows that [A4,, A,],, = 0 when g is odd. On the other hand, when ¢ is

t

even, we see that y‘fz = y, which implies that

14 t—1
[Av, -Av]y = Z %Ev,i ( Z fq“,l(VAf)l,)()Tq’/{—l (Al()l,)o)))

i=1 u=0
4 m t—1 2
"
=Y —eui ( D raioafl )1 + (gu,o(x))>
iz M 1=0

‘ m q'7?
=D —eniTrg g (vaionly )+ (800()
L

i=1
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—Z €0 T2, (T g2 (v e, 0y ) + (gu.0(0))

= Z Ev ,T]‘ 12, (27/011 Oal 0 ) + {(gv.0(x))
= 0 + (gv,o(x)) forall A4, € G,.

This shows that the 1, _{-sesquilinear form [-, -], [ Gy Gy is alternating when v € 7.
Finally, to prove (d), let v € J>. Here by Lemma 3.2, the map 71— is the
automorphism of F, of order 2. Further, it is easy to observe that [A,, B,], =
—11,-1([By, Ay1y) for all Ay, B, € G,. This shows that the 7, _;-sesquilinear form
-1y 16y %Gy is a skew-Hermitian form on G,.
This completes the proof of the lemma. O

In the following theorem, we derive necessary and sufficient conditions for an Q-
MT additive code of length n over Fy: to be §-self-orthogonal and §-self-dual for each
8 € {0, %, y}.

Theorem3.1 Let Q = (wi, wy,...,wy) be fixed. Let C = <@el Cv) 25

v=1

(@w ey 41 Co@C) )) ( eyt CS> be an Q-MT additive code of length n

over Fyr, where Cy (resp. Cy, Cz} and Cy) is a subspace of G, (resp. Gy, gL and Gy)
over F, (resp. Fy, .7-"11 and Fs) for all v (resp. w and s). Then for § € {0, x, y}, the
following hold.

(a) The code C is §-self-dual if and only if the following conditions are satisfied:

e Irreducible factors of the polynomials x™' — wy, x™ — w3y, ..., x™ —wy in
Iy [x] are either self-reciprocal or form reciprocal pairs.

o forl <wv < ey, dimg, G, = €yt is even and Cy is a 8-self-dual F,-subspace
of Gy.

e Forei+ 1 <w < ey, Cy (resp. CZ)) is a subspace of ICy, (resp. ICL) over Fy
(resp. F}) satisfying Cl, = Co® N K.

As a consequence, the total number of distinct §-self-dual QO-MT additive codes
of length n over B is given by

e e
m:]_l[mv [T 9. (3.8)

v=1 w=e1+1

where N, denotes the number of distinct 5-self-dual F,-subspaces of G, for 1
v < ey and Ny, denotes the number of distinct F,-subspaces of K, for e; + 1
w < ep.

(b) The code C is §-self-orthogonal if and only if the following conditions are satisfied:

=
=<

e Forl <wv <ey, Cyis a §-self-orthogonal F,-subspace of G,.
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e Forei+1 <w < ey, Cy (resp. CE;) is a subspace of ICy, (resp. ICILU) over Fy
(resp. F} ) satisfying C), C Ca? N Ki.
o Cs={0}forea+1 =<5 <e;3.

As a consequence, the total number of distinct §-self-orthogonal Q-MT additive
codes of length n over F 1 is given by

e e
mzl_l[imv [T 2. (3.9)

v=1 w=e|+1

where M, denotes the number of distinct §-self-orthogonal F,-subspaces of G,
for 1 < v < ey and M, denotes the number of distinct pairs (Cy, C:L), where
Cy (resp. CZ)) is a subspace of Iy, (resp. IC:L) over JF, (resp. .7-'11) satisfying
CZ} C Ci‘g ﬂlCwaorel +1<w<e.

Proof (a) By (3.3) and (3.7), we see that C = C if and only if all the irreducible
factors of the polynomials ™' — w1, x™2 —w>, ..., x™* —wg inF . [x] are either
self-reciprocal or form reciprocal pairs, C, = CH for1 < v < ey, Cp = Cii™
andC;L :Ci‘S fore; +1 <w <en.

For 1 < v < ey, we further note, by Lemma 3.4, that the 7| _;-sesquilinear

form [+, -Is}g, . g, is non-degenerate. We also recall that dimx, G, = €,7. Now if

Cy is an F,-subspace of G, satisfying C, = Cvl‘s, then by Theorem 2.5, we see
that dimz, C, = dimg, Cv“ = dimg, G, — dimg, Cy = €,t — dimg, Cy, which
implies that €, = 2dim £, C, is an even integer.

Fore; +1 < w < ey, we see that C, = CZJ“ and C; = C;5 holds if and only
if C,, (resp. CJ) is a subspace of C,, (resp. K}) over F, (resp. F ) satisfying
Ci =C? NKE.

From this and by applying Theorem 2.2, part (a) follows immediately.

(b) By (3.3) and (3.7), we see that C € C if and only if C, € CUL‘s forl <v <ey,
Cy (resp. CL) is a subspace of /Cy, (resp. ICZ}) over Fy, (resp. ]—",L) satisfying
Co € CiP N Ky and € € Co? NKL forep +1 < w < e, and C; € {0}
and {0} C CSJ“S forer +1 < s < e3. Further, fore; + 1 < w < ey, we observe
that C,, C C;J“S N Ky and C]:) c kN ICL hold if and only if C,, (resp. CZ))
is a subspace of ICy, (resp. ICZ,) over JF, (resp. .7-"12) satisfying CZU - C# N ICTw.
Moreover, for ey + 1 < s < e3, we see that C; C {0} and {0} C CSJ‘5 hold if and
only if C; = {0}. From this, part (b) follows immediately.

O

Now we shall apply Theorem 3.1 and Witt decomposition theory to count all §-
self-orthogonal and §-self-dual O-MT additive codes of length n over F s for each
8 € {0, %, y}.
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3.1 Enumeration formulae for §-self-orthogonal Q-multi-twisted additive codes

In the following theorem, we provide enumeration formulae for all §-self-orthogonal
Q-MT additive codes of length n over F:, where § € {0, *, y}.

Theorem 3.2 Let Q = (wy, wa, ..., wy) be fixed. For§ € {0, *, y}, the total number
9N of distinct §-self-orthogonal Q-MT additive codes of length n over IF 1 is given by

e e Nw Mo Nw—k1 o — ki
ngmv [ Z[ML ZZ:[ ka de ’

w=e;+1 \k1=0

where for 1 < v < ey, the number M, equals

€yt)2 k—1
t/2 cvr=2d—
. Z [6v / ] l_l (q# + 1) when v € Ji and § € {0, *} with either €t is
k=0 k 4 d=0

evenand g =1 (mod 4) or €t =0 (mod 4) and g =3 (mod 4).
(ey1—2)/2

(et —2)/2] *= /i
vl — ept—2a _
° Z [ i }H(q 2 +1>whenv€._71,56{0,>k},q=3
k=0 9 d=0
(mod 4) and €,t =2 (mod 4).
(ey1—2)/2 k—1 €yt/)2
(eyt —2)/2 ept—2d—2 o[ (et —2)/2
« > [”k :|l_[(q 2 +1>+quvr2k[vk/_] }
94 d=0 k=1 q

k=0

k=2 ept—2d"' -2
IT g > + 1) whenv € J1, § = 0 and both €,t, g are even.

d'=0
(ept—1)/2 k—1
t—1)/2 cpt—2d—
|:(€v k / i| H(CI$ + 1) when v € J with either § = x and

k=0 9 d=0
both eyt, q are odd or § = 0 and €,t is odd.
€yt/2 k—

1
t/2 evi—
° E [EU / ] H(g o +1> when v € J1 with either § = y or § = % and

k=0 k 4 d=0
both eyt, q are even.
€pt/2

27

k=0

(eyt—1)/2 k—1
t—1)/2 wley!—
Z |:(€v )/ } I l (QM + 1) when v € J»> and €,t is odd.
pard k q b=0

k=1 dy(eypt—2b—1) ]
1_[ (q 2 + 1) when v € Jh and €t is even.
9" p=0

To prove the above theorem, we see, by (3.9), that it is enough to determine the
number 9, of distinct §-self-orthogonal F,,-subspaces of G, for 1 < v < ej, and to
determine the number 901, of distinct pairs (Cy, C:L), where C,, is an F,-subspace of
K, and C}) is an F -subspace of K}, satisfying C;, C Ci? NKJ fore;+1 < w < e;.

In the following lemma, we determine the number 9, for 1 < v < e;.

Lemma 3.5 Foré € {0, x, y}, the following hold.
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(a) When v € J1, we have

€pt/2 k—1 ent—2d—
> [é"i/z]q 11 (q == 1) if 8 € {0, %} with either €,t is even and g = 1 (mod 4)
k=0 d=0

or €yt =0 (mod 4) and g = 3 (mod 4);

(ev1=2)/2 e — 2)/2 k=1 peer) » _ _ )
Z t/ q if 8 € {0, %}, €yt =2 (mod 4) and q = 3 (mod 4);
-0 d=0

(ﬂJ*]VZ . 2 k=1, 20

(E‘t V 1, 11 (q + 1) if 8§ € {0, ¥} and both €,t, q are odd;
k=0 T d=0

(eot—1)/2 k=1 sl
> (E "~ 1)/2 I1 (q = ) if§ =0, qiseven and eyt is odd,

m, = k=0 q d=0
(€1=2)/2 k=1 2is
2 2 -
;Z% “ e q [I (q )
i 2y K2 (-

+ 3 o 2k [(az )/ ], I < 1) if § = 0 and both €,t, q are even;

k=1 d'=0

€t/ oy K=l a2

> [E"/’] 11 (q T+ 1) if 8§ = x and both €t, q are even;
k=0 4 d=0

yt)2 i) k—1 epi—2d e .

> [V T (g +1 if§ = y and €yt is even.

k=0 4 d=0

(b) When v € Jp, we have

et/2 k=1, 4 (epr—2d—1)
3 [6”2/2][1@ I1 <qt7 + 1) if €yt is even;
_ k=0 d=0
Mo =Y @=br kel e
) [(ev B )/ ]qdv I1 (qf + 1) if €yt is odd.
k=0 d=0

Proof (a) Let v € J;. Here we have d, = D, = 1, and hence F, >~ F,. Now to
determine the number 91, we proceed as follows:
When § = y, we see, by Lemma 3.4(c), that (G,, [, ‘]Vfgvxgu) is a symplectic
space of dimension €,t over F, >~ [F,. Further, by (Taylor 1992, p.69), we note
that the Witt index of G, (i.e., the dimension of a maximal self-orthogonal F,-
subspace of G, ) is €, /2. Using this and by Exercise 8.1(ii) of Taylor (1992), we
get

€pt/2

=3 (], T <)

k=0 9 d=0

From this point on, let § € {0,x*}. Here by Lemma 3.4(a), we see that
(Gv, [, "ls1g, <g, ) 1s an orthogonal space of dimension €, over . Now we shall
distinguish the following three cases: I. g is odd, II. g is even and § = 0 and IIL.
g iseven and § = .

I. When ¢ is odd, we see that the orthogonal space (G, [, ']Sngxgv) can also
be viewed as a non-degenerate quadratic space (G, Q,) over F,, where Q, :

1
G, — F, is the quadratic map, defined as Q,(A,) = E[AU’ Ayls for all
A, € G,. Further, by Theorem 1 of Pless (1968), we note that the Witt index
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1L

my of G, is given by

(eyt — 1)/2 if €yt is odd;
— €yt/2 if either €, is even and ¢ = 1 (mod 4)
v or €,f =0 (mod 4) and ¢ = 3 (mod 4);
(eyt —2)/2 if €yt =2 (mod 4) and g = 3 (mod 4).

(3.10)

Therefore when § € {0, *} and ¢ is odd, by Exercise 11.3 of Taylor (1992), we
get M, = > ["}j]q Hs;z)(q”’”_g_d +1), where o = 2m, — €, + 1. Now
on substituting the value of m, from (3.10), we get the desired value of 91,,.

Next let § = 0 and g be even. Here all m;’s are odd integers, which implies

that the integer m is odd, and hence mﬁ = lin F, ~ F,. Sinced, = 1, we
have a, = gcd(¢,d,) = 1. So each eiement A, € G, can be expressed as
Ay = Apo = (Af)%, Affg), el .Affz)), where A('O €eiFpoforl <i <t
Now let us define the set M, = {A, € G, :

Zl | €vii (.A + 14 1(A(') Y+ + th—l’l(Af}l’)O)> = 0}. One can easily
observe that M, is an JF-subspace of G, having dimension €, — 1. Next let
Oy = (€y.1,€0.2, .-, €v¢) € Gy. Then it is easy to see that ®, € M, if and
only if Zle €,i(l+151(D)+---+ rqH’l(l)) = €, = 0 if and only if €,¢
is even. Now the following two cases arise:

(i) When €, is odd, we note that ®,, ¢ M,,. Further we see that [A,, ©,]p =
0 for all A, € M,. This implies that G, = M, L (®,), an orthogonal
direct sum of the F,-subspaces M, and (®,) of G,. Further, one can
easily observe that any self-orthogonal F,-subspace of G, is contained in
M.

Next we assert that the restriction [-, -]o; Mox My of the 71, _-sesquilinear
form [-, -]o to M, x M, is non-degenerate. For this, suppose that there
exists A, € M, satisfying [A,, Bylo = 0 for all B, € M,. Here we
shall show that A4, = 0.
Let Y, = By, + a,®, € G,, where a, € F,. As a, runs over F, and
B, runs over M,, we see that ), runs over G,. Now let us consider
[Av, Volo = [Av, Bylo+ay[ Ay, ©y]o =0forall Y, € G,. Asthe 7y _1-
sesquilinear form [, -]o is non-degenerate on G,, we get 4, = 0. This
proves the assertion.
Nextforeach A, € M,, weobservethat[A,, A,]p = Zl | €v, ,((.A(l)o)z
T (AT 4+ T (AU = (T €vi (A + 7.1 (A ) +
ot Ty I(A(') )))” = 0. This shows that (Mo, [, -Jof vy, . ne,) 1S @
symplectlc space over JF,, whose dimension is €, — 1 and Witt index
is % Now by Exercise 8.1 of Taylor (1992), for 0 < k < %, we

see that the total number of k-dimensional self-orthogonal F,,-subspaces

[0, TTazo (@2 +

1). From this and using the fact that the dimension of a maxi-

of M, (and hence of G,) is given by
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(i)
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ept—1
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mal self-orthogonal F,-subspaces of M, is , we obtain 9, =

Z}({:g—l)ﬂ ([(evtzl)/Z]q fl;}) (q cvr=2d-1 . 1))

When €,1 is even, we see that ®, € M, N MULO. In this case, l/elj\//Tv be
an (eyt — 2)—dime/rlsional JFp-subspace of M, satisfying ®, ¢ M. Then
we have M, = M, ® (®,). Further, it is easy to observe that there exists
an element y, € /\//\lvlO \ M. This implies that G, = /\//\lv D (Oy) & (Vo).
We also observe that any self-orthogonal F,-subspace of Gy is either (i)
contained in M, or (ii) contained in M, & (®,) but not in M,,.

To determine the number 21, we shall first count the number of self-
orthogonal F,-subspaces of M ». Towards this, we note that [A,, A,Jo =
0 for all A, € /T/l\v. Now we assert that the t; _;-sesquilinear form
[-, -Joy Tux KEy is non-degenerate. For this, suppose that there exists
A, € ./\’/\lv satisfying [A,, Bylo = O for all B, € /T/l\v. Here it suf-
fices to show that 4, = 0. Let X, = By + ayyy, + by®, € Go,
where a,, b, € F,. We note that as A, runs over the set M, and
elements a,, b, run over F,, the element X, runs over G,. Then we
see that [Av,a Xlo = [Ay, Bylo + av[Ava ywlo + bv[-Ava Oylo = 0
for all X, € G,. Since the map [, -]Jp is non-degenerate on G,, we get

A, = 0. From this, it follows that (/ﬂv, [ ']Orﬁfl\vxﬂv) is a symplectic

space over F,, whose dimension is €, — 2 and Witt index is % Now
by Exercise 8.1 of Taylor (1992), we see that the total number of distinct
self-orthogonal F,-subspaces of G, that are contained in M, is given by

T = X VRO, T (05 ),

Now we proceed to count all distinct self-orthogonal F,-subspaces of
G, that are contained in .A//Tv @ (®,) but not in /T/l\v. For this, let X
be a k-dimensional self-orthogonal F,-subspace of G,, which is con-
tained in /\7U @ (®,), but not in /\7,,. Then we see that | < k < €,7/2
and that any such k-dimensional F,-subspace of G, ha/s\ a basis set
of the form {zy,z2,...,2k—1,2k + ®Oy}, where z, € M, \ {0} for
1l < v < k—1and z; € //\/\lv. Now it is easy to observe that

(@122, 21,2+ ©)) S (21,2250 0s k-1, 2k 4+ Oy if and

only if (z1,22,....2k~1) € (21, 22....,z%-1)" in M, and z €

(21,225« - 2k—1)F0. Since (M, [-, ot o) is a symplectic space
v

My x
of dimension €, — 2 and Witt index 6”’2_2, by Exercise 8.1 of Tay-
lor (1992), we see that for 1 < k < €,t/2, the nurg_t\)er of distinct
(k — 1)-dimensional self-orthogonal F,-subspaces of M, is given by

[(6"2:21)/ z]q Z;% (q W= + 1). Further, for a given (k — 1)-dimensional

self-orthogonal F,-subspace (z1, 22, ..., 2k—1) of /T/l\v, we observe that
(21,22, - 2k—1, 2k + Oy) = (21,22,...,2%~1, 2, + ©y) for some
k> 3 € (21,22, - - , Zk—1)70 if and only if z; — 2 € (21,22, -0y Th—1)-
This implies that all zx’s lying in the distinct cosets of the quotient space
(z1,22, .-, zk_l)J-O/(zl, 72, ..., Zk—1) giverise to distinct self-orthogonal
JF,-subspaces of the form (z1, 22, - . . , Zk—1, 2k +®y), and vice versa. Fur-
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ther, we see that the F,-dimension of (z1, z2, . . ., zk—1)0/(z1, 22, . . ., Zk—1)
is €, — 2k, which implies that the element z; has g’ —2k relevant choices.
Therefore for 1 < k < €,t/2, we see that the number of distinct k-

dimensional self-orthogonal F,-subspaces of G, that are contained in

M, ®(©,) butnotin M, is given by g/~ 2 [(6”2:21)/2](1 "5 (g W

1). This shows that the total number of distinct self-orthogonal F,-

subspaces of G, that are contained in M, @ (®,) but not in M,, is given
evt/2 e t—2k[(ext—2)/2 k—2 ( €ut=2d=2

by thy =301 g [(E k—l)/ ]q =0 (a

both the cases, we obtain

+ 1). On combining

(ey1—=2)/2 k—1
et —2)/2 eyt —2d—
M, =%, +4, = Z |:(v k)/] n(qr22d2+1)
k=0 9 d=0
eyt/2 )
o [ (et —2)/2 epi—2d'—2
+qu 2k<|: Uk/—l H(q 2 +1)).
k'=1 9 q4'=0

III. Finally, let § = % and g be even. Since t # 1 (mod p), the integer 7 is even.
Here all m;’s are odd integers, which implies that the integer m is odd, and hence

n = lin F, >~ F,. Since d, = 1, we have a, = gcd(t,d,) = 1. So each
m

element A, € G, can be expressed as A, = A, = (Afi()), Afz) e Affz)),
where Ag,)o € €y, Fyofor 1 <i < {.Now by (3.6), we see that [A,, A, ]« =

2
_ i _ o2
S € ((2;_10 w(Ai{b) —(z;_lorwwi‘fo >)) = 0 for all

A, € G,. Further, by Lemma 3.4(a), we see that [-, ']*fguxgv is a reflexive
and non-degenerate form. Hence (Gy, [, ]«g, g, ) 1S @ symplectic space over
F, with dimension €,¢ and Witt index €,7/2. Now by Exercise 8.1 of Taylor

vt/2 v _ eypt—2d
(1992), we get 9, = 37 ([6 Vi (@™ +1)).

(b) Nextlet v € J>. Here d, = deg g,(x) is even. To determine the number 9, we
first note, by Lemma 3.4(b), that (Gy, [+, -151g, xg,) 1S a unitary space of dimension
€yt over F, when § € {0, *}.

When § = y, by Lemma 3.4(d), we see that [, ']Vfgvxgu is a non-degenerate,
reflexive and skew-Hermitian 71 _;-sesquilinear form. Now we shall associate
an orthogonality preserving Hermitian t; _j-sesquilinear form with the skew-
Hermitain form [-, ']Vngxgv' For this, we see, by Lemma 3.2, that 71 _; is a
non-identity map on F,, and hence there exists ¢ € F, satisfying 71,-1(g) # ¢.
Now let us define § = ¢ — 11, —1(5)(# 0) € F, which satisfies 71, _1(§) = —§.
We further define a map [, -];, Gy x G, = F, as [AU,BU];, = £[A,, Byly
for all Ay, B, € G,. It is easy to see that the map [-, .];/ is a non-degenerate and
Hermitian 71, _1-sesquilinear form on G,.. That is, (G,, [-, ~];/ rguxgv) is a unitary
space of dimension €,¢ over F,, =~ ]quv . Furthermore, one can easily observe that
any J,-subspace of G, is self-orthogonal with respect to [, -],, if and only if it is
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self-orthogonal with respect to [ -, -];, . Therefore the number 901, equals the number

of distinct self-orthogonal JF,-subspaces of the unitary space (Gy, [-, -]’y 1Gy x gv).

Further, by (Taylor 1992, p.116), we see that the Witt index m,, of the unitary space
(Gu. [+, ];/ rgvxgu) is given by

| et/2 if €, is even;

o {(evt —1)/2 if €t is odd. 61D

Now for each § € {0, *, y} by applying Exercise 10.4 of Taylor (1992), we get
My =302 [m”] & Hd 0( dumy=p=d) 1), where p = % if €, is even and
p = _71 if €,¢ is odd. Further, on substituting the value of the Witt index m,, in

(3.11), part (b) follows immediately.
This completes the proof of the lemma. O

In the following lemma, we determine the number 9, fore; + 1 < w < e3.

Lemma3.6 For 6 € {0,%,y} and e1 + 1 < w < ey, we have M, =

Z [ ] " an—kl [Vlm—kl] .

q
Proof To prove the result, let e + 1 < w < e; be fixed. Here we first observe that
the restriction [-, ']Srlcwxlcfu of the 71, _1-sesquilinear form [-, -5 to ICy, X ICZ} is non-
degenerate. Now let C,, be an F,-subspace of K, and C; be an F| -subspace of K},
satisfying CZ) - C# N ICIJ. Working as in the proof of Theorem 2.5, we see that
if the F,,-dimension of C,, is ki, then the }'J)-dimension of Ci“ N ICL is ny — k1,
where 0 < k1 < 1y, Since CIJ is an f,ﬁ—subspace of C# N IC;E), by Lemma 2.1, there
are precisely > /" b [”wk;k‘]q 4, distinct choices of CJ, for a given choice of the k;-

dimensional F,,-subspace C,, of IC,,. Further, as C,, is an J,-subspace of I, having
dimension k1, by using Lemma 2.1 again, the number of choices for C,, is given by

[Zl}u]qdw for0 < k; < ny,. Therefore, the number 91, of distinct pairs (Cy, CZ)) with Cy,

as an J,,-subspace of Ky, and C; as an F, -subspace of K}, satisfying C C Cik? nKs,
is given by MM, = >0 [] 4 Z"”’_kl [M _kl]q 4, - This proves the lemma. O

Proof of Theorem 3.2. On substituting the values of the numbers 91, for | < v < ¢;

and M, fore; + 1 < w < ep from Lemmas 3.5 and 3.6 in Eq. (3.9), the desired result
follows immediately. O

3.2 Enumeration formulae for §-self-dual Q-multi-twisted additive codes

In the following theorem, we derive a necessary and sufficient condition for the exis-
tence of a §-self-dual Q-MT additive code of length n over Fy:, and we also provide
enumeration formulae for all §-self-dual Q-MT additive codes of length n over Fy:
for each 6 € {0, %, y}.

Theorem 3.3 Let Q = (wy, wy, ..., wy) be fixed. For § € {0, *, y}, there exists a
8-self-dual QO-MT additive code of length n over I, if and only if irreducible factors
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of the polynomials x™! — wy, x™? — wy, ..., x" — wy in Fy[x] are either self-
reciprocal or they form reciprocal pairs, €,t is an even integer for 1 < v < ey, and in
the case when § € {0, *}, (—1)6"’/2 is a square in ¥ for each v € Ji. Under these
conditions, the total number N of distinct 5-self-dual QO-MT additive codes of length
n over F i is given by

(€t/2)-1 dy(epi—2b—1) 2 T n
=TI I (T @) 11 (3[5])
q w

veJy ver b=0 w=e1+1 \d=0

where for each v € Jp, the number N, equals

]_[(E”t/z) ! ( e + 1) when § € {0, x} with either ¢ = 3 (mod 4) and €,t =
0 (mod 4) or g = 1 (mod 4) and €,t =0 (mod 2).
° ]_[(6”6/2)_2 (q e + 1) when 8§ = 0 and q is even.

a—=

l—l(eut/Z) 1 ( ot 2o + 1) when either § =y or § = * and q is even.

In order to derive a necessary and sufficient condition for the existence of a §-self-
dual Q-MT additive code of length n over IF;r, we first prove the following lemma.

Lemma3.7 Let 1 < v < e be fixed. There exists a 8-self-dual F,-subspace of G, if
and only if the following two conditions are satisfied: (i) €,t is an even integer, and
(ii) the element (—1)'/2 is a square in Fy when § € {0, *} and v € J.

Proof To prove the forward part, let C, be a §-self-dual F,-subspace of G, i.e., Cy
satisfies C, = C;. From this and by Theorem 2.5, we get dimr, C, = dimg, C =
dimg, G, — dimz, C, = €t — dimg, C,. This implies that €,t = dimg, G, =
2dimg, Cy is an even integer and dimr, C, = €,¢/2.

To prove the converse part, let €,¢ be even. Now when v € [J>, by Lemma 3.4 and
(Taylor 1992, p.116), we see that (G, [, -151g, xg,) is a unitary space of dimension €,
and Witt index €,¢/2 over F,. Hence there exists an F,-subspace C, of G, satisfying
Co=Co.

Whenv € Jyand$ € {0, x}, by Lemma 3.4(a), we note that (G, [, -151¢, xg,) isan
orthogonal space over F,,. Since €,¢ is even, we see, by Theorem 9.1.3 of Huffman and
Pless (2003), that the Witt index of (G, [+, -1s;g, xg, ) 18 €yt /2 if and only if (—1)e/2
is a square in IF;.

From this, the desired result follows. O

From this point on, throughout this section, we assume that the irreducible factors
of the polynomials x™! — wy, x™? — wy, ..., x" — wy in Fy[x] are either self-
reciprocal or they form reciprocal pairs, €,¢ is an even integer for | < v < ej, and
in the case when § € {0, %}, (—1)%[ is a square in I, for each v € J;. Further, we
see, by (3.8), that to count all §-self-dual (Q-MT additive codes of length n over qu ,
it is enough to determine the numbers 9, for 1 < v < e; and the numbers N, for
e1+1<w<=<ep.

In the following lemma, we determine the number 1, for | < v < e;.
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Lemma 3.8 Suppose that €,t is an even integer for 1 < v < ey, and that (—1)'/?

is a square in Fy, when § € {0, %} and v € Ji. Then for § € {0, *, y}, the following
hold.

(a) Whenv € J1, we have

(ev1/2)~1 eyt—2a—2
(q 2 + l) if either €yt is even and g = 1 (mod 4)
a=0
or eyt =0 (mod 4) and g = 3 (mod 4);
m = (ev1/2)=2 ept—2a—2
v fpfmefm s . .
(q 2 +1) if 6 =0and q is even;
a=0
(evt/2)—1 ept—2a
I1 (q 2 +1) if either § = y or § = x and q is even.
a=0

(b) When v € 7>, we have

(evt/2)—1

dy(ept—2b—1)
N, = 1_[ (q T+ 1) .

b=0
Proof (a) When v € 7, we note thatd, = D, = 1.

First of all, let § = y. Here by Lemma 3.4(c), we see that (G, [, -], fguxgv) is a sym-
plectic space of dimension €, ¢ over F,. Therefore in this case, 1, equals the number of
distinct €, /2-dimensional self-orthogonal JF,-subspaces of (Gy, [+, -1, 1, xg,)- Now
by Exercise 8.1 of Taylor (1992), we get 9, = [/~ (g2 — 1) /(g*+ — 1) =
ell 2a 1)

From this pomt on,let 8 € {0, *}. Here (—1)€!/ Zisa square in IF, . Further, by Lemma
3.4(a), we see that (G, [-, ]5fgux9u) is an orthogonal space of dimension €,¢ over

Fv >~ F,. Now the following three cases arise: I. g is odd, IL. g is even and § = 0 and
III. g is even and 6 = .

l—[(evt/Z) 1

I. Let g be odd. Here working as in Lemma 3.5, we see that the orthogonal space
Gy, [+, ']Ofgu <G ) can also be viewed as a non-degenerate quadratic space (G, Qy)
over F,, where Q, : G, — F, is the quadratic map, defined as Q,(A,) =
%[AU, Ayls for all A, € G,. Further, by Theorem 1 of Pless (1968), we note that
the Witt index of the corresponding quadratic space (G,, Q,) is €,¢/2. Since C,
is a self-dual F,-subspace of G,, by Lemma 3.7, we see that the F,-dimension
of Cy is €,1/2. Now by Exercise 11.3 of Taylor (1992), we see that the number
N, of distinct €,7/2-dimensional self-orthogonal F,-subspaces of G, is given by

n, l—[(evt/2) 1 M +1).

IL Next let § = 0 and ¢ be even. If M, = (AN, A A e
Gy Yl ewiAT] + 'L'q,l(A(l)o) to e (AT = 0 0, =
(€v.1,€v.2, .-, €pg) € M,y and MU is an (€,¢ — 2)-dimensional F,-subspace of

M, such that ®, ¢ M,,, then we see that there exists an element y, € M io \ My
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such that G, = //\/I\UEB (®y) @ (yy). Further, we observe Ellat any €yt/2-
dimensional self-orthogonal F,-subspace of G, is contained in M, ® (®,), but
not in M,. Now working as in the proof of Case II(ii) of Lemma 3.5, we get

e ()}
III. Let § = * and g be even. Working as in the proof of Case III of Lemma 3.5, we
see that (G,, [, ‘]*ngxgv) is a symplectic space of dimension €,¢ over F;,, whose
Witt index is given by €,¢/2. Now by Exercise 8.1 of Taylor (1992), we see that
the number 1, of distinct €, /2-dimensional self-orthogonal F,-subspaces of G,

is given by 0N, = ]_[S:“g/z)_l (q# + 1) .

(b) Letv € J>. Hered, = deg g, (x) is an even integer. By Lemma 3.4(b), we see that
Gy, [+, 151G, xG,) is a unitary space of dimension €,t over 7, when § € {0, *}.
Further, by Lemma 3.4(d), we note that [, -1,,1¢, xg, is areflexive, non-degenerate
and a skew-Hermitian 7, _1-sesquilinear form on G,. Here working in a similar
manner as in the proof of Lemma 3.5, we can associate an orthogonality preserving
non-degenerate and Hermitian t; _;-sesquilinear form [, -]; 1Gux G with the form
[, ly16,xg,- Thatis, (Gy, [, ~];/[gvxgv) is a unitary space of dimension €,¢ over
F.
In view of this, 91, equals the number of distinct €, 7 /2-dimensional self-orthogonal
JFp-subspaces of an €,7-dimensional unitary space G, over F,. From this and by

. (€yt/2)—1 dy (eyt—2b—1)
Exercise 10.4 of Taylor (1992), we get N, = | [, (q 2 + 1) .
This proves the lemma. O

In the following lemma, we determine the number 91, fore; + 1 < w < e.

Lemma3.9 Foré € {0, %, y}ande; +1 < w < ez, we have My, = Z“;o [”g}”]qdw.

Proof By (3.8), we see that 91,, equals the number of distinct F,-subspaces of C,,

foralle; +1 < w < e;. Asdimg, Kw = ny and Fy, =~ quw, by Lemma 2.1, we
: N [N

obtain My, = Y7 [™ ]qdw. i

Proof of Theorem 3.3. The first part of the theorem follows immediately from Lemma 3.7
and Theorem 3.1(a). Further, on substituting the value of 91, for 1 < v < e; from
Lemma 3.8 and the value of 91, fore; + 1 < w < e from Lemma 3.9 in Eq. (3.8),
we get the desired enumeration formulae for all §-self-dual O-MT additive codes of
length n over Fr. O

Let C be an Q-MT additive code of length n over [F,:. Then the dimension of the
code C is defined as the rational number k satisfying |C| = ¢*. Note that the dimension
k of the code C need not be an integer, but k¢ is always an integer. Further, the code
C is said to have k, number of generators if there exist k, number of codewords of C
such that every codeword of C is an I, -linear combination of these k, codewords and
kg is the smallest positive integer with this property. Note that the number k¢ need not
be equal to the dimension k of the code C, and that k, < nt. The (O-MT additive code
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of length n, dimension k£, Hamming distance d and having k, generators is referred
to as an [n, k : kg, d]-additive code over qu.

In Table 1, we obtain some good QO-MT additive codes of length n = m| + m»
dimension k, distance d and having k, generators over I, generated by the element
(a1(x), a2(x)) € V as an IF;[x]-submodule of V, by carrying out computations in the
Magma Computational Algebra System.

4 Conclusion

In this paper, a new class of additive codes over finite fields, viz. multi-twisted (MT)
additive codes is introduced and studied. By placing ordinary, Hermitian and * trace
bilinear forms, the dual codes of all MT additive codes over finite fields are stud-
ied. More precisely, necessary and sufficient conditions for a MT additive code to be
self-dual or self-orthogonal are also derived. Besides this, a necessary and sufficient
condition for the existence of a self-dual MT additive code is derived. Explicit enu-
meration formulae for all self-orthogonal and self-dual Q-MT additive codes of length
n over [, are also obtained. These enumeration formulae are useful in classifying
these special classes of MT additive codes over finite fields up to equivalence. Some
MT additive codes over finite fields with good parameters are also obtained.

It would be interesting to enumerate all LCD MT additive codes over finite fields
with respect to the aforementioned trace bilinear forms. Another interesting problem
is to classify self-dual, self-orthogonal and LCD MT additive codes over finite fields
up to equivalence.
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