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Abstract
In this paper, we introduce a new class of additive codes over finite fields, viz. multi-
twisted (MT) additive codes, which are generalizations of constacyclic additive codes.
We study their algebraic structures by writing a canonical form decomposition and
provide an enumeration formula for these codes. By placing ordinary, Hermitian and
∗ trace bilinear forms, we further study their dual codes and derive necessary and
sufficient conditions under which a MT additive code is self-dual and self-orthogonal.
We also derive a necessary and sufficient condition for the existence of a self-dual MT
additive code over a finite field, and provide enumeration formulae for all self-dual and
self-orthogonalMT additive codes over finite fields with respect to the aforementioned
trace bilinear forms. We also obtain several good codes within the family of MT
additive codes over finite fields.

Keywords Witt decomposition · Witt index · Totally isotropic subspaces

Mathematics Subject Classification 94B15

1 Introduction

Aydin andHaliović (2017) introduced and studiedmulti-twisted (MT) codes over finite
fields, which are generalizations of several well-known classes of linear codes, such
as constacyclic codes (Berlekamp 1968) and quasi-cyclic (QC) codes (Townsend and
Weldon 1967; Ling and Solé 2001), having rich algebraic structures and containing
record-breaker codes. In the same work, they studied 1-generator MT codes over finite
fields. They also presented several methods to construct these codes and also provided
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bounds on their minimum distances. They also obtained MT codes with best-known
parameters [33, 12, 12] over F3, [53, 18, 21] over F5, [23, 7, 13] over F7 and optimal
parameters [54, 4, 44] over F7. Apart from this, they proved that the code parameters
[53, 18, 21] over F5 and [33, 12, 12] over F3 can not be attained by constacyclic and
quasi-cyclic codes, which suggests that this larger class of MT codes is more promis-
ing to find codes with better parameters than the current best known linear codes.
Later, Sharma et al. (2018) thoroughly investigated algebraic structures of MT codes
over finite fields and their dual codes with respect to the Euclidean inner product, and
enumerated all MT codes over finite fields. They also derived a necessary and suffi-
cient condition for the existence of a self-dual MT code and provided enumeration
formulae for all self-orthogonal and self-dual MT codes over finite fields with respect
to the Euclidean inner product. They also showed that MT codes over finite fields can
be viewed as direct sums of certain concatenated codes, which gives rise to a method
to construct these codes. They also derived a lower bound on their minimum Ham-
ming distances using their multilevel concatenated structures. They also developed a
generator theory for these codes, obtained a BCH type lower bound on their minimum
Hamming distances, and derived some sufficient conditions under which a MT code
is Euclidean self-dual, self-orthogonal and linear with complementary-dual (LCD).
In a recent work, Sharma and Chauhan (2019) studied dual codes of MT codes over
finite fields with respect to the Hermitian inner product. They also derived a necessary
and sufficient condition for the existence of a self-dual MT code and enumerated all
self-orthogonal, self-dual and LCD MT codes over finite fields with respect to the
Hermitian inner product. Besides this, they counted all LCD MT codes with respect
to the Euclidean inner product. In another related work, Sharma and Kaur (2018b)
provided explicit enumeration formulae for all self-dual, self-orthogonal and LCD
QC codes over finite fields with respect to the Euclidean inner product.

In another direction, additive codes over the finite field F4 were introduced and
studied by Calderbank et al. (1998) as a natural generalization of linear codes. They
investigated dual codes of additive codes overF4 with respect to the trace inner product.
They also constructed quantum error-correcting codes from self-orthogonal additive
codes over F4. Later, Bierbrauer and Edel (2000) and Rains (1999) generalized and
studied additive codes over arbitrary finite fields. Huffman (2007) introduced and
studied cyclic additive codes of odd lengths overF4 bywriting a canonical formdecom-
position for these codes, and enumerated all such codes. Besides this, he provided
explicit enumeration formulae for all self-dual and self-orthogonal cyclic additive
codes over F4 with respect to the trace inner product. Huffman (2008) extended this
work for cyclic additive codes of even lengths over F4. In another work, Huffman
(2010) generalized this work for cyclic additive codes of length n over the finite field
Fqt , where t ≥ 2 is an integer, q is a prime power, and n is a positive integer with
gcd(n, q) = 1. By placing ordinary and Hermitian trace bilinear forms on F

n
qt , he

studied their dual codes, derived necessary and sufficient conditions for the existence
of a self-dual cyclic additive code and provided enumeration formulae for all self-
orthogonal and self-dual cyclic additive codes over Fqt . When t = 2, he explicitly
determined all self-dual and self-orthogonal cyclic additive codes of length n over Fq2

with respect to both ordinary and Hermitian trace bilinear forms on F
n
q2

. Later, for
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any integer t ≥ 2 satisfying t �≡ 1 (mod p), Sharma and Kaur (2017) introduced a
new trace bilinear form on F

n
qt , viz. ∗ trace bilinear form. They studied dual codes

of cyclic additive codes of length n over Fqt and provided enumeration formulae for
all self-dual and self-orthogonal cyclic additive codes with respect to ∗ trace bilinear
form. In another work, Sharma and Kaur (2018a) studied LCD cyclic additive codes
of length n over Fqt and provided enumeration formulae for all LCD cyclic additive
codes with respect to ordinary, Hermitian and ∗ trace bilinear forms. Cao et al. (2015)
further generalized cyclic additive codes to constacyclic additive codes of length n
over Fqt when t is a prime number and gcd(n, q) = 1. They also studied their dual
codes with respect to the ordinary trace bilinear form on F

n
qt . In the same work, they

investigated the existence of a self-orthogonal and a self-dual negacyclic additive code
of length n over Fqt . They also derived necessary and sufficient conditions for a nega-
cyclic additive code of length n over Fq2 to be self-dual or self-orthogonal. Further,
for any integer t ≥ 2, Kaur and Sharma (2017) developed the theory of constacyclic
additive codes over Fqt by writing a canonical form decomposition for these codes.
They also studied their dual codes and provided explicit enumeration formulae for
all self-dual, self-orthogonal and LCD cyclic additive codes with respect to ordinary,
Hermitian and ∗ trace bilinear forms on F

n
qt .

The main goal of this paper is to introduce and study MT additive codes over finite
fields and their dual codes with respect to ordinary, Hermitian and ∗ trace bilinear
forms. We shall also derive necessary and sufficient conditions for the existence of
a self-dual MT additive code and provide explicit enumeration formulae for all self-
dual and self-orthogonal MT additive codes with respect to each of the three above-
mentioned trace bilinear forms. For this, throughout this paper, let Fq be the finite
field of order q and characteristic p, and let t ≥ 2 be an integer. Let m1,m2, . . . ,m�

be positive integers coprime to q, and let n = m1 + m2 + · · · + m�. Let Ω =
(ω1,ω2, . . . ,ω�), where ω1,ω2, · · · ,ω� are non-zero elements of Fq . This paper
is structured as follows: In Sect. 2, we introduce and study Ω-MT additive codes
of length n over the finite field Fqt and their dual codes with respect to ordinary,
Hermitian and ∗ trace bilinear forms by writing a canonical form decomposition for
these codes. In Sect. 3, we derive necessary and sufficient conditions under which an
Ω-MT additive code of length n over Fqt is self-dual or self-orthogonal with respect
to the aforementioned trace bilinear forms (Theorem 3.1). We also enumerate all self-
orthogonal Ω-MT additive codes of length n over Fqt (Theorem 3.2). We also derive
necessary and sufficient conditions for the existence of a self-dual Ω-MT additive
code of length n over Fqt , and provide enumeration formulae for all self-dual Ω-MT
additive codes of length n over Fqt with respect to ordinary, Hermitian and ∗ trace
bilinear forms (Theorem 3.3). We also obtain several good codes within the family of
MT additive codes over finite fields (Table 1).

2 Multi-twisted additive codes over finite fields and their dual codes

In this section, we shall define and study multi-twisted (MT) additive codes over
finite fields and their dual codes with respect to three different trace bilinear forms.
To do this, we assume, throughout this paper, that Fq is the finite field of order q
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and characteristic p. Let n = m1 + m2 + · · · + m�, where m1,m2, . . . ,m� are
positive integers coprime to q. Let ω1,ω2, . . . ,ω� be non-zero elements of Fq ,

and let Ω = (ω1,ω2, . . . ,ω�) and Ω′ = (ω−1
1 ,ω−1

2 , . . . ,ω−1
� ). Let us define

W = ∏�
i=1Wi , where Wi = Fq [x]/〈xmi − ωi 〉 for 1 ≤ i ≤ �. The set W can be

viewed as an Fq [x]-module under componentwise addition and scalar multiplication,
and is called the Ω-multi-twisted (MT) module. Now an Ω-multi-twisted (MT) code
C of length n over Fq is defined as an Fq [x]-submodule ofW (see Aydin and Haliović
2017; Sharma et al. 2018).

Next let t ≥ 2 be an integer, and let us define V = ∏�
i=1 Vi , where Vi =

Fqt [x]/〈xmi − ωi 〉 for 1 ≤ i ≤ �. Note that the set V can be viewed as an Fq [x]-
module under componentwise addition and scalar multiplication. Now an Ω-MT
additive code of length n over Fqt is defined as an Fq [x]-submodule of V. Equiva-
lently, anΩ-MT additive code of length n over Fqt is defined as an Fq -linear subspace
of F

n
qt satisfying the following property: (α1,0, α1,1, . . . , α1,m1−1;α2,0, α2,1, . . . ,

α2,m2−1; · · · ;α�,0, α�,1, . . . , α�,m�−1) ∈ C implies that (ω1α1,m1−1, α1,0, . . . ,

α1,m1−2;ω2α2,m2−1, α2,0, . . . , α2,m2−2; · · · ;ω�α�,m�−1, α�,0, . . . , α�,m�−2) ∈ C. In
particular, Ω-MT additive codes of length n over Fqt coincide with cyclic additive
codes of length n = m1 over Fqt when � = 1 and ω1 = 1 (Huffman 2010), while
Ω-MT additive codes of length n over Fqt coincide with ω1-constacyclic additive
codes of length n = m1 over Fqt when � = 1 (Cao et al. 2015; Kaur and Sharma
2017).

From now on, we shall represent elements of the quotient ring FQ[x]/〈F(x)〉 by
their representatives in FQ[x] of degree strictly less than the degree of F(x) and we
shall perform their addition and multiplication modulo F(x), where FQ is the finite
field of orderQ and F(x) is a non-zero, non-constant polynomial inFQ[x].Moreover,
we shall represent the vector α ∈ F

n
qt as (α1,0, α1,1, . . . , α1,m1−1; · · · ;α�,0, α�,1, . . . ,

α�,m�−1) and further identify the vector α ∈ F
n
qt with the element α(x) =

(α1(x), α2(x), . . . , α�(x)) ∈ V,whereαi (x) = αi,0+αi,1x+· · ·+αi,mi−1xmi−1 ∈ Vi

for 1 ≤ i ≤ �.

In order to study the algebraic structure ofΩ-MTadditive codes of lengthn overFqt ,

let g1(x), g2(x), . . . , gr (x) be all the distinct irreducible factors of the polynomials
xm1 − ω1, xm2 − ω2, . . . , xm� − ω� in Fq [x]. For 1 ≤ u ≤ r and 1 ≤ i ≤ �, let us
define

εu,i =
{
1 if gu(x) | xmi − ωi in Fq [x];
0 otherwise.

Then for 1 ≤ i ≤ �, we see that xmi − ωi = ∏r
u=1 gu(x)

εu,i is the irreducible
factorization of the polynomial xmi −ωi in Fq [x].Now by applying Chinese Remain-

der Theorem, we see that Wi � ⊕r
u=1 εu,iFu for all i, where Fu = Fq [x]

〈gu(x)〉 for

1 ≤ u ≤ r . Next for 1 ≤ u ≤ r , if du = deg gu(x), then Fu is the finite field
of order qdu . Further, for 1 ≤ u ≤ r , by Lemma 1 of Huffman (2010), we note
that the polynomial gu(x) can be factorized into irreducible polynomials over Fqt

of the same degree. For each u, let gu(x) = gu,0(x)gu,1(x) · · · gu,au−1(x) be the
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irreducible factorization of the polynomial gu(x) in Fqt [x], where au = gcd(t, du)
and deg gu, j (x) = du/au = Du for 0 ≤ j ≤ au − 1. From this, it follows that for
1 ≤ i ≤ �, the irreducible factorization of the polynomial xmi −ωi overFqt is given by

xmi − ωi = ∏r
u=1

∏au−1
j=0 gu, j (x)εu,i . Further, by applying Chinese Remainder The-

orem again, we get Vi � ⊕r
u=1

⊕au−1
j=0 εu,iFu, j for each i, where Fu, j = Fqt [x]

〈gu, j (x)〉
is the finite field of order qtDu for 1 ≤ u ≤ r and 0 ≤ j ≤ au − 1. More precisely,
the ring isomorphism from Vi onto

⊕r
u=1

⊕au−1
j=0 εu,iFu, j is given by

αi (x) �→
r∑

u=1

au−1∑

j=0

(

εu,iαi (x) + 〈gu, j (x)〉
)

for each αi (x) ∈ Vi .

In view of this, the ring isomorphism from V onto
⊕r

u=1
⊕au−1

j=0(

εu,1Fu, j , εu,2Fu, j , . . . , εu,�Fu, j
︸ ︷︷ ︸

Gu, j

)

is given by

(α1(x), α2(x), . . . , α�(x)) �→
r∑

u=1

au−1∑

j=0

(εu,1α1(x) + 〈gu, j (x)〉, εu,2α2(x)

+〈gu, j (x)〉, . . . , εu,�α�(x) + 〈gu, j (x)〉)

for each (α1(x), α2(x), . . . , α�(x)) ∈ V. For 1 ≤ u ≤ r , let us define εu =∑�
i=1 εu,i ,

and let Gu =
au−1⊕

j=0
Gu, j . We note that the set Gu can be viewed as a vector space

over Fu under componentwise addition and scalar multiplication, and we observe the
following:

Theorem 2.1 For 1 ≤ u ≤ r , Gu = Gu,0 ⊕ Gu,1 ⊕ · · · ⊕ Gu,au−1 is a vector space
having dimension εut over Fu .

Since V � G = ⊕r
u=1 Gu, from now on, we shall identify each element

(α1(x), α2(x), . . . , α�(x)) ∈ V with the element A = (A1,A2, . . . ,Ar ) ∈ G, where
Au = (Au,0,Au,1, . . . ,Au,au−1) ∈ Gu for each u. Here for 1 ≤ u ≤ r and 0 ≤ j ≤
au − 1, the element Au, j ∈ Gu, j is given by Au, j = (A(1)

u, j ,A
(2)
u, j , . . . ,A

(�)
u, j ), where

A(i)
u, j := εu,iαi (x) + 〈gu, j (x)〉 ∈ εu,iFu, j for each i . More precisely, if � denotes the

isomorphism from V onto G, then we shall write �(α1(x), α2(x), . . . , α�(x)) = A.

We further observe that the set G can be viewed as an Fq [x]-module under compo-
nentwise addition and scalar multiplication.

In view of the above discussion, we have the following canonical form decompo-
sition of each Ω-MT additive code of length n over Fqt .

Theorem 2.2 (a) Let C(⊆ V) be an Ω-MT additive code of length n over Fqt . For
1 ≤ u ≤ r , let us define Cu = C ∩ Gu . Then for each u, Cu is an Fu-linear
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subspace of Gu . Furthermore, the code C has a unique direct sum decomposition
C = ⊕r

u=1 Cu . (The subspaces C1, C2, . . . , Cr are called constituents of the code
C.)

(b) Conversely, if Du is an Fu-linear subspace of Gu for 1 ≤ u ≤ r , and if D =∑r
u=1Du, then we have D = ⊕r

u=1Du and D is an Ω-MT additive code of
length n over Fqt .

Proof The proof is straightforward. ��
The above theorem shows that Fu-linear subspaces of Gu, 1 ≤ u ≤ r , are building

blocks of all Ω-MT additive codes of length n over Fqt . Now to count all Ω-MT
additive codes of length n over Fqt , we recall the following well-known result.

Lemma 2.1 For any prime power Q and positive integers B, K satisfying B ≤ K ,

the number of distinct B-dimensional subspaces of a K -dimensional vector space

over FQ is given by the Q-binomial coefficient
[K
B

]
Q

= ∏B−1
b=0

(QK−b−1)
(Qb+1−1)

, (recall

that the Q-binomial coefficient
[K
0

]
Q

is assigned the value 1). As a consequence,
the total number of distinct subspaces of a K -dimensional vector space over FQ is
N (K ,Q) =∑K

B=0

[K
B

]
Q

= 1 +∑K
B=1

[K
B

]
Q

.

In the next theorem, we enumerate all the distinct Ω-MT additive codes of length
n over Fqt .

Theorem 2.3 The total number of distinct Ω-MT additive codes of length n over Fqt

is given by NΩ =∏r
u=1

(∑εu t
b=0

[
εu t
b

]
qdu

)
.

Proof It follows immediately from Theorems 2.1 and 2.2, and by Lemma 2.1. ��
Remark 2.1 There areΩ-MT additive codes over Fqt that can also be viewed asΛ-MT
additive codes, where Ω �= Λ. For example, let q = 5, t = 2, m1 = 4,m2 = 2, and
let a be a primitive element of F25. Let C be the F5[x]-submodule of F25[x]

〈x4−2〉 × F25[x]
〈x2−3〉

with the generating set {(a5 + a5x + a15x2 + a6x3, 1 + x)}. One can easily observe
that the code C can also be viewed as an F5[x]-submodule of F25[x]

〈x4−2〉 × F25[x]
〈x2−2〉 . That is,

the code C is a (2, 3)-MT additive code as well as a (2, 2)-MT additive code of length
6 over F25. Thus the total number of distinct MT additive codes of length n over Fqt

is not equal to (q − 1)�NΩ.

Huffman (2010) and Sharma and Kaur (2017); Kaur and Sharma (2017) studied
dual codes of constacyclic additive codes of length n over Fqt with respect to ordinary,
Hermitian and ∗ trace bilinear forms on F

n
qt , which are as defined below:

The ordinary trace bilinear form on F
n
qt is a map 〈·, ·〉0 : F

n
qt × F

n
qt → Fq , defined

as

〈α, β〉0 =
n∑

k=1

Trqt ,q(αkβk) =
�∑

i=1

mi−1∑

h=0

Trqt ,q(αi,hβi,h)
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for allα, β ∈ F
n
qt ,whereTrqt ,q denotes the tracemap fromFqt ontoFq .ByLemma5of

Huffman (2010), we see that the ordinary trace bilinear form 〈·, ·〉0 is a non-degenerate
and symmetric bilinear form on F

n
qt .

To define the Hermitian trace bilinear form on F
n
qt , we assume that the integer t is

even. Let us write t = 2aU = 2AU with A = 2a−1, where a ≥ 1 and the integerU is
odd. One can easily observe that there exists a non-zero element γ ∈ Fq2A satisfying

γ +γ q A = 0.Note that the element γ lies in Fqt and satisfies γ q Ag = (−1)gγ for each
integer g ≥ 1. The Hermitian trace bilinear form on F

n
qt is a map 〈·, ·〉γ : F

n
qt ×F

n
qt →

Fq , defined as

〈α, β〉γ =
n∑

k=1

Trqt ,q(γ αkβ
qt/2

k ) =
�∑

i=1

mi−1∑

h=0

Trqt ,q(γ αi,hβ
qt/2

i,h )

for all α, β ∈ F
n
qt . By Lemma 5 of Huffman Huffman (2010), we note that the Hermi-

tian trace bilinear form 〈·, ·〉γ is a non-degenerate, reflexive and an alternating bilinear
form on F

n
qt .

To define the ∗ trace bilinear form on F
n
qt , let q be a power of the prime p, and

let t �≡ 1 (mod p). Then the map φ : Fqt → Fqt , defined as φ(a) = ∑t−1
λ=1 a

qλ =
Trqt ,q(a) − a for each a ∈ Fqt , is an Fq -linear vector space isomorphism. Now the ∗
trace bilinear form on F

n
qt is a map 〈·, ·〉∗ : F

n
qt × F

n
qt → Fq , defined as

〈α, β〉∗ =
n∑

k=1

Trqt ,q(αkφ(βk)) =
�∑

i=1

mi−1∑

h=0

Trqt ,q(αi,hφ(βi,h))

for all α, β ∈ F
n
qt . By Lemma 3.2 of Sharma and Kaur (2017), we see that the ∗ trace

bilinear form 〈·, ·〉∗ is a non-degenerate and symmetric bilinear form on F
n
qt , and is

alternating in the case when q is even.
Now we shall study dual codes of Ω-MT additive codes of length n over Fqt with

respect to these three trace bilinear forms on F
n
qt . For this, let δ ∈ {0, ∗, γ }, and let

Tδ be the set of (i) all integers t ≥ 2 when δ = 0, (ii) all integers t ≥ 2 satisfying
t �≡ 1 (mod p) when δ = ∗, and (iii) all even integers t ≥ 2 when δ = γ. From now
on, let t ∈ Tδ be fixed. If C is an Ω-MT additive code of length n over Fqt , then its
δ-dual code C⊥δ is defined as C⊥δ = {a ∈ F

n
qt : 〈a, c〉δ = 0 for all c ∈ C}. One can

easily observe that the δ-dual code C⊥δ is an Ω′-MT additive code of length n over
Fqt . Equivalently, the δ-dual code C⊥δ is an Fq [x]-submodule of the Ω′-MT module

V ′ =∏�
i=1 V ′

i , where V ′
i = Fqt [x]/〈xmi − ω−1

i 〉 for 1 ≤ i ≤ �.

Let m be the least positive integer such that the polynomial
lcm

[
xm1 − ω1, xm2 − ω2, . . . , xm� − ω�

]
divides xm − 1 in Fq [x]. We observe that

m = lcm [m1O(ω1),m2O(ω2), . . . ,m�O(ω�)] and that Tm
Ω = Tm

Ω′ = I , where I
is the identity operator on F

n
qt and O(ωi ) denotes the multiplicative order of ωi for

each i . Next let Q = qe with e ≥ 1, π ∈ {1,−1}, and let θ be an integer satisfying
0 ≤ θ ≤ e − 1. Now for each monic divisor F(x) = ∑d−1

h=0 ahx
h + xd of xm − 1
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in FQ[x], let F†(x) = a−1
0

∑d−1
h=0 ahx

d−h + a−1
0 denote the reciprocal polynomial of

F(x), and let us define

F̂(x) =

⎧
⎪⎪⎨

⎪⎪⎩

d−1∑

h=0
aq

θ

h xh + xd if π = 1;

a−qθ

0

d−1∑

h=0
aq

θ

h xd−h + a−qθ

0 if π = −1.

Now the map τqθ ,π : FQ[x]
〈F(x)〉 → FQ[x]

〈F̂(x)〉 , defined as τqθ ,π

(∑d−1
h=0 ahx

h
)

=
∑d−1

h=0 a
qθ

h xπh for each
∑d−1

h=0 ahx
h ∈ FQ[x]

〈F(x)〉 , is a ring isomorphism, (here x−1 = xm−1

when π = −1). Moreover, the ring isomorphism τqe−θ ,π is the inverse of τqθ ,π . In

particular, when F(x) = xmi − ω−1
i ∈ Fqt [x], we see that F̂(x) = xmi − ωi ,

where 1 ≤ i ≤ �. Further, for 1 ≤ i ≤ �, the ring isomorphism τ1,−1 : V ′
i → Vi is

defined as τ1,−1(βi (x)) = βi (x−1) for each βi (x) ∈ V ′
i , where x

−1 = ω−1
i xmi−1 ∈

Vi . The map τ1,−1 can be further extended to the map τ1,−1 : V ′ → V as
τ1,−1(β(x)) = (

τ1,−1(β1(x)), τ1,−1(β2(x)), . . . , τ1,−1(β�(x))
)
for each β(x) =

(β1(x), β2(x), . . . , β�(x)) ∈ V ′.On the other hand, when F(x) = xm −1,we see that
F̂(x) = xm − 1, and hence the map τ1,−1 : Fq [x]/ 〈xm − 1〉 → Fq [x]/ 〈xm − 1〉 is
defined as τ1,−1(

∑m−1
h=0 ahxh) =∑m−1

h=0 ahx−h for each
∑m−1

h=0 ahxh ∈ Fq [x]/ 〈xm − 1〉 ,

where x−1 = xm−1 in Fq [x]/ 〈xm − 1〉 .

In order to study algebraic structures of δ-dual codes of Ω-MT additive codes over
Fqt for δ ∈ {0, ∗, γ },we define the map (·, ·)δ : V×V ′ → Fq [x]/〈xm −1〉 as follows:

For α(x) ∈ V and β(x) ∈ V ′, let us define

(α(x), β(x))δ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�∑

i=1

t−1∑

μ=0
ωi

(
xm−1

xmi −ωi

)
τqμ,1

(

αi (x)τ1,−1(βi (x))

)

when δ = 0;
�∑

i=1

t−1∑

μ=0
ωi

(
xm−1

xmi −ωi

)
τqμ,1

(

αi (x)
t−1∑

λ=1
τqλ,−1(βi (x))

)

when δ = ∗;
�∑

i=1

t−1∑

μ=0
ωi

(
xm−1

xmi −ωi

)
τqμ,1

(

γαi (x)τqt/2,−1(βi (x))

)

when δ = γ.

Here the quotient ring Fq [x]
〈xm−1〉 is viewed as an Fq [x]-module.

In the following lemma, we relate the map (·, ·)δ with the bilinear form 〈·, 〉δ on
F
n
qt and study its basic properties for each δ ∈ {0, ∗, γ }.

Lemma 2.2 Let α(x), α1(x) ∈ V, β(x), β1(x) ∈ V ′ and f (x), g(x) ∈ Fq [x]/〈xm −
1〉. Then for δ ∈ {0, ∗, γ }, the following hold.

(a) (α(x), β(x))δ = ∑m−1
k=0 〈α, T k

Ω′(β)〉δxk, where T k
Ω′(β) denotes the kth Ω′-MT

shift of β ∈ F
n
qt .

(b) (α(x), β(x)+β1(x))δ = (α(x), β(x))δ+(α(x), β1(x))δ and (α(x)+α1(x), β(x))δ =
(α(x), β(x))δ + (α1(x), β(x))δ.
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(c) ( f (x)α(x), β(x))δ = f (x)(α(x), β(x))δ and (α(x), g(x)β(x))δ = τ1,−1(g(x))
(α(x), β(x))δ.

(d) (α(x), β(x))δ = τ1,−1(β(x), α(x))δ for δ ∈ {0, ∗}, while (α(x), β(x))γ =
−τ1,−1((β(x), α(x))γ )

and (α(x), τ1,−1(α(x)))γ = 0.
(e) (·, ·)δ is non-degenerate.
Proof Working in a similar manner as in Lemma 6 of Huffman (2010) when δ ∈ {0, γ }
and as in Lemma 3.3 of Sharma et al.Sharma and Kaur (2017) when δ = ∗, the desired
result follows. ��

From the above discussion, we deduce the following:

Theorem 2.4 Let C(⊆ V) be an Ω-MT additive code of length n over Fqt . Then for
δ ∈ {0, ∗, γ }, the δ-dual code C⊥δ (⊆ V ′) of the code C is an Fq [x]-submodule of V ′
and is given by C⊥δ = {β(x) ∈ V ′ : (α(x), β(x))δ = 0 for all α(x) ∈ C}.

Now we shall further study duality properties of Ω-MT additive codes of length n
over Fqt . To do this, working as above, we see that V ′ � G′ =⊕r

u=1 G′
u, where G′

u =
⊕au−1

j=0 G′
u, j for 1 ≤ u ≤ r .HerewehaveG′

u, j =
(
εu,1F†

u, j , εu,2F†
u, j , . . . , εu,�F†

u, j

)
,

where F†
u, j = Fqt [x]

〈g†u, j (x)〉
for 1 ≤ u ≤ r and 0 ≤ j ≤ au − 1. In view of this, from now

on, we shall identify each element (β1(x), β2(x), . . . , β�(x)) ∈ V ′ with the element
B = (B1,B2, . . . ,Br ) ∈ G′, where Bu = (Bu,0,Bu,1, . . . ,Bu,au−1) ∈ G′

u for each u.
Moreover, for 1 ≤ u ≤ r and 0 ≤ j ≤ au − 1, the element Bu, j ∈ G′

u, j is given by

Bu, j = (B(1)
u, j ,B

(2)
u, j , . . . ,B

(�)
u, j ), where B

(i)
u, j := εu,iβi (x) + 〈g†u, j (x)〉 ∈ εu,iF†

u, j for
each i . More precisely, if � ′ denotes the isomorphism from V ′ onto G′, then we shall
write � ′(β1(x), β2(x), . . . , β�(x)) = B.

Now for δ ∈ {0, ∗, γ },we shall further relate the sesquilinear form (·, ·)δ on V×V ′
with the corresponding map [·, ·]δ on G × G′ and study its properties. Towards this,
we see that if εu,i = 1 for some u and i, then gu(x) divides xmi − ωi in Fq [x],
which implies that xmi = ωi in Fu . This further implies that ωi

(
xm−1

xmi −ωi

)
=

∑ m
mi

−1

h=0 ω−h
i xhmi = m

mi
in Fu . Moreover, for F(x) = gu, j (x) ∈ Fqt [x], we

have F̂(x) = gu, j+θ (x) if π = 1, while F̂(x) = g†u, j+θ (x) if π = −1, (here
the subscript j + θ is considered modulo au). Therefore the ring isomorphism

τqθ ,π : Fqt [x]
〈F(x)〉 → Fqt [x]

〈F̂(x))〉 is defined as τqθ ,π

(
∑Du−1

h=0 ahxh
)

= ∑Du−1
h=0 aq

θ

h xhπ for

each
∑Du−1

h=0 ahxh ∈ Fqt [x]
〈F(x)〉 . Furthermore, for F(x) = g†u(x) ∈ Fq [x], we have

F̂(x) = gu(x), and hence the ring isomorphism τ1,−1 : F†
u → Fu is defined as

τ1,−1
(∑du−1

h=0 ahxh
) =∑du−1

h=0 ahx−h for all
∑du−1

h=0 ahxh ∈ F†
u .

In view of the above discussion, we observe that for δ ∈ {0, ∗, γ }, the sesquilinear
form (·, ·)δ corresponds to the map [·, ·]δ : G × G′ → ⊕r

u=1 Fu, which is defined as
follows:
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For δ = 0, the map [·, ·]0 is defined as

[A,B]0 =
( �∑

i=1

m

mi
ε1,i

a1−1∑

j=0

(t/a1)−1∑

μ=0

τqμa1+ j ,1

(

A(i)
1,a1− jτ1,−1(B(i)

1,a1− j )

)

,

�∑

i=1

m

mi
ε2,i

a2−1∑

j=0

(t/a2)−1∑

μ=0

τqμa2+ j ,1

(

A(i)
2,a2− jτ1,−1(B(i)

2,a2− j )

)

, . . . ,

�∑

i=1

m

mi
εr ,i

ar−1∑

j=0

(t/ar )−1∑

μ=0

τqμar+ j ,1

(

A(i)
r ,ar− jτ1,−1(B(i)

r ,ar− j )

))

. (2.1)

For δ = ∗, the map [·, ·]∗ is defined as

[A,B]∗ = −[A,B]0 +
( �∑

i=1

m

mi
ε1,i

(
( a1−1∑

j=0

(t/a1)−1∑

μ=0

τqμa1+ j ,1(A
(i)
1,a1− j )

)

( a1−1∑

j=0

(t/a1)−1∑

σ=0

τqσa1+ j ,1(τ1,−1(B(i)
1,a1− j ))

)
)

,

�∑

i=1

m

mi
ε2,i

(
( a2−1∑

j=0

(t/a2)−1∑

μ=0

τqμa2+ j ,1(A
(i)
2,a2− j )

)

( a2−1∑

j=0

(t/a2)−1∑

σ=0

τqσa2+ j ,1(τ1,−1(B(i)
2,a2− j ))

)
)

, . . . ,

�∑

i=1

m

mi
εr ,i

(
( ar−1∑

j=0

(t/ar )−1∑

μ=0

τqμar+ j ,1(A
(i)
r ,ar− j )

)

( ar−1∑

j=0

(t/ar )−1∑

σ=0

τqσar+ j ,1(τ1,−1(B(i)
r ,ar− j ))

)
))

. (2.2)

Further, for g = (g1, g2, . . . , gr ) ∈ ⊕r
u=1 F

†
u , let us define τ1,−1(g) =

(τ1,−1(g1), τ1,−1(g2), . . . , τ1,−1(gr )) ∈⊕r
u=1 Fu .

In the following lemma, we show that the map [·, ·]δ : G × G′ → ⊕r
u=1 Fu is a

reflexive and a non-degenerate τ1,−1-sesquilinear form for δ ∈ {0, ∗}.
Lemma 2.3 Let A,A′ ∈ G, B,B′ ∈ G′, f ∈ ⊕r

u=1 Fu, and let g ∈ ⊕r
u=1 F

†
u . Then

for δ ∈ {0, ∗}, the following hold.

(a) [A + A′,B]δ = [A,B]δ + [A′,B]δ and [A,B + B′]δ = [A,B]δ + [A,B′]δ.
(b) [ fA,B]δ = f [A,B]δ and [A, gB]δ = τ1,−1(g)[A,B]δ.
(c) [A,B]δ = τ1,−1([B,A]δ).
(d) [·, ·]δ is non-degenerate.
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Proof Proofs of parts (a)–(c) are trivial. To prove (d), let A ∈ G be such that
[A,B]δ = 0 for all B ∈ G′. We assert that A = 0. Suppose, on the contrary,
that A is non-zero. As � is the isomorphism from V onto G and � ′ is the isomor-
phism from V ′ onto G′, there exist unique elements (α1(x), α2(x), . . . , α�(x)) ∈ V
and (β1(x), β2(x), . . . , β�(x)) ∈ V ′ satisfying �(α1(x), α2(x), . . . , α�(x)) = A
and � ′(β1(x), β2(x), . . . , β�(x)) = B. Now since A is non-zero, we note that
Au = (Au,0,Au,1, . . . ,Au,au−1) �= 0 for some u, 1 ≤ u ≤ r . From this, we see that
εu,h = 1 and αh(x) �= 0 for some h, 1 ≤ h ≤ �. Let us write αh(x) =∑Du−1

k=0 αh,k xk .
As αh(x) �= 0, we note that αh,k �= 0 for some k. Since Trqt ,q is a non-zero and an
onto map, there exist c, d ∈ Fqt satisfying Trqt ,q(αh,kc) �= 0 and Trqt ,q(d) �= 0. Now
let us take βi (x) = 0 for 1 ≤ i( �= h) ≤ �, and let us take βh(x) = c when δ = 0,
while let us take βh(x) = φ−1(dα−1

h,k) when δ = ∗.

Now when δ = 0, we see that τ1,−1(βh(x) = c. This, by (2.1), implies that

[A,B]0 = m

mh

∑Du−1
k=0 Trqt ,q(αh,kc)xk �= 0, which is a contradiction. This shows

that the map [·, ·]0 is non-degenerate.
When δ = ∗, we see that τ1,−1(βh(x)) = φ−1(dα−1

h,k). By (2.2), we obtain

[A,B]∗ = m

mh

∑Du−1
k=0 Trqt ,q(αh,kφ(φ−1(dα−1

h,k))x
k = m

mh

∑Du−1
k=0 Trqt ,q(d)xk �= 0,

which is a contradiction. This shows that the map [·, ·]∗ is non-degenerate. ��
Finally, for δ = γ, the map [·, ·]γ : G × G′ →⊕r

u=1 Fu is defined as

[A,B]γ =
( �∑

i=1

m

mi
ε1,i

a1−1∑

j=0

(t/a1)−1∑

μ=0

τqμa1+ j ,1

(

γA(i)
1,a1− jτq

t
2 ,−1

(
B(i)
1, t2− j

))

,

�∑

i=1

m

mi
ε2,i

a2−1∑

j=0

(t/a2)−1∑

μ=0

τqμa2+ j ,1

(

γA(i)
2,a2− jτq

t
2 ,−1

(
B(i)
2, t2− j

))

, . . . ,

�∑

i=1

m

mi
εr ,i

ar−1∑

j=0

(t/ar )−1∑

μ=0

τqμar+ j ,1

(

γA(i)
r ,ar− jτq

t
2 ,−1

(
B(i)
r , t2− j

)))

. (2.3)

In the following lemma, we show that the map [·, ·]γ : G × G′ → ⊕r
u=1 Fu is a

reflexive and a non-degenerate τ1,−1-sesquilinear form.

Lemma 2.4 Let A,A′ ∈ G, B,B′ ∈ G′, f ∈ ⊕r
u=1 Fu, and let g ∈ ⊕r

u=1 F
†
u . Then

the following hold.

(a) [A + A′,B]γ = [A,B]γ + [A′,B]γ and [A,B + B′]γ = [A,B]γ + [A,B′]γ .

(b) [ fA,B]γ = f [A,B]γ and [A, gB]γ = τ1,−1(g)[A,B]γ .

(c) [A,B]γ = −τ1,−1([B,A]γ ).

(d) [·, ·]γ is non-degenerate.

Proof Proofs of parts (a) and (b) are trivial. To prove (c), we first recall that t = 2AU ,

where U is odd. One can easily observe that γ q
t
2 = γ AU = (−1)Uγ = −γ. From

this and by (2.3), part (c) follows immediately.
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Now it remains to show that the map [·, ·]γ is non-degenerate. For this, let A ∈ G
be such that [A,B]γ = 0 for all B ∈ G′. We assert that A = 0.

Suppose, on the contrary, that A is non-zero. Since A is non-zero, we note that
Au = (Au,0,Au,1, . . . ,Au,au−1) �= 0 for some u, 1 ≤ u ≤ r . From this, we see that
εu,h = 1 and αh(x) �= 0 for some h, 1 ≤ h ≤ �. Let us write αh(x) =∑Du−1

k=0 αh,k xk .
As αh(x) �= 0, we note that αh,k �= 0 for some k. Since Trqt ,q is a non-zero and

an onto map, there exists ξ ∈ Fqt satisfying Trqt ,q(γ αh,kξ
q
t
2
) �= 0. Now let us take

βi (x) = 0 for 1 ≤ i( �= h) ≤ �, and let us take βh(x) = ξ. Then we see, by (2.3), that

[A,B]γ = m

mh

∑Du−1
k=0 Trqt ,q(γ αh,kξ

q
t
2
)xk �= 0, which is a contradiction.

This shows that the τ1,−1-sesquilinear form [·, ·]γ is non-degenerate. ��
The following proposition is useful in investigating the algebraic structures of δ-

dual codes of Ω-MT additive codes of length n over Fqt for each δ ∈ {0, ∗, γ }.
Proposition 2.1 Letα(x) ∈ V andβ(x) ∈ V ′ be identifiedwithA = (A1,A2, · · · ,Ar )

∈ G and B = (B1,B2, . . . ,Br ) ∈ G′, respectively. Then for δ ∈ {0, ∗, γ }, we have
[A,B]δ = 0 if and only if [Au,Bu]δ = 0 for 1 ≤ u ≤ r .

In the following theorem, we relate the constituents of anΩ-MT additive code with
that of its δ-dual code, where δ ∈ {0, ∗, γ }.
Theorem 2.5 Let C = C1 ⊕ C2 ⊕ · · · ⊕ Cr and C⊥δ = C(δ)

1 ⊕ C(δ)
2 ⊕ · · · ⊕ C(δ)

r ,

where Cu = C ∩ Gu and C(δ)
u = C⊥δ ∩ G′

u for 1 ≤ u ≤ r . Then for 1 ≤ u ≤ r , we

have C(δ)
u = {Bu ∈ G′

u : [Au,Bu]δ = 0 for all Au ∈ Cu} = C⊥δ
u and dimF†

u
C(δ)
u =

dimF†
u
C⊥δ
u = εut−dimFu Cu for 1 ≤ u ≤ r . (Throughout this paper, dimF V denotes

the dimension of a vector space V over the field F .)

Proof To prove the result, let 1 ≤ u ≤ r be fixed. Now we first observe, by Proposi-
tion 2.1, that C(δ)

u = {Bu ∈ G′
u : [Au,Bu]δ = 0 for all Au ∈ Cu} = C⊥δ

u .

To prove the second part, let ku = dimFuCu . Here we assert that dimF†
u
C⊥δ
u =

εut − ku .
Toprove the assertion, for eachnon-zeroA ∈ Gu, let us define amapϕA : G′

u → F†
u

as ϕA(B) = [B,A]δ for each B ∈ G′
u . One can easily observe that ϕA is an F†

u -linear
transformation. Further, working as in Theorem 2.1, we note that G′

u is an εut-
dimensional vector space overF†

u for each u.So for 1 ≤ u ≤ r , by the rank-nullity the-
orem, we see that Nullity(ϕA) = dim(ker(ϕA)) is either εut or εut−1,where ker(ϕA)

denotes the kernel (or the null-space) of ϕA. Further, if {A1,A2, . . . ,Aku } is an Fu-
basis of Cu, then one can easily observe that ker(ϕA1)∩ker(ϕA2)∩· · ·∩ker(ϕAku

) =
C⊥δ
u and that dimF†

u
(C⊥δ

u ) = dimF†
u
(ker(ϕA1)∩ker(ϕA2)∩· · ·∩ker(ϕAku

)) ≥ εut−ku

for each u.AsF†
u � Fqdu ,weget dimFq (C

⊥δ
u ) ≥ (εut−ku)du .Next it is easy to see that

dimFq (C) = ∑r
u=1 kudu . Further, by Theorem 4.2.4(ii) of Ling and Xing (2004), we

get dimFq (C⊥δ ) = nt−dimFq (C) = t
∑r

u=1 εudu−∑r
u=1 kudu =∑r

u=1(εut−ku)du .

Now as dimFq (C
⊥δ
u ) ≥ (εut−ku)du,wemust have dimFq (C

⊥δ
u ) = (εut−ku)du,which

gives dimF†
u
(C⊥δ

u ) = εut − ku = εut − dimFuCu for each u. ��
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In the following section, we shall study algebraic structures of self-orthogonal and
self-dualΩ-MT additive codes of length n overFqt with respect to the aforementioned
τ1,−1-sesquilinear forms [·, ·]0, [·, ·]∗ and [·, ·]γ on G × G′.

3 Self-dual and self-orthogonalΩ-MT additive codes over finite fields

Let C be an Ω-MT additive code of length n over Fqt . For δ ∈ {0, ∗, γ }, the code C is
said to be (i) δ-self-dual if it satisfies C = C⊥δ and (ii) δ-self-orthogonal if it satisfies
C ⊆ C⊥δ . Now we shall study all δ-self-dual and δ-self-orthogonal Ω-MT additive
codes of length n over Fqt . To do this, we proceed as follows:

Let f (x) be a non-zero polynomial in FQ[x], and let f †(x) be its recipro-
cal polynomial. The polynomial f (x) is said to be self-reciprocal if it satisfies
f (x) = f †(x). We say that two non-zero coprime polynomials f (x), g(x) ∈
FQ[x] form a reciprocal pair if they satisfy f †(x) = g(x). Now we recall
that g1(x), g2(x), . . . , gr (x) are all the distinct irreducible factors of the poly-
nomials xm1 − ω1, xm2 − ω2, . . . , xm� − ω� in Fq [x], and that gu(x) =
∏au−1

j=0 gu, j (x) is the irreducible factorization of the polynomial gu(x) in Fqt [x] for
1 ≤ u ≤ r . That is, the polynomials g1,0(x), g1,1(x), . . . , g1,a1−1(x), g2,0(x),
g2,1(x), . . . , g2,a2−1(x), . . . · · · , gr ,0(x), gr ,1(x), . . . , gr ,ar−1(x) are all the distinct
irreducible factors of the polynomials xm1 −ω1, xm2 −ω2, . . . , xm� −ω� in Fqt [x].
Further, by Lemma 2 of Huffman (2010), we observe that if for some u and j, the poly-
nomial gu, j (x) is self-reciprocal, then the polynomial gu, j+1(x) is also self-reciprocal,
where the subscript j + 1 is considered modulo au . As a consequence, if for a given
u, the polynomial gu, j (x) is self-reciprocal for some j (0 ≤ j ≤ au − 1), then the
polynomial gu(x) is also self-reciprocal, (but the converse is not true in general).More-
over, for 1 ≤ u, u′ ≤ r , if there exist integers h, h′ satisfying 0 ≤ h, h′ ≤ au − 1 and
gu,h(x) = g†u′,h′(x), then we have gu(x) = g†u′(x). In view of this and by reordering
gu, j (x)′s (if required), we assume that

• g1,0(x), g1,1(x), . . . , g1,a1−1(x), . . . · · · , ge1,0(x), ge1,1(x), . . . , ge1,ae1−1(x) are
all the distinct self-reciprocal irreducible factors,

• ge1+1,0(x), g
†
e1+1,0(x), . . . , ge1+1,ae1+1−1(x), g

†
e1+1,ae1+1−1(x), . . . · · · , ge2,0(x),

g†e2,0(x), . . . , ge2,ae2−1(x), g
†
e2,ae2−1(x)

are the irreducible factors forming reciprocal pairs, and
• ge2+1,0(x), ge2+1,1(x), . . . , ge2+1,ae2+1−1(x), . . . . . . , ge3,0(x), ge3,1(x), . . . ,

ge3,ae3−1(x) are the remaining irreducible factors (i.e., neither they are self-
reciprocal nor do they form reciprocal pairs)

of the polynomials xm1 − ω1, xm2 − ω2, . . . , xm� − ω� in Fqt [x]. Note that r =
e2 + e3 − e1.

For e1 + 1 ≤ w ≤ e2 and 1 ≤ i ≤ �, let us define

ε
†
w,i =

{
1 if g†w, j (x) | xmi − ωi in Fqt [x] for some j;
0 otherwise.

123



300 Beitr Algebra Geom (2022) 63:287–320

We also note that for e1 + 1 ≤ w ≤ e2 and 1 ≤ i ≤ �, if g†w, j (x) | xmi − ωi for some

j, then g†w, j+1(x) | xmi − ωi . From this, we get

xmi − ωi =
e1∏

v=1

av−1∏

j=0

gv, j (x)
εv,i

e2∏

w=e1+1

aw−1∏

j=0

gw, j (x)
εw,i g†w, j (x)

ε
†
w,i

e3∏

s=e2+1

as−1∏

j=0

gs, j (x)
εs,i

and

xmi − ω−1
i =

e1∏

v=1

av−1∏

j=0

gv, j (x)
εv,i

e2∏

w=e1+1

aw−1∏

j=0

g†w, j (x)
εw,i gw, j (x)

ε
†
w,i

e3∏

s=e2+1

as−1∏

j=0

g†s, j (x)
εs,i .

For each relevant v,w, s and j, we note that

Fv, j = Fqt [x]
〈gv, j (x)〉 � FqtDv , Fw, j = Fqt [x]

〈gw, j (x)〉 � FqtDw ,

F†
w, j = Fqt [x]

〈g†w, j (x)〉
� FqtDw , Fs, j = Fqt [x]

〈gs, j (x)〉 � FqtDs ,

F†
s, j = Fqt [x]

〈g†s, j (x)〉
� FqtDs , Fv = Fq [x]

〈gv(x)〉 � Fqdv ,

Fw = Fq [x]
〈gw(x)〉 � Fqdw , F†

w = Fq [x]
〈g†w(x)〉 � Fqdw ,

Fs = Fq [x]
〈gs(x)〉 � Fqds , F†

s = Fq [x]
〈g†s (x)〉

� Fqds .

.
Now by applying the Chinese Remainder Theorem, we see that

V � G =
( e1⊕

v=1

av−1⊕

j=0

(

εv,1Fv, j , εv,2Fv, j , . . . , εv,�Fv, j
︸ ︷︷ ︸

Gv, j

))

⊕
( e2⊕

w=e1+1

aw−1⊕

j=0

{(

εw,1Fw, j , εw,2Fw, j , . . . , εw,�Fw, j
︸ ︷︷ ︸

Gw, j

)

⊕
(

ε
†
w,1F

†
w, j , ε

†
w,2F

†
w, j , . . . , ε

†
w,�F

†
w, j

︸ ︷︷ ︸
G†

w, j

)})

⊕
( e3⊕

s=e2+1

as−1⊕

j=0

(

εs,1Fs, j , εs,2Fs, j , . . . , εs,�Fs, j
︸ ︷︷ ︸

Gs, j

))
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=
( e1⊕

v=1

av−1⊕

j=0

Gv, j

)

⊕
( e2⊕

w=e1+1

aw−1⊕

j=0

(
Gw, j ⊕ G†

w, j

)
)

⊕
( e3⊕

s=e2+1

as−1⊕

j=0

Gs, j
)

=
( e1⊕

v=1

Gv

)

⊕
( e2⊕

w=e1+1

(
Gw ⊕ G†

w

)
)

⊕
( e3⊕

s=e2+1

Gs
)

, (3.1)

where Gv (resp. Gw, G†
w and Gs) is a vector space over Fv (resp. Fw, F†

w and Fs) for
each v (resp. w and s).

In an analogous manner, we have

V ′ � G′ =
( e1⊕

v=1

av−1⊕

j=0

(

εv,1Fv, j , εv,2Fv, j , . . . , εv,�Fv, j
︸ ︷︷ ︸

Gv, j

))

⊕
( e2⊕

w=e1+1

aw−1⊕

j=0

{(

ε
†
w,1Fw, j , ε

†
w,2Fw, j , . . . , ε

†
w,�Fw, j

︸ ︷︷ ︸
Hw, j

)

⊕
(

εw,1F†
w, j , εw,2F†

w, j , . . . , εw,�F
†
w, j

︸ ︷︷ ︸
H†

w, j

)})

⊕
( e3⊕

s=e2+1

as−1⊕

j=0

(

εs,1F†
s, j , εs,2F

†
s, j , . . . , εs,�F

†
s, j

︸ ︷︷ ︸
G†
s, j

))

=
( e1⊕

v=1

av−1⊕

j=0

Gv, j

)

⊕
( e2⊕

w=e1+1

aw−1⊕

j=0

(
Hw, j ⊕ H†

w, j

)
)

⊕
( e3⊕

s=e2+1

as−1⊕

j=0

G†
s, j

)

=
( e1⊕

v=1

Gv

)

⊕
( e2⊕

w=e1+1

(
Hw ⊕ H†

w

)
)

⊕
( e3⊕

s=e2+1

G†
s

)

, (3.2)

where Gv (resp. Hw, H†
w and G†

s ) is a vector space over Fv (resp. Fw, F†
w and F†

s )
for each v (resp. w and s). We also recall that for 1 ≤ u ≤ r , εu = ∑�

i=1 εu,i and
dimFu Gu = εut . Further, for e1 + 1 ≤ w ≤ e2, we see that if ε†w = ∑�

i=1 ε
†
w,i , then

dimF†
w
G†

w = dimFw
Hw = ε†wt .

Hereafter, we shall identify each element α(x) = (α1(x), α2(x), . . . , α�(x)) ∈ V
with the elementA = (A1,A2, . . . ,Ae1 ,Ae1+1,A†

e1+1, . . . ,Ae2 ,A
†
e2 ,Ae2+1,Ae2+2,

· · · ,Ae3) ∈ G, where Av = (Av,0,Av,1, . . . ,Av,av−1) ∈ Gv , Aw = (Aw,0,Aw,1,

· · · ,Aw,aw−1) ∈ Gw, A†
w = (A†

w,0,A
†
w,1, . . . ,A

†
w,aw−1) ∈ G†

w and As =
(As,0,As,1, . . . ,As,as−1) ∈ Gs for 1 ≤ v ≤ e1, e1+1 ≤ w ≤ e2 and e2+1 ≤ s ≤ e3.

Here for each relevant v,w, s and j, we haveAv, j = (A(1)
v, j ,A

(2)
v, j , . . . ,A

(�)
v, j ) ∈ Gv, j ,

Aw, j = (A(1)
w, j ,A

(2)
w, j , . . . ,A

(�)
w, j ) ∈ Gw, j , A†

w, j = (A†(1)
w, j ,A

†(2)
w, j , . . . ,A

†(�)
w, j ) ∈ G†

w, j
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and As, j = (A(1)
s, j ,A

(2)
s, j , . . . ,A

(�)
s, j ) ∈ Gs, j with A(i)

v, j := εv,iαi (x) + 〈gv, j (x)〉 ∈
εv,iFv, j , A(i)

w, j := εw,iαi (x) + 〈gw, j (x)〉 ∈ εw,iFw, j , A†(i)
w, j := ε

†
w,iαi (x) +

〈g†w, j (x)〉 ∈ ε
†
w,iF

†
w, j and A(i)

s, j := εs,iαi (x) + 〈gs, j (x)〉 ∈ εs,iFs, j for 1 ≤ i ≤ �.

Similarly, each element β(x) = (β1(x), β2(x), . . . , β�(x)) ∈ V ′ is identified with
B = (

B1,B2, . . . ,Be1 ,Be1+1,B†
e1+1, . . . ,Be2 ,B

†
e2 ,Be2+1,Be2+2, . . . ,Be3) ∈ G′,

where Bv = (Bv,0,Bv,1, . . . ,Bv,av−1) ∈ Gv , Bw = (Bw,0,Bw,1, . . . ,Bw,aw−1) ∈
Hw, B†

w = (B†
w,0,B

†
w,1, . . . ,B

†
w,aw−1) ∈ H†

w and Bs = (Bs,0,Bs,1, . . . ,Bs,as−1) ∈
G†
s for 1 ≤ v ≤ e1, e1 + 1 ≤ w ≤ e2 and e2 + 1 ≤ s ≤ e3. Here also, for

each relevant v,w, s and j, we have Bv, j = (B(1)
v, j ,B

(2)
v, j , . . . ,B

(�)
v, j ) ∈ Gv, j , Bw, j =

(B(1)
w, j ,B

(2)
w, j , . . . ,B

(�)
w, j ) ∈ Hw, j , B†

w, j = (B†(1)
w, j ,B

†(2)
w, j , . . . ,B

†(�)
w, j ) ∈ H†

w, j and

Bs, j = (B(1)
s, j ,B

(2)
s, j , . . . ,B

(�)
s, j ) ∈ G†

s, j with B(i)
v, j := εv,iβi (x) + 〈gv, j (x)〉 ∈ εv,iFv, j ,

B(i)
w, j := ε

†
w,iβi (x) + 〈gw, j (x)〉 ∈ ε

†
w,iFw, j , B†(i)

w, j := εw,iβi (x) + 〈g†w, j (x)〉 ∈
εw,iF†

w, j and B(i)
s, j := εs,iβi (x) + 〈g†s, j (x)〉 ∈ εs,iF†

s, j for 1 ≤ i ≤ �.

Further, by Theorem 2.2 and by (3.1), we see that each Ω-MT additive code C ⊆ G
of length n over Fqt has a unique representation of the form

C = (
e1⊕

v=1

Cv

)⊕ (
e2⊕

w=e1+1

(
Cw ⊕ C†w

))⊕ (
e3⊕

s=e2+1

Cs
)
, (3.3)

where Cv (resp. Cw, C†w and Cs) is a subspace of Gv (resp. Gw, G†
w and Gs) over Fv

(resp. Fw, F†
w and Fs) for each v (resp. w and s). Furthermore, for δ ∈ {0, ∗, γ } and

for allA ∈ G and B ∈ G′, the sesquilinear forms [·, ·]δ, defined by (2.1)-(2.3), can be
rewritten as

[A,B]0 = (R1,R2, . . . ,Re1 ,Re1+1,R†
e1+1, . . . ,Re2 ,R†

e2 ,Re2+1,Re2+2, . . . ,Re3 ),

(3.4)

[A,B]∗ = (S1 − R1, . . . ,Se1 − Re1 ,Se1+1 − Re1+1,S†
e1+1

−R†
e1+1, . . . ,Se2 − Re2 ,S†

e2 − R†
e2 ,Se2+1 − Re2+1, . . . ,Se3 − Re3 ),

= (S1,S2, . . . ,Se1 ,Se1+1,S†
e1+1, . . . ,Se2 ,S†

e2 ,Se2+1,Se2+2, . . . ,Se3 ) − [A,B]0,
(3.5)

and

[A,B]γ = (T1, T2, . . . , Te1 , Te1+1, T †
e1+1, . . . , Te2 , T

†
e2 , Te2+1, Te2+2, . . . , Te3),

(3.6)

where for 1 ≤ v ≤ e1, e1 + 1 ≤ w ≤ e2 and e2 + 1 ≤ s ≤ e3,

Rv =
�∑

i=1

m

mi
εv,i

( av−1∑

j=0

(t/av)−1∑

μ=0

τqμav+ j ,1

(

A(i)
v,av− jτ1,−1(B(i)

v,av− j )

))

,
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Rw =
�∑

i=1

m

mi
εw,i

( aw−1∑

j=0

(t/aw)−1∑

μ=0

τqμaw+ j ,1

(

A(i)
w,aw− jτ1,−1(B†(i)

w,aw− j )

))

,

R†
w =

�∑

i=1

m

mi
ε
†
w,i

( aw−1∑

j=0

(t/aw)−1∑

μ=0

τqμaw+ j ,1

(

A†(i)
w,aw− jτ1,−1(B(i)

w,aw− j )

))

,

Rs =
�∑

i=1

m

mi
εs,i

( as−1∑

j=0

(t/as )−1∑

μ=0

τqμas+ j ,1

(

A(i)
s,as− jτ1,−1(B(i)

s,as− j )

))

,

Sv =
�∑

i=1

m

mi
εv,i

(( av−1∑

j=0

(t/av)−1∑

μ=0

τqμav+ j ,1(A
(i)
v,av− j )

)

×
( av−1∑

j=0

(t/av)−1∑

σ=0

τqσav+ j ,1(τ1,−1(B(i)
v,av− j ))

))

,

Sw =
�∑

i=1

m

mi
εw,i

(( aw−1∑

j=0

(t/aw)−1∑

μ=0

τqμaw+ j ,1(A
(i)
w,aw− j )

)

( aw−1∑

j=0

(t/aw)−1∑

σ=0

τqσaw+ j ,1(τ1,−1(B†(i)
w,aw− j ))

))

,

S†
w =

�∑

i=1

m

mi
ε
†
w,i

(( aw−1∑

j=0

(t/aw)−1∑

μ=0

τqμaw+ j ,1(A
†(i)
w,aw− j )

)

( aw−1∑

j=0

(t/aw)−1∑

σ=0

τqσaw+ j ,1(τ1,−1(B(i)
w,aw− j ))

))

,

Ss =
�∑

i=1

m

mi
εs,i

(( as−1∑

j=0

(t/as )−1∑

μ=0

τqμas+ j ,1(A
(i)
s,as− j )

)

×
( as−1∑

j=0

(t/as )−1∑

σ=0

τqσas+ j ,1(τ1,−1(B(i)
s,as− j ))

))

,

Tv =
�∑

i=1

m

mi
εv,i

( av−1∑

j=0

(t/av)−1∑

μ=0

τqμav+ j ,1

(

γA(i)
v,av− jτqt/2,−1(B

(i)
v, t2− j

)

))

,

Tw =
�∑

i=1

m

mi
εw,i

( aw−1∑

j=0

(t/aw)−1∑

μ=0

τqμaw+ j ,1

(

γA(i)
w,aw− jτqt/2,−1(B

†(i)
w, t2− j

)

))

,

T †
w =

�∑

i=1

m

mi
ε
†
w,i

( aw−1∑

j=0

(t/aw)−1∑

μ=0

τqμaw+ j ,1

(

γA†(i)
w,aw− jτqt/2,−1(B

(i)
w, t2− j

)

))

,
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Ts =
�∑

i=1

m

mi
εs,i

( as−1∑

j=0

(t/as )−1∑

μ=0

τqμas+ j ,1

(

γA(i)
s,as− jτqt/2,−1(B

(i)
s, t2− j

)

))

.

Moreover, by (3.4)-(3.6) and by applying Theorem 2.5, we see that the δ-dual code
C⊥δ (⊆ G′) of the code C is given by

C⊥δ =
( e1⊕

v=1

C⊥δ
v

)

⊕
( e2⊕

w=e1+1

(C†⊥δ
w ⊕ C⊥δ

w )

)

⊕
( e3⊕

s=e2+1

C⊥δ
s

)

, (3.7)

where C⊥δ
v ⊆ Gv is the orthogonal complement of Cv with respect to [·, ·]δ�Gv×Gv

for 1 ≤ v ≤ e1, C⊥δ
w ⊆ H†

w is the orthogonal complement of Cw with respect
to [·, ·]δ�H†

w×Gw

, C†⊥δ
w ⊆ Hw is the orthogonal complement of C†w with respect to

[·, ·]δ�Hw×G†
w

for e1 + 1 ≤ w ≤ e2, and C⊥δ
s ⊆ G†

s is the orthogonal complement of Cs
with respect to [·, ·]δ�G†

s ×Gs
for e2+1 ≤ s ≤ e3.Here [·, ·]δ�Gv×Gv

(resp. [·, ·]δ�H†
w×Gw

,

[·, ·]δ�Hw×G†
w

and [·, ·]δ�G†
s ×Gs

) denotes the restriction of the sesquilinear form [·, ·]δ
to Gv × Gv (resp. H†

w × Gw, Hw × G†
w and G†

s × Gs) for 1 ≤ v ≤ e1 (resp. for
e1 + 1 ≤ w ≤ e2 and e2 + 1 ≤ s ≤ e3).

Now for e1 + 1 ≤ w ≤ e2 and 0 ≤ j ≤ aw − 1, let us define Kw, j =
Gw, j ∩ Hw, j =

(
εw,1ε

†
w,1Fw, j , . . . , εw,�ε

†
w,�Fw, j

)
and K†

w, j = G†
w, j ∩ H†

w, j =
(
εw,1ε

†
w,1F

†
w, j , . . . , εw,�ε

†
w,�F

†
w, j

)
. Next let Kw = Gw ∩ Hw = ⊕aw−1

j=0 Kw, j ,

K†
w = G†

w ∩ H†
w = ⊕aw−1

j=0 K†
w, j , κw = ∑�

i=1 εw,iε
†
w,i , and let ηw = κwt for

e1 + 1 ≤ w ≤ e2. One can easily observe that Kw (resp. K†
w) is an ηw-dimensional

vector space over Fw (resp. F†
w) for e1 + 1 ≤ w ≤ e2. It is easy to observe that

the restriction [·, ·]δ�Kw×K†
w

of the form [·, ·]δ to Kw × K†
w is a reflexive and a non-

degenerate τ1,−1-sesquilinear form.
Next one can easily see that x + 1 and x − 1 are the only irreducible self-

reciprocal polynomials over finite fields of odd degree, and that all other irreducible
self-reciprocal polynomials over finite fields are of even degrees. More precisely, for
1 ≤ v ≤ e1 and 0 ≤ j ≤ av − 1, if deg gv, j (x) = Dv is odd, then we must have
Dv = 1 and gv, j (x) is either x + 1 or x − 1. Further, it is easy to observe that dv = 1
if and only if Dv = 1.

Moreover, for 1 ≤ v ≤ e1 and 0 ≤ j ≤ av −1, one can easily observe that the map
τ1,−1 : Fv, j → Fv, j is an automorphism of Fv, j satisfying τ 21,−1 = τ1,1, the identity
map. That is, the map τ1,−1 is either the identity automorphism or the automorphism
of Fv, j of order 2. In view of this and using the fact that Fv = ⊕av−1

j=0 Fv, j , we see
that the map τ1,−1 is either the identity automorphism or the automorphism of Fv of
order 2, where 1 ≤ v ≤ e1.

Next for 1 ≤ v ≤ e1, let us define J1 = {v : 1 ≤ v ≤ e1, dv = 1} and
J2 = {v : 1 ≤ v ≤ e1, dv is even}. Note that {1, 2, . . . , e1} = J1 ∪ J2. Now
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the following three lemmas are useful in studying and counting all δ-self-dual and
δ-self-orthogonal Ω-MT additive codes of length n over Fqt for each δ ∈ {0, ∗, γ }.
Lemma 3.1 For 1 ≤ v ≤ e1 and 0 ≤ j ≤ av − 1, the following hold.

(a) The map τ1,−1 : Fv, j → Fv, j is the identity automorphism if and only if v ∈ J1.

(b) The map τ1,−1 is the automorphism of Fv, j of order 2 if and only if v ∈ J2.

Proof (a) If v ∈ J1, then we have dv = Dv = 1, from which it follows that τ1,−1
is the identity map on Fv, j � Fqt . To prove the forward part, let us suppose
that τ1,−1 is the identity automorphism of Fv, j . Here we assert that v ∈ J1. Since
τ1,−1 is the identity map onFv, j ,we have x+〈gv, j (x)〉 = τ1,−1(x+〈gv, j (x)〉) =
x−1 + 〈gv, j (x)〉. This gives x − x−1 ∈ 〈gv, j (x)〉. Note that there exists an integer
i (1 ≤ i ≤ �) such that gv, j (x) divides xmi − ωi , which implies that xmi ≡
ωi (mod gv, j (x)), and hence x−1 + 〈gv, j (x)〉 = ω−1

i xmi−1 + 〈gv, j (x)〉. From
this, it follows that gv, j (x) divides ωi x2 − xmi . This implies that gv, j (x) divides
ωi x2−xmi +xmi −ωi = ωi (x2−1).As gv, j (x) is amonic irreducible polynomial
over Fqt , we see that gv, j (x) is either x + 1 or x − 1, which gives Dv = 1. This
shows that v ∈ J1.

(b) It follows immediately from part (a) and the fact that the map τ1,−1 is either the
identity automorphism of Fv, j or the automorphism of Fv, j having order 2.

��
Lemma 3.2 For 1 ≤ v ≤ e1, the following hold.

(a) The map τ1,−1 is the identity automorphism of Fv if and only if v ∈ J1.

(b) The map τ1,−1 is the automorphism of Fv of order 2 if and only if v ∈ J2.

Proof Working in a similar manner as in Lemma 3.1, the desired result follows. ��
Lemma 3.3 Let t ≥ 2 be an even integer. For 1 ≤ v ≤ e1, the following hold.

(a) The integer t
av

= t
gcd(t,dv)

is even if and only if v ∈ J1.

(b) If v ∈ J2, then we have j + t
2 ≡ j + av

2 (mod av) for all integers j .

Proof (a) We know that Dv = 1 if and only if dv = 1.
Now if v ∈ J1, then we have dv = 1, which gives av = gcd(t, dv) = gcd(t, 1) =
1. This implies that the integer t

av
= t is even.

To prove the forward part, suppose that the integer t
av

is even. Since av =
gcd(t, dv), we have gcd( t

av
, dv

av
) = gcd( t

av
, Dv) = 1, which implies that the

integer Dv must be odd. This further implies that dv = Dv = 1, from which it
follows that v ∈ J1.

(b) Now if v ∈ J2, then the integer dv must be even, and hence av = gcd(t, dv) is
an even integer. Further, by part (a), we see that the integer t

av
is odd. In view of

this, we have t
2 − av

2 = av × 1
2

( t
av

− 1
) ≡ 0 (mod av). From this, it follows that

j + t
2 ≡ j + av

2 (mod av) for all integers j .
��
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In the following lemma, we study some basic properties of the restriction map
[·, ·]δ�Gv×Gv

for each δ ∈ {0, ∗, γ } and 1 ≤ v ≤ e1.

Lemma 3.4 Let 1 ≤ v ≤ e1 be fixed.

(a) For v ∈ J1 and δ ∈ {0, ∗}, the map [·, ·]δ�Gv×Gv
is a symmetric and a non-

degenerate bilinear form on Gv, i.e., (Gv, [·, ·]δ�Gv×Gv
) is an orthogonal space of

dimension εvt over Fv � Fq .

(b) For v ∈ J2 and δ ∈ {0, ∗}, the map [·, ·]δ�Gv×Gv
is a non-degenerate and a

Hermitian τ1,−1-sesquilinear form on Gv, i.e., (Gv, [·, ·]δ�Gv×Gv
) is a unitary space

of dimension εvt over Fv � Fqdv .

(c) For v ∈ J1, the map [·, ·]γ �Gv×Gv
is an alternating, reflexive and a non-degenerate

bilinear form on Gv, i.e., (Gv, [·, ·]γ �Gv×Gv
) is a symplectic space of dimension εvt

over Fv � Fq .

(d) For v ∈ J2, the map [·, ·]γ �Gv×Gv
is a non-degenerate, reflexive and a skew–

Hermitian τ1,−1-sesquilinear form on Gv.

Proof One can easily verify that the map [·, ·]δ�Gv×Gv
is a τ1,−1-sesquilinear form

on Gv for each v. Now to show that the map [·, ·]δ�Gv×Gv
is non-degenerate, let us

suppose that [Av,Bv]δ = 0 for all Bv ∈ Gv. Here we assert that Av = 0. Let
C′ = (C1, . . . , Cv, . . . , Ce3) be an arbitrary element ofG′ with Cv = Bv.Note that asBv

runs overGv, the element C′ runs overG′.Also letA = (0, . . . , 0, Av︸︷︷︸
vth

, 0, . . . , 0) ∈ G.

Then we see that [A, C′]δ = [Av,Bv]δ = 0 for all C ∈ G′. By Lemmas 2.3–2.4, we
see that the sesquilinear form [·, ·]δ is non-degenerate on G ×G′. From this, it follows
that A = 0, which gives Av = 0.

Further,when δ ∈ {0, ∗},one can easily observe that [Av,Bv]δ = τ1,−1
(
[Bv,Av]δ

)

for all Av,Bv ∈ Gv. From this and by applying Lemma 3.1, parts (a) and (b) follows
immediately.

Now to prove (c), let v ∈ J1. Here we have dv = Dv = av = 1 and Fv,0 � Fqt .

We also see, by Lemma 3.2, that the map τ1,−1 is the identity automorphism of Fv.

Further, we observe that [Av,Bv]γ = −[Bv,Av]γ for all Av,Bv ∈ Gv. In particular,
we have [Av,Av]γ = −[Av,Av]γ , which gives 2[Av,Av]γ = 0 for all Av ∈ Gv.

From this, it follows that [Av,Av]γ = 0 when q is odd. On the other hand, when q is

even, we see that γ q
t
2 = γ, which implies that

[Av,Av]γ =
�∑

i=1

m

mi
εv,i

( t−1∑

μ=0

τqμ,1(γA(i)
v,0τqt/2,−1(A

(i)
v,0))

)

=
�∑

i=1

m

mi
εv,i

( t−1∑

μ=0

(γ αi,0α
qt/2

i,0 )q
μ + 〈gv,0(x)〉

)

=
�∑

i=1

m

mi
εv,iTrqt ,q(γ αi,0α

qt/2

i,0 ) + 〈gv,0(x)〉
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=
�∑

i=1

m

mi
εv,iTrqt/2,q(Trqt ,qt/2(γ αi,0α

qt/2

i,0 )) + 〈gv,0(x)〉

=
�∑

i=1

m

mi
εv,iTrqt/2,q(2γαi,0α

qt/2

i,0 ) + 〈gv,0(x)〉

= 0 + 〈gv,0(x)〉 for all Av ∈ Gv.

This shows that the τ1,−1-sesquilinear form [·, ·]γ �Gv×Gv
is alternating when v ∈ J1.

Finally, to prove (d), let v ∈ J2. Here by Lemma 3.2, the map τ1,−1 is the
automorphism of Fv of order 2. Further, it is easy to observe that [Av,Bv]γ =
−τ1,−1([Bv,Av]γ ) for all Av,Bv ∈ Gv. This shows that the τ1,−1-sesquilinear form
[·, ·]γ �Gv×Gv

is a skew-Hermitian form on Gv.

This completes the proof of the lemma. ��
In the following theorem, we derive necessary and sufficient conditions for an Ω-

MT additive code of length n over Fqt to be δ-self-orthogonal and δ-self-dual for each
δ ∈ {0, ∗, γ }.

Theorem 3.1 Let Ω = (ω1,ω2, . . . ,ω�) be fixed. Let C =
(
⊕e1

v=1 Cv

)

⊕
(
⊕e2

w=e1+1

(
Cw ⊕ C†w

)
)

⊕
(
⊕e3

s=e2+1 Cs
)

be an Ω-MT additive code of length n

over Fqt , where Cv (resp. Cw, C†w and Cs ) is a subspace of Gv (resp. Gw, G†
w and Gs )

over Fv (resp. Fw, F†
w and Fs ) for all v (resp. w and s). Then for δ ∈ {0, ∗, γ }, the

following hold.

(a) The code C is δ-self-dual if and only if the following conditions are satisfied:

• Irreducible factors of the polynomials xm1 − ω1, xm2 − ω2, . . . , xm� − ω� in
Fqt [x] are either self-reciprocal or form reciprocal pairs.

• For 1 ≤ v ≤ e1, dimFv
Gv = εvt is even and Cv is a δ-self-dual Fv-subspace

of Gv.

• For e1 + 1 ≤ w ≤ e2, Cw (resp. C†w) is a subspace of Kw (resp. K†
w) over Fw

(resp. F†
w) satisfying C†w = C⊥δ

w ∩ K†
w.

As a consequence, the total number of distinct δ-self-dual Ω-MT additive codes
of length n over Fqt is given by

N =
e1∏

v=1

Nv

e2∏

w=e1+1

Nw, (3.8)

where Nv denotes the number of distinct δ-self-dual Fv-subspaces of Gv for 1 ≤
v ≤ e1 andNw denotes the number of distinct Fw-subspaces of Kw for e1 + 1 ≤
w ≤ e2.

(b) The code C is δ-self-orthogonal if and only if the following conditions are satisfied:

• For 1 ≤ v ≤ e1, Cv is a δ-self-orthogonal Fv-subspace of Gv.
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• For e1 + 1 ≤ w ≤ e2, Cw (resp. C†w) is a subspace of Kw (resp. K†
w) over Fw

(resp. F†
w) satisfying C†w ⊆ C⊥δ

w ∩ K†
w.

• Cs = {0} for e2 + 1 ≤ s ≤ e3.

As a consequence, the total number of distinct δ-self-orthogonal Ω-MT additive
codes of length n over Fqt is given by

M =
e1∏

v=1

Mv

e2∏

w=e1+1

Mw, (3.9)

where Mv denotes the number of distinct δ-self-orthogonal Fv-subspaces of Gv

for 1 ≤ v ≤ e1 and Mw denotes the number of distinct pairs (Cw, C†w), where
Cw (resp. C†w) is a subspace of Kw (resp. K†

w) over Fw (resp. F†
w) satisfying

C†w ⊆ C⊥δ
w ∩ K†

w for e1 + 1 ≤ w ≤ e2.

Proof (a) By (3.3) and (3.7), we see that C = C⊥δ if and only if all the irreducible
factors of the polynomials xm1 −ω1, xm2 −ω2, . . . , xm� −ω� in Fqt [x] are either
self-reciprocal or form reciprocal pairs, Cv = C⊥δ

v for 1 ≤ v ≤ e1, Cw = C†⊥δ
w

and C†w = C⊥δ
w for e1 + 1 ≤ w ≤ e2.

For 1 ≤ v ≤ e1, we further note, by Lemma 3.4, that the τ1,−1-sesquilinear
form [·, ·]δ�Gv×Gv

is non-degenerate. We also recall that dimFv
Gv = εvt . Now if

Cv is an Fv-subspace of Gv satisfying Cv = C⊥δ
v , then by Theorem 2.5, we see

that dimFv
Cv = dimFv

C⊥δ
v = dimFv

Gv − dimFv
Cv = εvt − dimFv

Cv, which
implies that εvt = 2 dimFv

Cv is an even integer.
For e1 + 1 ≤ w ≤ e2, we see that Cw = C†⊥δ

w and C†w = C⊥δ
w holds if and only

if Cw (resp. C†w) is a subspace of Kw (resp. K†
w) over Fw (resp. F†

w) satisfying
C†w = C⊥δ

w ∩ K†
w.

From this and by applying Theorem 2.2, part (a) follows immediately.
(b) By (3.3) and (3.7), we see that C ⊆ C⊥δ if and only if Cv ⊆ C⊥δ

v for 1 ≤ v ≤ e1,
Cw (resp. C†w) is a subspace of Kw (resp. K†

w) over Fw (resp. F†
w) satisfying

Cw ⊆ C†⊥δ
w ∩ Kw and C†w ⊆ C⊥δ

w ∩ K†
w for e1 + 1 ≤ w ≤ e2, and Cs ⊆ {0}

and {0} ⊆ C⊥δ
s for e2 + 1 ≤ s ≤ e3. Further, for e1 + 1 ≤ w ≤ e2, we observe

that Cw ⊆ C†⊥δ
w ∩ Kw and C†w ⊆ C⊥δ

w ∩ K†
w hold if and only if Cw (resp. C†w)

is a subspace of Kw (resp. K†
w) over Fw (resp. F†

w) satisfying C†w ⊆ C⊥δ
w ∩ K†

w.

Moreover, for e2 + 1 ≤ s ≤ e3, we see that Cs ⊆ {0} and {0} ⊆ C⊥δ
s hold if and

only if Cs = {0}. From this, part (b) follows immediately.
��

Now we shall apply Theorem 3.1 and Witt decomposition theory to count all δ-
self-orthogonal and δ-self-dual Ω-MT additive codes of length n over Fqt for each
δ ∈ {0, ∗, γ }.
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3.1 Enumeration formulae for ı-self-orthogonalΩ-multi-twisted additive codes

In the following theorem, we provide enumeration formulae for all δ-self-orthogonal
Ω-MT additive codes of length n over Fqt , where δ ∈ {0, ∗, γ }.
Theorem 3.2 LetΩ = (ω1,ω2, . . . ,ω�) be fixed. For δ ∈ {0, ∗, γ }, the total number
M of distinct δ-self-orthogonal Ω-MT additive codes of length n over Fqt is given by

M =
e1∏

v=1

Mv

e2∏

w=e1+1

⎛

⎝
ηw∑

k1=0

[
ηw

k1

]

qdw

ηw−k1∑

k2=0

[
ηw − k1

k2

]

qdw

⎞

⎠ ,

where for 1 ≤ v ≤ e1, the number Mv equals

•
εv t/2∑

k=0

[
εvt/2

k

]

q

k−1∏

d=0

(
q

εv t−2d−2
2 + 1

)
when v ∈ J1 and δ ∈ {0, ∗} with either εvt is

even and q ≡ 1 (mod 4) or εvt ≡ 0 (mod 4) and q ≡ 3 (mod 4).

•
(εv t−2)/2∑

k=0

[
(εvt − 2)/2

k

]

q

k−1∏

d=0

(
q

εv t−2d
2 + 1

)
when v ∈ J1, δ ∈ {0, ∗}, q ≡ 3

(mod 4) and εvt ≡ 2 (mod 4).

•
(εv t−2)/2∑

k=0

[
(εvt − 2)/2

k

]

q

k−1∏

d=0

(
q

εv t−2d−2
2 + 1

)
+

εv t/2∑

k′=1

qεv t−2k′
[
(εvt − 2)/2

k′ − 1

]

q

k′−2∏

d ′=0

(

q
εv t−2d′−2

2 + 1

)

when v ∈ J1, δ = 0 and both εvt, q are even.

•
(εv t−1)/2∑

k=0

[
(εvt − 1)/2

k

]

q

k−1∏

d=0

(q
εv t−2d−1

2 + 1) when v ∈ J1 with either δ = ∗ and

both εvt, q are odd or δ = 0 and εvt is odd.

•
εv t/2∑

k=0

[
εvt/2

k

]

q

k−1∏

d=0

(
q

εv t−2d
2 + 1

)
when v ∈ J1 with either δ = γ or δ = ∗ and

both εvt, q are even.

•
εv t/2∑

k=0

[
εvt/2

k

]

qdv

k−1∏

b=0

(
q

dv(εv t−2b−1)
2 + 1

)
when v ∈ J2 and εvt is even.

•
(εv t−1)/2∑

k=0

[
(εvt − 1)/2

k

]

qdv

k−1∏

b=0

(
q

dv(εv t−2b)
2 + 1

)
when v ∈ J2 and εvt is odd.

To prove the above theorem, we see, by (3.9), that it is enough to determine the
number Mv of distinct δ-self-orthogonal Fv-subspaces of Gv for 1 ≤ v ≤ e1, and to
determine the numberMw of distinct pairs (Cw, C†w), where Cw is an Fw-subspace of
Kw and C†w is anF†

w-subspace ofK†
w satisfying C†w ⊆ C⊥δ

w ∩K†
w for e1 +1 ≤ w ≤ e2.

In the following lemma, we determine the number Mv for 1 ≤ v ≤ e1.

Lemma 3.5 For δ ∈ {0, ∗, γ }, the following hold.
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(a) When v ∈ J1, we have

Mv =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εv t/2∑

k=0

[
εv t/2
k

]
q

k−1∏

d=0

(
q

εv t−2d−2
2 + 1

)
if δ ∈ {0, ∗} with either εv t is even and q ≡ 1 (mod 4)

or εv t ≡ 0 (mod 4) and q ≡ 3 (mod 4);
(εv t−2)/2∑

k=0

[
(εv t−2)/2

k

]
q

k−1∏

d=0

(
q

εv t−2d
2 + 1

)
if δ ∈ {0, ∗}, εv t ≡ 2 (mod 4) and q ≡ 3 (mod 4);

(εv t−1)/2∑

k=0

[
(εv t−1)/2

k

]
q

k−1∏

d=0

(
q

εv t−2d−1
2 + 1

)
if δ ∈ {0, ∗} and both εv t, q are odd;

(εv t−1)/2∑

k=0

[
(εv t−1)/2

k

]
q

k−1∏

d=0

(
q

εv t−2d−1
2 + 1

)
if δ = 0, q is even and εv t is odd;

(εv t−2)/2∑

k=0

[
(εv t−2)/2

k

]
q

k−1∏

d=0

(
q

εv t−2d−2
2 + 1

)

+
εv t/2∑

k′=1
qεv t−2k′ [(εv t−2)/2

k′−1

]

q

k′−2∏

d ′=0

(

q
εv t−2d′−2

2 + 1

)

if δ = 0 and both εv t, q are even;
εv t/2∑

k=0

[
εv t/2
k

]
q

k−1∏

d=0

(
q

εv t−2d
2 + 1

)
if δ = ∗ and both εv t, q are even;

εv t/2∑

k=0

[
εv t/2
k

]
q

k−1∏

d=0

(
q

εv t−2d
2 + 1

)
if δ = γ and εv t is even.

(b) When v ∈ J2, we have

Mv =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

εv t/2∑

k=0

[
εv t/2
k

]
qdv

k−1∏

d=0

(
q

dv(εv t−2d−1)
2 + 1

)
if εvt is even;

(εv t−1)/2∑

k=0

[
(εv t−1)/2

k

]
qdv

k−1∏

d=0

(
q

dv(εv t−2d)
2 + 1

)
if εvt is odd.

Proof (a) Let v ∈ J1. Here we have dv = Dv = 1, and hence Fv � Fq . Now to
determine the number Mv, we proceed as follows:
When δ = γ, we see, by Lemma 3.4(c), that (Gv, [·, ·]γ �Gv×Gv

) is a symplectic
space of dimension εvt over Fv � Fq . Further, by (Taylor 1992, p.69), we note
that the Witt index of Gv (i.e., the dimension of a maximal self-orthogonal Fv-
subspace of Gv) is εvt/2. Using this and by Exercise 8.1(ii) of Taylor (1992), we
get

Mv =
εv t/2∑

k=0

([
εvt/2

k

]

q

k−1∏

d=0

(
q

εv t−2d
2 + 1

)
)

.

From this point on, let δ ∈ {0, ∗}. Here by Lemma 3.4(a), we see that
(Gv, [·, ·]δ�Gv×Gv

) is an orthogonal space of dimension εvt over Fv. Now we shall
distinguish the following three cases: I. q is odd, II. q is even and δ = 0 and III.
q is even and δ = ∗.

I. When q is odd, we see that the orthogonal space (Gv, [·, ·]δ�Gv×Gv
) can also

be viewed as a non-degenerate quadratic space (Gv,Qv) over Fv, whereQv :
Gv → Fv is the quadratic map, defined as Qv(Av) = 1

2
[Av,Av]δ for all

Av ∈ Gv. Further, by Theorem 1 of Pless (1968), we note that the Witt index
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mv of Gv is given by

mv =

⎧
⎪⎪⎨

⎪⎪⎩

(εvt − 1)/2 if εvt is odd;
εvt/2 if either εvt is even and q ≡ 1 (mod 4)

or εvt ≡ 0 (mod 4) and q ≡ 3 (mod 4);
(εvt − 2)/2 if εvt ≡ 2 (mod 4) and q ≡ 3 (mod 4).

(3.10)

Therefore when δ ∈ {0, ∗} and q is odd, by Exercise 11.3 of Taylor (1992), we
getMv =∑mv

k=0

[mv

k

]
q

∏k−1
d=0(q

mv−�−d + 1), where � = 2mv − εvt + 1. Now
on substituting the value of mv from (3.10), we get the desired value ofMv.

II. Next let δ = 0 and q be even. Here all mi ’s are odd integers, which implies

that the integer m is odd, and hence
m

mi
= 1 in Fv � Fq . Since dv = 1, we

have av = gcd(t, dv) = 1. So each element Av ∈ Gv can be expressed as
Av = Av,0 = (A(1)

v,0,A
(2)
v,0, . . . ,A

(�)
v,0), where A

(i)
v,0 ∈ εv,iFv,0 for 1 ≤ i ≤ �.

Now let us define the setMv = {Av ∈ Gv :
∑�

i=1 εv,i

(
A(i)

v,0 + τq,1(A(i)
v,0) + · · · + τqt−1,1(A

(i)
v,0)
)

= 0}. One can easily

observe thatMv is an Fv-subspace of Gv having dimension εvt − 1. Next let
�v = (εv,1, εv,2, . . . , εv,�) ∈ Gv. Then it is easy to see that �v ∈ Mv if and
only if

∑�
i=1 εv,i (1 + τq,1(1) + · · · + τqt−1,1(1)) = εvt = 0 if and only if εvt

is even. Now the following two cases arise:
(i) When εvt is odd, we note that�v /∈ Mv.Further, we see that [Av,�v]0 =

0 for all Av ∈ Mv. This implies that Gv = Mv ⊥ 〈�v〉, an orthogonal
direct sum of the Fv-subspaces Mv and 〈�v〉 of Gv. Further, one can
easily observe that any self-orthogonal Fv-subspace of Gv is contained in
Mv.

Next we assert that the restriction [·, ·]0�Mv×Mv
of the τ1,−1-sesquilinear

form [·, ·]0 to Mv × Mv is non-degenerate. For this, suppose that there
exists Av ∈ Mv satisfying [Av,Bv]0 = 0 for all Bv ∈ Mv. Here we
shall show that Av = 0.
Let Yv = Bv + av�v ∈ Gv, where av ∈ Fv. As av runs over Fv and
Bv runs over Mv, we see that Yv runs over Gv. Now let us consider
[Av,Yv]0 = [Av,Bv]0 +av[Av,�v]0 = 0 for all Yv ∈ Gv. As the τ1,−1-
sesquilinear form [·, ·]0 is non-degenerate on Gv, we get Av = 0. This
proves the assertion.
Next for eachAv ∈ Mv,weobserve that [Av,Av]0 =∑�

i=1 εv,i ((A(i)
v,0)

2+
τq,1(A(i)

v,0)
2 + · · · + τqt−1,1(A

(i)
v,0)

2) = (∑�
i=1 εv,i (A(i)

v,0 + τq,1(A(i)
v,0) +

· · · + τqt−1,1(A
(i)
v,0))

)2 = 0. This shows that (Mv, [·, ·]0�Mv×Mv
) is a

symplectic space over Fv, whose dimension is εvt − 1 and Witt index
is εv t−1

2 . Now by Exercise 8.1 of Taylor (1992), for 0 ≤ k ≤ εv t−1
2 , we

see that the total number of k-dimensional self-orthogonal Fv-subspaces

of Mv (and hence of Gv) is given by
[
(εv t−1)/2

k

]
q

∏k−1
d=0

(
q

εv t−2d−1
2 +

1
)
. From this and using the fact that the dimension of a maxi-
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mal self-orthogonal Fv-subspaces of Mv is εv t−1
2 , we obtain Mv =

∑(εv t−1)/2
k=0

([
(εv t−1)/2

k

]
q

∏k−1
d=0

(
q

εv t−2d−1
2 + 1

))
.

(ii) When εvt is even, we see that �v ∈ Mv ∩ M⊥0
v . In this case, let M̂v be

an (εvt −2)-dimensionalFv-subspace ofMv satisfying�v /∈ M̂v. Then
we haveMv = M̂v ⊕〈�v〉. Further, it is easy to observe that there exists
an element yv ∈ M̂⊥0

v \Mv. This implies that Gv = M̂v ⊕ 〈�v〉 ⊕ 〈yv〉.
We also observe that any self-orthogonal Fv-subspace of Gv is either (i)
contained in M̂v, or (ii) contained in M̂v ⊕ 〈�v〉 but not in M̂v.

To determine the number Mv, we shall first count the number of self-
orthogonalFv-subspaces of M̂v. Towards this, we note that [Av,Av]0 =
0 for all Av ∈ M̂v. Now we assert that the τ1,−1-sesquilinear form
[·, ·]0�M̂v×M̂v

is non-degenerate. For this, suppose that there exists

Av ∈ M̂v satisfying [Av,Bv]0 = 0 for all Bv ∈ M̂v. Here it suf-
fices to show that Av = 0. Let Xv = Bv + av yv + bv�v ∈ Gv,

where av, bv ∈ Fv. We note that as Av runs over the set M̂v and
elements av, bv run over Fv, the element Xv runs over Gv. Then we
see that [Av,,Xv]0 = [Av,Bv]0 + av[Av, yv]0 + bv[Av,�v]0 = 0
for all Xv ∈ Gv. Since the map [·, ·]0 is non-degenerate on Gv, we get
Av = 0. From this, it follows that (M̂v, [·, ·]0�M̂v×M̂v

) is a symplectic

space over Fv, whose dimension is εvt − 2 and Witt index is εv t−2
2 . Now

by Exercise 8.1 of Taylor (1992), we see that the total number of distinct
self-orthogonal Fv-subspaces of Gv that are contained in M̂v is given by

Tv =∑(εv t−2)/2
k=0

[
(εv t−2)/2

k

]
q

∏k−1
d=0

(
q

εv t−2d−2
2 + 1

)
.

Now we proceed to count all distinct self-orthogonal Fv-subspaces of
Gv that are contained in M̂v ⊕ 〈�v〉 but not in M̂v. For this, let X
be a k-dimensional self-orthogonal Fv-subspace of Gv, which is con-
tained in M̂v ⊕ 〈�v〉, but not in M̂v. Then we see that 1 ≤ k ≤ εvt/2
and that any such k-dimensional Fv-subspace of Gv has a basis set
of the form {z1, z2, . . . , zk−1, zk + �v}, where zν ∈ M̂v \ {0} for
1 ≤ ν ≤ k − 1 and zk ∈ M̂v. Now it is easy to observe that
〈z1, z2, . . . , zk−1, zk + �v〉 ⊆ 〈z1, z2, . . . , zk−1, zk + �v〉⊥0 if and
only if 〈z1, z2, . . . , zk−1〉 ⊆ 〈z1, z2, . . . , zk−1〉⊥0 in M̂v and zk ∈
〈z1, z2, . . . , zk−1〉⊥0 . Since (M̂v, [·, ·]0�M̂v×M̂v

) is a symplectic space

of dimension εvt − 2 and Witt index εv t−2
2 , by Exercise 8.1 of Tay-

lor (1992), we see that for 1 ≤ k ≤ εvt/2, the number of distinct
(k − 1)-dimensional self-orthogonal Fv-subspaces of M̂v is given by
[
(εv t−2)/2

k−1

]

q

∏k−2
d=0

(
q

εv t−2d−2
2 +1

)
. Further, for a given (k−1)-dimensional

self-orthogonal Fv-subspace 〈z1, z2, . . . , zk−1〉 of M̂v, we observe that
〈z1, z2, . . . , zk−1, zk + �v〉 = 〈z1, z2, . . . , zk−1, z′k + �v〉 for some
zk, z′k ∈ 〈z1, z2, . . . , zk−1〉⊥0 if and only if zk − z′k ∈ 〈z1, z2, . . . , zk−1〉.
This implies that all zk’s lying in the distinct cosets of the quotient space
〈z1, z2, . . . , zk−1〉⊥0/〈z1, z2, . . . , zk−1〉give rise to distinct self-orthogonal
Fv-subspaces of the form 〈z1, z2, . . . , zk−1, zk+�v〉, and vice versa. Fur-
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ther,we see that theFv-dimensionof 〈z1, z2, . . . , zk−1〉⊥0/〈z1, z2, . . . , zk−1〉
is εvt−2k,which implies that the element zk has qεv t−2k relevant choices.
Therefore for 1 ≤ k ≤ εvt/2, we see that the number of distinct k-
dimensional self-orthogonal Fv-subspaces of Gv that are contained in

M̂v⊕〈�v〉but not inM̂v is givenbyqεv t−2k
[
(εv t−2)/2

k−1

]

q

∏k−2
d=0

(
q

εv t−2d−2
2 +

1
)
. This shows that the total number of distinct self-orthogonal Fv-

subspaces of Gv that are contained in M̂v ⊕〈�v〉 but not in M̂v, is given

by Uv =∑εv t/2
k=1 qεv t−2k

[
(εv t−2)/2

k−1

]

q

∏k−2
d=0

(
q

εv t−2d−2
2 +1

)
. On combining

both the cases, we obtain

Mv = Tv + Uv =
(εv t−2)/2∑

k=0

[
(εvt − 2)/2

k

]

q

k−1∏

d=0

(
q

εv t−2d−2
2 + 1

)

+
εv t/2∑

k′=1

qεv t−2k′
([

(εvt − 2)/2

k′ − 1

]

q

k′−2∏

d ′=0

(
q

εv t−2d′−2
2 + 1

)
)

.

III. Finally, let δ = ∗ and q be even. Since t �≡ 1 (mod p), the integer t is even.
Here allmi ’s are odd integers,which implies that the integerm is odd, andhence
m

mi
= 1 in Fv � Fq . Since dv = 1, we have av = gcd(t, dv) = 1. So each

element Av ∈ Gv can be expressed as Av = Av,0 = (A(1)
v,0,A

(2)
v,0, . . . ,A

(�)
v,0),

where A(i)
v,0 ∈ εv,iFv,0 for 1 ≤ i ≤ �. Now by (3.6), we see that [Av,Av]∗ =

∑�
i=1 εv,i

((
∑t−1

μ=0 τqμ,1(A(i)
v,0)

)2

−
(
∑t−1

μ=0 τqμ,1(A(i)
v,0

2
)

))

= 0 for all

Av ∈ Gv. Further, by Lemma 3.4(a), we see that [·, ·]∗�Gv×Gv
is a reflexive

and non-degenerate form. Hence (Gv, [·, ·]∗�Gv×Gv
) is a symplectic space over

Fv with dimension εvt and Witt index εvt/2. Now by Exercise 8.1 of Taylor

(1992), we get Mv =∑εv t/2
k=0

(
[
εv t/2
k

]
q

∏k−1
d=0

(
q

εv t−2d
2 + 1

)
)

.

(b) Next let v ∈ J2. Here dv = deg gv(x) is even. To determine the number Mv, we
first note, by Lemma 3.4(b), that (Gv, [·, ·]δ�Gv×Gv

) is a unitary space of dimension
εvt over Fv when δ ∈ {0, ∗}.
When δ = γ, by Lemma 3.4(d), we see that [·, ·]γ �Gv×Gv

is a non-degenerate,
reflexive and skew-Hermitian τ1,−1-sesquilinear form. Now we shall associate
an orthogonality preserving Hermitian τ1,−1-sesquilinear form with the skew-
Hermitain form [·, ·]γ �Gv×Gv

. For this, we see, by Lemma 3.2, that τ1,−1 is a
non-identity map on Fv, and hence there exists ς ∈ Fv satisfying τ1,−1(ς) �= ς.

Now let us define ξ = ς − τ1,−1(ς)( �= 0) ∈ Fv, which satisfies τ1,−1(ξ) = −ξ.

We further define a map [·, ·]′γ : Gv × Gv → Fv as [Av,Bv]′γ = ξ [Av,Bv]γ
for all Av,Bv ∈ Gv. It is easy to see that the map [·, ·]′γ is a non-degenerate and
Hermitian τ1,−1-sesquilinear form on Gv. That is, (Gv, [·, ·]′γ �Gv×Gv

) is a unitary
space of dimension εvt over Fv � Fqdv . Furthermore, one can easily observe that
any Fv-subspace of Gv is self-orthogonal with respect to [·, ·]γ if and only if it is
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self-orthogonalwith respect to [·, ·]′γ .Therefore the numberMv equals the number
of distinct self-orthogonal Fv-subspaces of the unitary space (Gv, [·, ·]′γ �Gv×Gv

).

Further, by (Taylor 1992, p.116), we see that theWitt indexmv of the unitary space
(Gv, [·, ·]′γ �Gv×Gv

) is given by

mv =
{

εvt/2 if εvt is even;
(εvt − 1)/2 if εvt is odd.

(3.11)

Now for each δ ∈ {0, ∗, γ }, by applying Exercise 10.4 of Taylor (1992), we get
Mv = ∑mv

k=0

[mv

k

]
qdv
∏k−1

d=0

(
qdv(mv−ρ−d) + 1

)
, where ρ = 1

2 if εvt is even and

ρ = −1
2 if εvt is odd. Further, on substituting the value of the Witt index mv in

(3.11), part (b) follows immediately.
This completes the proof of the lemma. ��
In the following lemma, we determine the number Mw for e1 + 1 ≤ w ≤ e2.

Lemma 3.6 For δ ∈ {0, ∗, γ } and e1 + 1 ≤ w ≤ e2, we have Mw =
∑ηw

k1=0

[
ηw

k1

]

qdw

∑ηw−k1
k2=0

[
ηw−k1
k2

]

qdw
.

Proof To prove the result, let e1 + 1 ≤ w ≤ e2 be fixed. Here we first observe that
the restriction [·, ·]

δ�Kw×K†
w
of the τ1,−1-sesquilinear form [·, ·]δ to Kw ×K†

w is non-

degenerate. Now let Cw be an Fw-subspace of Kw and C†w be an F†
w-subspace of K†

w

satisfying C†w ⊆ C⊥δ
w ∩ K†

w. Working as in the proof of Theorem 2.5, we see that
if the Fw-dimension of Cw is k1, then the F†

w-dimension of C⊥δ
w ∩ K†

w is ηw − k1,
where 0 ≤ k1 ≤ ηw. Since C†w is an F†

w-subspace of C
⊥δ
w ∩ K†

w, by Lemma 2.1, there
are precisely

∑ηw−k1
k2=0

[
ηw−k1
k2

]

qdw
distinct choices of C†w for a given choice of the k1-

dimensional Fw-subspace Cw of Kw. Further, as Cw is an Fw-subspace of Kw having
dimension k1, by using Lemma 2.1 again, the number of choices for Cw is given by[
ηw

k1

]

qdw
for 0 ≤ k1 ≤ ηw.Therefore, the numberMw of distinct pairs (Cw, C†w)withCw

as anFw-subspace ofKw and C†w as anF†
w-subspace ofK†

w satisfying C†w ⊆ C⊥δ
w ∩K†

w,

is given by Mw =∑ηw

k1=0

[
ηw

k1

]

qdw

∑ηw−k1
k2=0

[
ηw−k1
k2

]

qdw
. This proves the lemma. ��

Proof of Theorem 3.2. On substituting the values of the numbers Mv for 1 ≤ v ≤ e1
andMw for e1 +1 ≤ w ≤ e2 from Lemmas 3.5 and 3.6 in Eq. (3.9), the desired result
follows immediately. ��

3.2 Enumeration formulae for ı-self-dualΩ-multi-twisted additive codes

In the following theorem, we derive a necessary and sufficient condition for the exis-
tence of a δ-self-dual Ω-MT additive code of length n over Fqt , and we also provide
enumeration formulae for all δ-self-dual Ω-MT additive codes of length n over Fqt

for each δ ∈ {0, ∗, γ }.
Theorem 3.3 Let Ω = (ω1,ω2, . . . ,ω�) be fixed. For δ ∈ {0, ∗, γ }, there exists a
δ-self-dual Ω-MT additive code of length n over Fqt if and only if irreducible factors
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of the polynomials xm1 − ω1, xm2 − ω2, . . . , xm� − ω� in Fqt [x] are either self-
reciprocal or they form reciprocal pairs, εvt is an even integer for 1 ≤ v ≤ e1, and in
the case when δ ∈ {0, ∗}, (−1)εv t/2 is a square in Fq for each v ∈ J1. Under these
conditions, the total number N of distinct δ-self-dual Ω-MT additive codes of length
n over Fqt is given by

N =
∏

v∈J1

Nv

∏

v∈J2

⎛

⎝
(εv t/2)−1∏

b=0

(q
du (εv t−2b−1)

2 + 1)

⎞

⎠
e2∏

w=e1+1

(
ηw∑

d=0

[
ηw

d

]

qdw

)

,

where for each v ∈ J1, the number Nv equals

• ∏(εv t/2)−1
a=0

(
q

εv t−2a−2
2 + 1

)
when δ ∈ {0, ∗} with either q ≡ 3 (mod 4) and εvt ≡

0 (mod 4) or q ≡ 1 (mod 4) and εvt ≡ 0 (mod 2).

• ∏(εv t/2)−2
a=0

(
q

εv t−2a−2
2 + 1

)
when δ = 0 and q is even.

• ∏(εv t/2)−1
a=0

(
q

εv t−2a
2 + 1

)
when either δ = γ or δ = ∗ and q is even.

In order to derive a necessary and sufficient condition for the existence of a δ-self-
dual Ω-MT additive code of length n over Fqt , we first prove the following lemma.

Lemma 3.7 Let 1 ≤ v ≤ e1 be fixed. There exists a δ-self-dual Fv-subspace of Gv if
and only if the following two conditions are satisfied: (i) εvt is an even integer, and
(ii) the element (−1)εv t/2 is a square in Fq when δ ∈ {0, ∗} and v ∈ J1.

Proof To prove the forward part, let Cv be a δ-self-dual Fv-subspace of Gv, i.e., Cv

satisfies Cv = C⊥δ
v . From this and by Theorem 2.5, we get dimFv

Cv = dimFv
C⊥δ

v =
dimFv

Gv − dimFv
Cv = εvt − dimFv

Cv. This implies that εvt = dimFv
Gv =

2 dimFv
Cv is an even integer and dimFv

Cv = εvt/2.
To prove the converse part, let εvt be even. Now when v ∈ J2, by Lemma 3.4 and

(Taylor 1992, p.116), we see that (Gv, [·, ·]δ�Gv×Gv
) is a unitary space of dimension εvt

and Witt index εvt/2 over Fv. Hence there exists an Fv-subspace Cv of Gv satisfying
Cv = C⊥δ

v .

When v ∈ J1 and δ ∈ {0, ∗}, by Lemma 3.4(a), we note that (Gv, [·, ·]δ�Gv×Gv
) is an

orthogonal space overFv. Since εvt is even, we see, by Theorem 9.1.3 of Huffman and
Pless (2003), that the Witt index of (Gv, [·, ·]δ�Gv×Gv

) is εvt/2 if and only if (−1)εv t/2

is a square in Fq .

From this, the desired result follows. ��
From this point on, throughout this section, we assume that the irreducible factors

of the polynomials xm1 − ω1, xm2 − ω2, . . . , xm� − ω� in Fqt [x] are either self-
reciprocal or they form reciprocal pairs, εvt is an even integer for 1 ≤ v ≤ e1, and
in the case when δ ∈ {0, ∗}, (−1)

εv t
2 is a square in Fq for each v ∈ J1. Further, we

see, by (3.8), that to count all δ-self-dual Ω-MT additive codes of length n over Fqt ,

it is enough to determine the numbers Nv for 1 ≤ v ≤ e1 and the numbers Nw for
e1 + 1 ≤ w ≤ e2.

In the following lemma, we determine the number Nv for 1 ≤ v ≤ e1.
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Lemma 3.8 Suppose that εvt is an even integer for 1 ≤ v ≤ e1, and that (−1)εv t/2

is a square in Fq when δ ∈ {0, ∗} and v ∈ J1. Then for δ ∈ {0, ∗, γ }, the following
hold.

(a) When v ∈ J1, we have

Nv =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(εv t/2)−1∏

a=0

(
q

εv t−2a−2
2 + 1

)
if either εvt is even and q ≡ 1 (mod 4)

or εvt ≡ 0 (mod 4) and q ≡ 3 (mod 4);
(εv t/2)−2∏

a=0

(
q

εv t−2a−2
2 + 1

)
if δ = 0 and q is even;

(εv t/2)−1∏

a=0

(
q

εv t−2a
2 + 1

)
if either δ = γ or δ = ∗ and q is even.

(b) When v ∈ J2, we have

Nv =
(εv t/2)−1∏

b=0

(
q

dv(εv t−2b−1)
2 + 1

)
.

Proof (a) When v ∈ J1, we note that dv = Dv = 1.

First of all, let δ = γ. Here by Lemma 3.4(c), we see that (Gv, [·, ·]γ �Gv×Gv
) is a sym-

plectic space of dimension εv t overFv.Therefore in this case,Nv equals the number of
distinct εvt/2-dimensional self-orthogonal Fv-subspaces of (Gv, [·, ·]γ �Gv×Gv

). Now

by Exercise 8.1 of Taylor (1992), we getNv =∏(εv t/2)−1
a=0 (qεv t−2a −1)/(qa+1−1) =

∏(εv t/2)−1
a=0 (q

εv t−2a
2 + 1).

From this point on, let δ ∈ {0, ∗}.Here (−1)εv t/2 is a square in Fq . Further, by Lemma
3.4(a), we see that (Gv, [·, ·]δ�Gv×Gv

) is an orthogonal space of dimension εvt over
Fv � Fq . Now the following three cases arise: I. q is odd, II. q is even and δ = 0 and
III. q is even and δ = ∗.

I. Let q be odd. Here working as in Lemma 3.5, we see that the orthogonal space
(Gv, [·, ·]0�Gv×Gv

) can also be viewed as a non-degenerate quadratic space (Gv,Qv)

over Fv, where Qv : Gv → Fv is the quadratic map, defined as Qv(Av) =
1
2 [Av,Av]δ for all Av ∈ Gv. Further, by Theorem 1 of Pless (1968), we note that
the Witt index of the corresponding quadratic space (Gv,Qv) is εvt/2. Since Cv

is a self-dual Fv-subspace of Gv, by Lemma 3.7, we see that the Fv-dimension
of Cv is εvt/2. Now by Exercise 11.3 of Taylor (1992), we see that the number
Nv of distinct εvt/2-dimensional self-orthogonal Fv-subspaces of Gv is given by

Nv =∏(εv t/2)−1
a=0 (q

εv t−2a−2
2 + 1).

II. Next let δ = 0 and q be even. If Mv = {(A(1)
v,0,A

(2)
v,0, . . . ,A

(�)
v,0) ∈

Gv : ∑�
i=1 εv,i (A(i)

v,0 + τq,1(A(i)
v,0) + · · · + τqt−1,1(A

(i)
v,0)) = 0}, �v =

(εv,1, εv,2, . . . , εv,�) ∈ Mv and M̂v is an (εvt − 2)-dimensional Fv-subspace of

Mv such that�v /∈ M̂v, then we see that there exists an element yv ∈ M̂⊥0
v \Mv
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such that Gv = M̂v ⊕ 〈�v〉 ⊕ 〈yv〉. Further, we observe that any εvt/2-
dimensional self-orthogonal Fv-subspace of Gv is contained in M̂v ⊕ 〈�v〉, but
not in M̂v. Now working as in the proof of Case II(ii) of Lemma 3.5, we get

Nv =∏(εv t/2)−2
a=0

(
q

εv t−2a−2
2 + 1

)
.

III. Let δ = ∗ and q be even. Working as in the proof of Case III of Lemma 3.5, we
see that (Gv, [·, ·]∗�Gv×Gv

) is a symplectic space of dimension εvt over Fv , whose
Witt index is given by εvt/2. Now by Exercise 8.1 of Taylor (1992), we see that
the numberNv of distinct εvt/2-dimensional self-orthogonal Fv-subspaces of Gv

is given by Nv =∏(εv t/2)−1
a=0

(
q

εv t−2a
2 + 1

)
.

(b) Let v ∈ J2.Here dv = deg gv(x) is an even integer. By Lemma 3.4(b), we see that
(Gv, [·, ·]δ�Gv×Gv

) is a unitary space of dimension εvt over Fv when δ ∈ {0, ∗}.
Further, by Lemma 3.4(d), we note that [·, ·]γ �Gv×Gv

is a reflexive, non-degenerate
and a skew-Hermitian τ1,−1-sesquilinear form on Gv. Here working in a similar
manner as in the proof of Lemma 3.5, we can associate an orthogonality preserving
non-degenerate and Hermitian τ1,−1-sesquilinear form [·, ·]′

γ �Gv×Gv
with the form

[·, ·]γ �Gv×Gv
. That is, (Gv, [·, ·]′γ �Gv×Gv

) is a unitary space of dimension εvt over
Fv.

In viewof this,Nv equals the number of distinct εv t/2-dimensional self-orthogonal
Fv-subspaces of an εvt-dimensional unitary space Gv over Fv. From this and by

Exercise 10.4 of Taylor (1992), we get Nv =∏(εv t/2)−1
b=0

(
q

dv(εv t−2b−1)
2 + 1

)
.

This proves the lemma. ��
In the following lemma, we determine the number Nw for e1 + 1 ≤ w ≤ e2.

Lemma 3.9 For δ ∈ {0, ∗, γ } and e1 + 1 ≤ w ≤ e2, we have Nw =∑ηw

d=0

[
ηw

d

]
qdw .

Proof By (3.8), we see that Nw equals the number of distinct Fw-subspaces of Kw

for all e1 + 1 ≤ w ≤ e2. As dimFw
Kw = ηw and Fw � Fqdw , by Lemma 2.1, we

obtain Nw =∑ηw

d=0

[
ηw

d

]
qdw . ��

Proof of Theorem 3.3. Thefirst part of the theoremfollows immediately fromLemma3.7
and Theorem 3.1(a). Further, on substituting the value of Nv for 1 ≤ v ≤ e1 from
Lemma 3.8 and the value of Nw for e1 + 1 ≤ w ≤ e2 from Lemma 3.9 in Eq. (3.8),
we get the desired enumeration formulae for all δ-self-dual Ω-MT additive codes of
length n over Fqt . ��

Let C be an Ω-MT additive code of length n over Fqt . Then the dimension of the
code C is defined as the rational number k satisfying |C| = qkt . Note that the dimension
k of the code C need not be an integer, but kt is always an integer. Further, the code
C is said to have kg number of generators if there exist kg number of codewords of C
such that every codeword of C is an Fq -linear combination of these kg codewords and
kg is the smallest positive integer with this property. Note that the number kg need not
be equal to the dimension k of the code C, and that kg ≤ nt . The Ω-MT additive code
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of length n, dimension k, Hamming distance d and having kg generators is referred
to as an [n, k : kg, d]-additive code over Fqt .

In Table 1, we obtain some good Ω-MT additive codes of length n = m1 + m2
dimension k, distance d and having kg generators over Fqt generated by the element
(α1(x), α2(x)) ∈ V as an Fq [x]-submodule of V, by carrying out computations in the
Magma Computational Algebra System.

4 Conclusion

In this paper, a new class of additive codes over finite fields, viz. multi-twisted (MT)
additive codes is introduced and studied. By placing ordinary, Hermitian and ∗ trace
bilinear forms, the dual codes of all MT additive codes over finite fields are stud-
ied. More precisely, necessary and sufficient conditions for a MT additive code to be
self-dual or self-orthogonal are also derived. Besides this, a necessary and sufficient
condition for the existence of a self-dual MT additive code is derived. Explicit enu-
meration formulae for all self-orthogonal and self-dualΩ-MT additive codes of length
n over Fqt are also obtained. These enumeration formulae are useful in classifying
these special classes of MT additive codes over finite fields up to equivalence. Some
MT additive codes over finite fields with good parameters are also obtained.

It would be interesting to enumerate all LCD MT additive codes over finite fields
with respect to the aforementioned trace bilinear forms. Another interesting problem
is to classify self-dual, self-orthogonal and LCD MT additive codes over finite fields
up to equivalence.
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