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Abstract
We consider the problem of extending maps from algebras to their profinite com-
pletions in finitely generated quasivarieties. Our developments are based on the
construction of the profinite completion of an algebra as its natural extension. We
provide an extension which is a multi-map and we study its continuity properties, and
the conditions under which it is a map.

Keywords Profinite completions · Natural dualities · Natural extensions · Canonical
extensions

Mathematics Subject Classification 03C05 · 08C20

1 Introduction

This paper is a contribution to the study of profinite completions in internally residually
finite prevarieties. A class A of algebras is called (Davey et al. 2011) an internally
residually finite prevariety (IRF-prevariety for short) if there is a set M of finite
algebras such that A = ISP(M). Every algebra A of an IRF-prevariety A embeds in
itsA-profinite completion proA(A), which is defined as the inverse limit of the inverse
system of the finite quotients of A that belongs to A, with natural homomorphisms
as bonding maps (see Sect. 2 for details). In what follows, we limit ourself to those
IRF-prevareties A that are finitely generated quasivarieties, i.e., for which there is
a finite set M of finite algebras such that A = ISP(M). Moreover, we assume
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that A = ISP({M}), but this restriction is a matter of convenience: we claim that
our developments admit the obvious generalization to the multi-sorted case where
M = {M1, . . . ,Mn}.

It is proved in Davey et al. (2011) that proA(A) is isomorphic to the natural
extension Aδ of A, that is, the topological closure of eA(A) in MA∗

ι , where A∗ =
A(A,M), where eA : A→ MA∗ is the evaluation map defined as eA(a)(φ) = φ(a),
and where ι is the discrete topology on M (this representation result actually holds
in any IRF-prevariety). Moreover, if M

˜

is a discrete structure that yields a natural
duality for A, and if A∗ is considered as a (closed) substructure of M

˜

A, then Aδ can
be concretely computed as the algebra of structure preserving maps from A∗ to M

˜(Davey et al. 2011, Theorem 4.3). With these results in mind, we adopt the notation
Aδ to denote proA(A) for the remaining of the paper.

We consider the following problem: given A,B ∈ A and a map u : A→ B, how to
define a ‘reasonable’ extension uδ : Aδ → Bδ of u? Such an extension would allow to
study profinite completions of expansions ofA-algebras, and preservation of equations
through profinite completions. This problem has a well known solution (Gehrke and
Jónsson 2004) in the particular case where A = DL = ISP(2) is the variety of
bounded distributive lattices, in which profinite completions coincide with canonical
extensions. In this particular case, the theory of canonical extensions provides with
a lower and an upper extension of any map u : L → L′ to the canonical extensions
of L and L′. However, in the more general setting of non lattice-based algebras, no
method of extension of maps from algebras to their profinite completions has yet been
developed.

The paper is organized as follows. In Sect. 2, we recall some results about profinite
completions in IRF-prevarieties, and we set up the notations. In Sect. 3, we introduce
a new topology δ on Aδ such that A is the largest discrete subspace of Aδ

δ . We prove
that this topology boils down to the existing one (Gehrke and Jónsson 2000; Gehrke
and Vosmaer 2011) in the specific case A = DL. Finally, we prove that if M

˜

yields
a logarithmic full duality for A, then the construction of profinite completions (alias,
natural extensions) commutes with the one of finite Cartesian products. We generalize
this result to Boolean products in the Appendix.

Section 4 is the core of the paper. We work under the more restrictive assumption
that there is a discrete topological structure M

˜

that yields a logarithmic duality for A
and that M

˜

is injective in the dual category IScP(M
˜

). Given a map u : A → B, we
use the topology δ to define an extension ũ of u on Aδ . In general, the map ũ is not
valued on Bδ but ũ(x) is a closed subspace of Bδ

ι for every x ∈ Aδ (where ι is the
topology inherited from M

˜

A(B,M)). It means that ũ has to be considered as a multi-
map between Aδ and Bδ rather than a map. Nevertheless, under additional continuity
assumptions, we show that ũ can be turned into a map valued in Bδ , a property that
we call smoothness.

In Sect. 5, we study how the construction of ũ interacts with function compositions.
We illustrate our developments by considering a sample case, namely, the case where
A is the variety of median algebras (a non lattice-based variety). In particular, we
exhibit an example of smooth map that is not a homomorphism nor an operation of the
type of the algebra. We also prove that median algebras whose profinite completion is
Boolean are exactly the Boolean powers of the 2-element median algebra.
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In Sect. 6, we consider the special case whereM can be equipped with a total order
in such a way that every A ∈ A can be considered locally has a (semi)lattice. We
also show how the construction of ũ shed lights on the existence of an upper and a
lower extension of u in the case of distributive lattices. We close the paper by some
concluding remarks and topics of further research.

2 Preliminaries

Weworkunder the general setting ofClark andDavey (1998). LetM = {M1, . . . ,Mn}
be a finite set of finite algebras of the same type, and letA be the prevariety ISP(M).
In what follows we assume for convenience that M = {M}. We denote by M

˜

an
alter-ego of M, i.e., a topological structure

M
˜

= 〈M,G ∪ H ∪ R, ι〉,

where ι is the discrete topology on M , and G, H and R are respectively a set (possibly
empty) of algebraic operations, algebraic partial operations (with nonempty domain),
and algebraic (nonempty) relations onM, respectively.WeuseX to denote the topolog-
ical prevariety IScP(M

˜

), that is, the class of topological structures that are isomorphic
to a closed substructure of a nonempty power of M

˜

. For any X ,Y ∈ X we denote by
X (X ,Y ) the set of the structure preserving continuous maps f : X → Y . We use X∗
to denote X (X , M

˜

).
For any A ∈ A, we denote by A∗ the set A(A,M) of the homomorphisms from

A to M. The Preduality Theorem (Clark and Davey 1998, Theorem 5.2) states that
if A∗ inherits the structure and the topology from M

˜

A, then A∗ ∈ X . Moreover, the
evaluation map

eA : A→ (A∗)∗ : a 	→ eA(a) : φ 	→ φ(a)

is an A-embedding. Similarly, for any X ∈ X the map

εX : X → (X∗)∗ : φ 	→ εX (φ) : x 	→ x(φ)

is a X -embedding.
If τ is a topology on a set X , we denote by 〈X , τ 〉 or Xτ the corresponding topologi-

cal space. In particular, we denote byMι the topological algebra obtained by equipping
M with the discrete topology. For any set X , the notation MX

ι stands for the power
algebraMX equipped with the product topology induced by ι on M . We denote byAι

the category of topological algebras that are isomorphic to a closed subalgebra of a
nonempty power ofMι with continuous homomorphisms as arrows. For everyA ∈ A,
the map eA identifies A with the subspace eA(A) of MA∗

ι , and we usually consider A
up to this identification.

Definition 2.1 (Davey et al. 2011) The natural extension of A ∈ A, in notation Aδ , is
the topological closure of A in MA∗

ι . The algebra Aδ is turned into an element Aδ
ι of

Aι by considering it as a subspace of MA∗
ι .
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When M
˜

yields a natural duality for A, i.e., when the map eA : A → (A∗)∗ is an
isomorphism for every A ∈ A, then Proposition 2.2 shows how to explicitly construct
Aδ from A∗ without relying on any notion of (topological) limit. For any topological
structure X and any topological algebra A, we denote respectively by X � and A� the
structure obtained from X and the algebra obtained from A by dropping the topology.
We denote by X � the category whose objects are the X � where X ∈ X with struc-
ture preserving maps as arrows. By abuse of notation, we write X �(X ,Y ) instead of
X �(X �,Y �). Note that X �(A∗, M

˜

) is a closed subalgebra ofMA∗
ι for every A ∈ A.

Proposition 2.2 (Davey et al. 2011, Theorems 3.6 and 4.3) Assume that A ∈ A.

(1) The definition of Aδ
ι is independent of the algebraic structure G ∪ H ∪ R used to

defined M
˜

and of the algebra M used to define A.
(2) If in addition M

˜

yields a duality for A then Aδ
ι is isomorphic to 〈X �(A∗, M

˜

), ι〉.

Recall that for any A ∈ A, the family {A/θ | θ ∈ Con(A) and A/θ ∈ A is finite}
with the natural bonding maps φθ,θ ′ : x/θ 	→ x/θ ′ for every θ ≤ θ ′ forms an inverse
system, the inverse limit of which is called theA-profinite completion of A (or simply
the profinite completion of A) and is denoted by proA(A). Any A ∈ A embeds in
proA(A). If in addition A is a variety, then A/θ ∈ A for every congruence of A, and
the construction of proA(A) does not rely on A and is commonly denoted by ̂A. The
following result, which follows from Davey et al. (2011, Theorem 3.6), states that
under our assumption of a finitely generated prevarietyA, theA-profinite completion
of A ∈ A coincides with its natural extension Aδ .

Proposition 2.3 If A ∈ A, then there is an isomorphism between proA(A) and Aδ

that fixes A.

Informally speaking, Proposition 2.3 shows that natural extension is a tool to com-
pute profinite completions.

We close the section by introducing some notation. We write F � X if F is a finite
subset of X . If τ is a topology on X and x ∈ X , then we denote by τx the set of open
τ -neighborhoods of x . If b ∈ X Z

τ for some Z and if F � Z , then we denote by [b|F]
the basic open set {y ∈ X Z | y �F= b �F } of X Z

τ .
If (X ,≤) is an ordered set and x ∈ X , then we denote by x↑ and x↓ the up-set and

the down-set generated by x , respectively.

3 The topology ı for profinite completions

In the distributive lattice-based setting, it iswell known that the topology ι that naturally
equips the canonical extension of aDLA can be enriched into a finer topology inwhich
A is definable as the algebra of isolated points. Authors have used various notations
for this topology: it is denoted by σ in Gehrke and Jónsson (2004) and by δ in Gehrke
and Vosmaer (2011). We aim at defining a similar topology in the more general setting
of a finitely generated prevariety A and A-profinite completions.
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3.1 A topology to define A in its profinite completion

If X ,Y ∈ X we denote by Xp(X ,Y ) the set of partial morphisms from X to Y , i.e.,
the set of the maps f : dom( f )→ Y where dom( f ) is a closed substructure of X and
where f ∈ X (dom( f ),Y ).

Definition 3.1 If A ∈ A and f ∈ Xp(A∗, M
˜

), we set

O f = {x ∈ X �(A∗, M
˜

) | x ⊇ f }.

Then, we denote by 
A, or simply 
, the family


 = {O f | f ∈ Xp(A∗, M
˜

)}.

The topology δ is defined as the topology generated by 
, and we denote by Aδ the
topological algebraic structure obtained by equipping A with δ.

Remark 3.2 (1) If M
˜

is injective in X , then 
 is equal to the family of the sets
OK ,a := OeA(a)�K where a ∈ A and K is a closed substructure of A∗.

(2) It is not always possible to compare topologies δ and ι. Nevertheless, we have
ι ⊆ δ if any finite subset of A∗ generates a finite substructure in A∗. In particular,
we have ι ⊆ δ if M

˜

is a purely relational structure.

Recall that a strong duality is said to be logarithmic if (finite) coproducts in the
dual category (they always exist since they are dual to products) are given by the direct
unions, that is, disjoint unions with constants amalgamated (see section 6.3 in Clark
and Davey 1998).

Lemma 3.3 If M
˜

yields a logarithmic duality for A, then 
 is a basis of δ.

Proof LetA ∈ A and f , g ∈ Xp(A∗, M
˜

). We prove that O f ∩Og ∈ 
 or O f ∩Og =
∅. First, we note that dom( f ) ∪ dom(g) is a substructure of A∗. Indeed, if ih is
the inclusion map ih : dom(h) → A∗ for h ∈ { f , g}, and if sh is the canonical
embedding from dom(h) into dom( f ) � dom(g) for h ∈ { f , g}, then there is a
morphism i : dom( f ) � dom(g) → A∗ such that i ◦ s f = i f and i ◦ sg = ig . It
follows that Im(i) = dom( f ) ∪ dom(g) is a closed substructure of A∗.

If f ∪ g is not a function, i.e., if f and g do not coincide on dom( f ) ∩ dom(g),
or if f ∪ g is a function that does not belong to X �(dom( f ) ∪ dom(g), M

˜

), then
O f ∩ Og = ∅.

If f ∪ g ∈ X �(dom( f ) ∪ dom(g), M
˜

), then it also belongs to X (dom( f ) ∪
dom(g), M

˜

) by continuity of f and g. It follows that O f ∩ Og = O f ∪g . ��
Lemma 3.4 Assume that A ∈ A.

(1) The elements of X (A∗, M
˜

) are isolated points in 〈X �(A∗, M
˜

), δ〉.
(2) If M

˜

is injective inX and if
 is a basis of δ, then (A∗)∗ is dense in 〈X �(A∗, M
˜

), δ〉.
(3) If M

˜

is injective in X and yields a duality for A and if 
 is a basis of δ, then A
is a discrete dense subspace of Aδ

δ .
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Proof (1) If x ∈ (A∗)∗ then Ox = {x} ∈ δ.
(2) Let f ∈ Xp(A∗, M

˜

). Since M
˜

is injective in X , there is an a ∈ (A∗)∗ such that
a = f on dom( f ). It means by definition of δ that a ∈ O f ∩ (A∗)∗.

(3) We know by (1) and (2) that eA(A) = (A∗)∗ is the subspace of isolated points
of Aδ

δ . The conclusion follows from Proposition 2.2 (2). ��
By combining Lemmas 3.3 and 3.4, we obtain the following proposition.

Proposition 3.5 If M
˜

is injective in X and yields a logarithmic duality for A, then A
is the subspace of isolated points of Aδ

δ for every A ∈ A.

Let DL be the variety of bounded distributive lattices, that is, DL = ISP(2),
where 2 = 〈{0, 1},∨,∧〉 is the two-element lattice. Recall that 2

˜

:= 〈{0, 1},≤, ι〉
where 0 ≤ 1 yields a logarithmic natural strong duality for DL, known as Priestley
duality. If L ∈ DL, then Lδ coincides with the canonical extension of L, which can be
constructed by Proposition 2.2 as the lattice of decreasing subsets of theL∗. In Gehrke
and Jónsson (2004), the authors introduce a topology δ′ onLδ (denoted by σ in Gehrke
and Jónsson 2004 and by δ in Gehrke and Vosmaer 2011), and use this topology to
extend maps between distributive lattices to their canononical extensions (i.e., their
profinite completions). Recall that a basis of δ′ is given by the sets [F, O] where F
is a closed element of Lδ (i.e., a closed decreasing subset of L∗), and O is an open
element ofLδ (i.e., an open decreasing subset ofL∗). In the next proposition, we prove
that the topology δ defined in Definition 3.1 coincides with δ′.

Proposition 3.6 If L ∈ DL, then δ(Lδ) = δ′(Lδ).

Proof First, we prove that δ′ ⊆ δ. Let F and O be a closed and an open element of
Lδ , respectively, and assume F ⊆ O . Then, G := F ∪−O is a closed substructure of
L∗. Let f : G → 2

˜

be the map defined by f −1(0) = F . We have f ∈ X (G, 2
˜

) and
[F, O] = O f .

Conversely, let f ∈ Xp(L∗, M
˜

). Then, f −1(0) is a decreasing clopen subset of
dom( f ). Hence, it is a closed subspace of L∗ and F := f −1(0)↓ is a decreasing
closed subspace of L∗. Similarly, F ′ = f −1(1)↑ is an increasing closed subspace of
L∗. It follows that

x ∈ O f ⇔ f −1(0) ⊆ x and f −1(1) ⊆ −x,
⇔ F ⊆ x and x ⊆ −F ′.

We conclude that O f = [F,−F ′] ∈ δ′. ��
Note that there is no statement equivalent to Proposition 3.6 for the variety of

bounded lattices since it is not an IRF-prevariety.

3.2 Profinite completions and products

We aim to use the topology δ to define extension of maps between algebras of A to
their profinite completions. In this view, an important feature is that under our general
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assumptions the construction of profinite completions commutes with the construction
of products, i.e.,

(A× B)δ � Aδ × Bδ, (1)

for everyA,B ∈ A. Given a procedure to extend maps from algebras to their profinite
completions, property (1) would allow us to extend n-ary operations (n ≥ 2) onA ∈ A
to n-ary operations on Aδ . As proved in the next result, this property holds true under
rather mild assumptions.

Theorem 3.7 Assume thatM is of finite type and that M
˜

yields a full duality for A. If
A,B ∈ A, then

(A× B)δ � Aδ × Bδ ⇐⇒ (A∗ � B∗)� � (A∗)� � (B∗)�.

In particular, if M
˜

yields a full logarithmic duality for A, then (1) holds for every
A,B ∈ A andwemay assume that the isomorphism is also a ι- and δ-homeomorphism.

Proof Assume that (A∗ � B∗)� � (A∗)� � (B∗)�. It then follows successively that

(A× B)δ � X �((A× B)∗�, M
˜

�)

� X �((A∗ � B∗)�, M
˜

�) (2)

� X �((A∗)� � (B∗)�, M
˜

�) (3)

� X �((A∗)�, M
˜

�)× X �((B∗)�, M
˜

�)

� Aδ × Bδ, (4)

where (2) is obtained because full dualities turn products to coproducts, (4) follows
from the fact that (Aι(·,Mι),X �(·, M

˜

�), e, ε) is a dual adjunction between Aι and
ISP(M

˜

�) and hence turns coproducts to products, and (3) holds by assumption. More-
over, if M

˜

yields a logarithmic duality for A, the isomorphism given by the previous
piece of argument is easily seen to be a ι- and δ-homeomorphism.

Conversely, if (A× B)δ � Aδ × Bδ , it follows successively that

(A∗ � B∗)� � (A× B)∗�

� Aι((A× B)δ,Mι) (5)

� Aι(Aδ × Bδ,Mι) (6)

� Aι(Aδ,Mι)�Aι(Bδ,Mι) (7)

� (A∗)� � (B∗)� (8)

where (6) holds by assumption, and where (5), (7) and (8) follow from the fact that
Aι(·,Mι) and X �(·, M

˜

�) define a dual equivalence between Aι and ISP(M
˜

�) (see
Davey et al. 2012, Theorem 2.4). ��

In Appendix, we generalize Theorem 3.7 to Boolean products.
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4 Multi-extension of maps

Given amapu : A→ B,we consider the problemof defining an extensionofu between
Aδ and Bδ . Our approach (Definition 4.2) provides with a mutli-extension ũ of u, that
is, a map valued in the set of (closed) subsets �(Bδ

ι ) of B
δ
ι . This multi-extension ũ

enjoys some continuity properties (Theorem 4.5).
We adopt the following assumption for the remainder of the paper.

Assumption 4.1 The structure M
˜

yields a logarithmic duality forA and M
˜

is injective
in X .

Surprisingly enough, as noted in Clark and Davey (1998), many known strong
dualities are logarithmic and hence, satisfy Assumption 4.1.

Definition 4.2 Let A,B ∈ A and u : A → B. The relational extension of u is the
relation u defined as the topological closure of u in Aδ

δ ×Bδ
ι . The multi-extension of u

is the map ũ defined on Aδ by setting ũ(x) = {y ∈ Bδ | (x, y) ∈ u} for every x ∈ Aδ .

Let us recall that if 〈X , τ 〉 is a topological space, then the set �(X) of closed
subsets of X is a complete lattice. Moreover, if Y is dense in X , if C is a complete
lattice, and if f : Y → C , then lim supτ f is the map defined on X by lim supτ f (x) =
∧{∨ f (Y∩U ) | U ∈ τx }. The next lemma shows that ũ can be computed analogously
as the upper extension in the setting of bounded distributive lattices (see Gehrke and
Jónsson 2004, Definition 2.13).

Lemma 4.3 Let A,B ∈ A and u : A → B. If û : Aδ → �(Bδ
ι ) is the map defined as

û(a) = {u(a)}, then ũ = lim supδ û.

Proof For every x ∈ Aδ , we have

lim supδ û(x) =
⋂

{u(U ∩ A)− | U ∈ δx },

where the closure is computed in Bδ
ι . It follows directly that y ∈ lim supδ û(x) if and

only if (x, y) ∈ u. ��
Combining Proposition 3.5 with Lemma 4.3, and by compactness of Bδ

ι we obtain
directly the following result.

Proposition 4.4 Let A,B ∈ A and u : A→ B.

(1) If a ∈ A, then ũ(a) = {u(a)}.
(2) If x ∈ Aδ then ũ(x) is nonempty.

The following theoremshows that ũ enjoys similar continuity properties as the upper
extension in the setting of bounded distributive lattices (see Gehrke and Jónsson 2004,
Theorem 2.12). Recall that if 〈X , τ 〉 is a compact Hausdorff space, then the family
of sets

�U = {F ∈ �(X) | F ⊆ U }, U ∈ τ,

is a basis of a topology σ↓, which is called the co-Scott topology.
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Theorem 4.5 Let A, B ∈ A and u : A→ B.

(1) The map ũ : Aδ → �(Bδ
ι ) is (δ, σ↓)-continuous.

(2) If u′ : Aδ → �(Bδ
ι ) is a (δ, σ↓)-continuous map such that u′(a) = {u(a)} for

every a ∈ A, then ũ(x) ⊆ u′(x) for every x ∈ Aδ .

Proof First, we prove the following claim.

Claim For any x ∈ Aδ and any F � B∗, it holds ũ(x) �F = ⋂{u(V ∩ A) �F | V ∈
δx }.
Proof of the Claim The inclusion⊆ is clear. Let us prove inclusion⊇. Let α ∈ MF be
such that α ∈ u(V ∩ A) �F for every δ-neighborhood V of x . For any finite subset G
of B∗ that contains F and any δ-neighborhood V of x , set

KG,V := {y ∈ Bδ | y �G∈ u(V ∩ A) �G} ∩ [α|F].

We obtain by compactness that HG := ⋂{KG,V | V ∈ δx } is a nonempty closed
subspace of Bδ

ι . It follows again by compactness that the family {HG | F � G � B∗}
has an nonempty intersection H . Any element y of H belongs to ũ(x) and satisfies
y �F= α, which proves that α ∈ ũ(x) �F . ��

(1) We prove that ũ−1(�U ) is an open subspace of Aδ
δ for any open subspaceU of

Bδ
ι . By compactness of Bδ

ι , it suffices to consider the case whereU is a finite union of
basic open sets [α|F] where F � B∗ and α ∈ MF . We consider the case where U is
the union of two such basic open sets [F1|α1] and [F2|α2], as the general case can be
proved in a similar way. Let x ∈ ũ−1

(

�([F1|α1] ∪ [F2|α2])
)

and F be F1 ∪ F2. The
family KF := {u(V ∩ A) �F | V ∈ δx } is a downward directed family of nonempty
finite sets, so it has a nonempty intersection. Let W be any δ-neighborhood of x such
that u(W ∩ A) �F= ⋂

KF . We prove that W ⊆ ũ−1
(

�([F1|α1] ∪ [F2 ∩ α2])
)

. Let
z ∈ W . We obtain successively

ũ(z) �F =
⋂

{u(V ∩ A) �F | V ∈ δz} (9)

⊆ u(W ∩ A) �F (10)

=
⋂

{u(V ∩ A) �F | V ∈ δx } (11)

= ũ(x) �F , (12)

where (9) and (12) are obtained by the Claim, where (10) holds because W is a δ-
neighborhood of z, and (11) holds by definition of W . We deduce from (12) that
ũ(z) ⊆ [F1|α1] ∪ [F2|α2].

(2) By definition of the map ũ, it suffices to prove that R := {(x, y) ∈ Aδ
δ × Bδ

ι |
y ∈ u′(x)} is a closed relation that contains u. We have u ⊆ R by assumption. Now,
let (x, y) ∈ Aδ

δ × Bδ
ι such that y /∈ u′(x). Since u′(x) is a closed subspace of the

Boolean space Bδ
ι , there is a clopen subspaceU of Bδ

ι such that z /∈ U and u′(x) ⊆ U .
It follows by continuity of u′ that u′−1(�U ) × (Bδ

ι \U ) is a neighborhood of (x, y)
disjoint from R. ��
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Remark 4.6 It follows from theClaim stated in the proof ofTheorem4.5 that if u : A→
B then ũ(x) �{φ}= φ̃ ◦ u(x) for any x ∈ Aδ and any φ ∈ B∗.

5 Coninuity properties and function compositions

Theorem 4.5 characterizes ũ as the smallest (δ, σ↓)-continuous extension u′ : Aδ →
�(Bδ

ι )ofu. In this section,we investigate the properties of ũ under additional continuity
assumptions.

5.1 Smoothness and strongness

The case where the relational extension u of u : A→ B is a function leads us to the
following natural definition.

Definition 5.1 Let A,B ∈ A and u : A → B. We say that u is is smooth if u is a
function, that is, if ũ(x) is a one-element set for every x ∈ Aδ . In this case, we denote
by uδ the map uδ : Aδ → Bδ defined by uδ(x) ∈ ũ(x).

Example 5.2 If ι ⊆ δ then any term function is smooth since it is (ι, ι)-continuous.

Theorem 4.5 can be rephrased for smooth maps in the following way.

Proposition 5.3 Let A,B ∈ A and u : A→ B.

(1) If u is smooth then uδ : Aδ → Bδ is a (δ, ι)-continuous extension of u.
(2) If u admits a (δ, ι)-continuous extension u′ : Aδ → Bδ then u is smooth and

uδ = u′.

Propositions 3.6 and 5.3 show that the notion of smoothness as defined in Def-
inition 5.1 boils down to the one defined in Gehrke and Jónsson (2000) when it is
considered for the variety of bounded distributive lattices. As a corollary of Proposi-
tion 5.3(2), we obtain that if u : A→ B is not smooth, then it is not even possible to
define a continuous extension uδ : Aδ

δ → Bδ
ι by suitably picking up an element uδ(x)

in ũ(x) for every x ∈ Aδ .

Example 5.4 If ι ⊆ δ, then every element φ ∈ A∗ is smooth. Consider the map
φ′ : Aδ → M defined by φ′(x) = x(φ). For any F ⊆ M , we have φ′−1(F) =
⋃

f ∈F [φ : f ] ∩Aδ , which proves that φ′ is (ι, ι)-continuous, so it is (δ, ι)-continuous
since δ ⊆ ι. The conclusion follows from Proposition 5.3 (2).

Proposition 5.5 Let A,B ∈ A and u : A → B. The map u is smooth if and only if
φ ◦ u is smooth for every φ ∈ Bδ .

Proof If u is smooth and φ ∈ B∗, then the map φ′ ◦ u where φ′(x) := x(φ) for any
x ∈ Bδ is a (δ, ι)-continuous extension of φ ◦ u. It follows that φ ◦ u is smooth by
Proposition 5.3(2). Conversely, assume that φ ◦ u is smooth for every φ ∈ B∗. We
prove that the map u′ : Aδ

δ → Bδ
ι defined as u′(x) = (φ ◦ u)δ ◦ x is continuous, and
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the conclusion follows from Proposition 5.3(2). Let F be a finite subset of B∗ and
α ∈ MF . We have

u′−1([F |α]) =
⋂

{

(

(φ ◦ u)δ
)−1

({α(φ)}) | φ ∈ F
}

,

which proves that u′ is (δ, ι)-continuous by Proposition 5.3(2) and our assumption. ��
Example 5.6 If ι ⊆ δ, then every u ∈ A(A,B) is smooth. This result follows from
Example 5.4 and Proposition 5.5. IfM is of finite type, it can also be considered as a
consequence of Davey et al. (2012, Theorem 2.4).

Definition 5.7 Let A,B ∈ A and u : A→ B. We say that u is is strong if ũ is (ι, σ↓)-
continuous.

The proof of the following Lemma is straightforward.

Lemma 5.8 Assume that ι ⊆ δ, and let u : A→ B be a smooth map. Then u is strong
if and only if uδ is (ι, ι)-continuous.

Example 5.9 If ι ⊆ δ, then every u ∈ A(A,B) is strong. We already know that u is
smooth, and we prove as in Example 5.4 that uδ(x)(φ) = x(φ ◦ u) for every x ∈ Aδ

and φ ∈ B∗. It follows that uδ is (ι, ι)-continuous, or equivalently, that ũ is (ι, σ↓)-
continuous by Lemma 5.8.

Strongness can be used to obtain the preservation of functional composition through
profinite completions, as illustrated in the next proposition.

Proposition 5.10 Let A,B,C ∈ A, u : A→ B and v : B→ C.

(1) If v is strong then vu ⊆ v ◦ u.
(2) If u is smooth and if v is strong and smooth, then vu is smooth and (vu)δ = vδuδ .

Proof First, we prove the following claim.

Claim For any strong map u : A → B, the map qu : �(Aδ
ι ) → �(Bδ

ι ) defined by
ǔ(K ) =⋃

ũ(K ) is (σ↓, σ↓)-continuous.
Proof of the Claim. First, we prove that qu(K ) is a closed subspace of Bδ

ι for every
closed subspace K of Aδ

ι . Let y ∈ Bδ
ι such that y /∈ qu(K ). For every x ∈ K let Vx

and Wx be disjoint ι-neighborhood of ũ(x) and y, respectively. By continuity of ũ
and compactness of K , there is a finite subset F of K such that {̃u−1(�Vx ) | x ∈ F}
covers K . It follows thatW :=⋂{Wx | x ∈ F} is a ι-neighborhood of y that does not
meet qu(K ).

Now, for any open subspace U of Bδ
ι , it is not difficult to prove that

qu−1(�U ) = �ũ−1(�U ).

The continuity of qu follows from the latter identity and strongness of u. ��
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(1) By the Claim, the map qvũ is a (ι, σ↓)-continuous extension of vu. Then, we
obtain (1) by Theorem 4.5.

(2) By the Claim, the function w : Aδ
δ → Cδ

ι that maps every x ∈ Aδ to the only
element of qvũ(x) is continuous. Then, we obtain (2) by Proposition 5.3. ��
Corollary 5.11 Assume that ι ⊆ δ and let A,B,C ∈ A.

(1) Any term function u := tA(sA1 , . . . , sA ) is smooth and strong, and uδ =
(tA)δ((sA1 )δ, . . . , (sA )δ).

(2) If u ∈ A(A,B) and v ∈ A(B,C), then vu is smooth and strong and (vu)δ = uδvδ .

Proof (1) The proof is obtained by induction on the construction of the term using
Example 5.2, Lemma 5.8 and Proposition 5.10 (2) since any term function is (ι, ι)-
continuous.

(2) The proof is an application ofLemma5.8, Example 5.9, andProposition 5.10 (2).
��

5.2 A sample case: profinite completions of median algebras

In this subsection, we illustrate the previous constructions by considering that A is
the variety of median algebras, that is, A = ISP(2) where 2 = 〈{0, 1},m〉 is the
algebra with a single ternary operation m defined as the majority function on {0, 1}.
This variety is of special interest as (i) it is not lattice-based, (ii) it admits a strongly
logarithmic duality, and (iii) the dual category is locally finite. Hence, ι(Aδ) ⊆ δ(Aδ)

for every A ∈ A.

5.2.1 A natural duality for median algebras

It is known (Clark and Davey 1998; Isbell 1980; Werner 1981) that the topological
structure

2
˜

= 〈{0, 1}, 0, 1,≤, •, ι〉

with two constants 0 and 1, the natural order ≤, and the unary operation • defined by
x• ≡ (x+1) mod 2, yields a strong logarithmic duality forA. A topological structure
X = 〈X , 0, 1,≤, •, τ 〉 is a object of the dual category X = IScP(2

˜

) provided that
〈X ,≤, ι〉 is a Priestley space with bounds 0 and 1, that • is an order reversing
homeomorphism that swaps 0 and 1 and that satisfies φ•• = φ, and φ � φ• for every
φ �= 0.

There is an equivalent spectrum-based formulation of this duality that eases com-
putations. A subset φ of a median algebra A is prime convex if for every x, y, z ∈ A,
the elementm(x, y, z) belongs to φ if and only if at least one of the sets {x, y}, {x, z},
{z, y} is a subset of φ. A subset x of a structure X ∈ X is a disjoint ideal of X if
it is a downset set disjoint with x•. If in addition x is a clopen subset of X , then x
is called a continuous disjoint ideal. A (continuous) maximal disjoint ideal of X is a
(continuous) ideal that contains φ or φ• for every φ ∈ X .
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It is not difficult to show that the map φ 	→ φ−1(0) is an isomorphism between A∗
and the prime spectrum ofA (i.e., the set of prime convex subsets ofA) equipped with
inclusion order, ∅ andA as bottom and top element respectively, set complementation
as map •, and Zariski topology. If X ∈ X , then the dual X∗ of X is isomorphic to
the set of continuous maximal disjoint ideals of X equipped with the operation m
inherited from the median operation defined on the powerset of X as

m(x, y, z) = (x ∩ y) ∪ (x ∩ z) ∪ (y ∩ z). (13)

IfA ∈ A, thenAδ is isomorphic to the set of themaximal disjoint ideals ofA∗ equipped
with the operation defined in (13).

5.2.2 Profinite completions of Boolean powers of 2

We can apply Theorem A.1 to compute profinite completions of Boolean powers of
the median algebra 2.

Proposition 5.12 IfA is amedian algebra that has aBoolean representationA ↪→ 2X ,
then Aδ

ι is isomorphic (algebraically and topologically) to 2Xι .

Proof The dual of 2 is depicted in Fig. 1. Observe that for every nonempty finite sets
I and J , every a ∈ 2I and b ∈ 2J , the identity

2∗ =
⋃

i∈I
[ai : 1] ∪

⋃

j∈J
[b j : 0]

holds if and only if
⋂

j∈J [b j : 1] ⊆ ⋃

i∈I [ai : 1], that is, if and only if the following
condition is satisfied in 2 (for some j0 ∈ J ),

∧

j∈J
(b j = b j0)⇒

∨

i∈I
(ai = b j0).

The latter formula is also equivalent to

∨

k,l∈J ; i∈I

(

m(ai , bk, bl) = ai
)

.

We conclude the proof by applying Theorem A.1. ��
Corollary 5.14 is a surprising consequenc of Proposition 5.12.We say that a median

algebra A = 〈A,m〉 is a Boolean if there is a Boolean algebra 〈A,∨,∧,¬, 0, 1〉 such
that m(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) for every x, y, z in A. Recall that an
algebra A = 〈A,m, ·c〉 of type (3, 1) is a ternary Boolean algebra (Grau 1947) if
〈A,m〉 is a median algebra and the equation m(x, z, xc) = z holds in A.
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2

{0}

∅

{1}

[1 : 1] [0 : 1]

[0 : 0] [1 : 0]

Fig. 1 Dual of median algebra 2

Lemma 5.13 (Grau 1947) A median algebra is Boolean if and only if it is the {m}-
reduct of a ternary Boolean algebra.

Corollary 5.14 Let A be a median algebra. The following conditions are equivalent.

(i) Aδ is Boolean.
(ii) A is a Boolean power of 2.

Proof (i) �⇒ (ii) LetA be a Booleanmedian algebra, and letA� be a Boolean algebra
whose {m}-reduct is A. Then A� can be represented as a Boolean power A� ↪→ 2X ,
where X is the Stone dual of A�. This Boolean representation still holds between the
{m}-reducts of A� and 2X .

(ii) �⇒ (i) We know by Proposition 5.12 that we can identifyAδ with 2X . Denote
by ·c the operation defined on 2X by

xc(φ) ≡ 1+ x(φ) mod 2, φ ∈ X .

Then 〈2X ,m, ·c〉 is a ternary Boolean algebra, and we conclude the proof by
Lemma 5.13. ��

We conclude the section by giving an example of a smooth function which is not a
homomorphism.

Example 5.15 In the ∧-semillatice 〈A,≤〉 depicted in Fig. 2, any three elements have
an upper-bound whenever each pair of them is bounded above, and any principal ideal
is a distributive lattice. Hence, it is a median semilattice (Sholander 1954). It follows
that the operationm defined on A asm(x, y, z) = (x ∧ y)∨ (x ∧ z)∨ (y ∧ z) turns A
into a median algebra A. This operation can be easily computed explicitly: for every
j, k,  ∈ ω

m(a j , ak, a) = a( j,k,) m(a j , ak, b) = a( j,k,)

m(a j , bk, b) = a( j,k,) m(b j , bk, b) = a( j,k,),

where ( j, k, ) denotes the median element of j, k,  ∈ ω.
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a0

a1

a2

a3

b0

b1

b2

Fig. 2 Graph of median algebra A

A

B•
1B•

2

A2

A3

B1 B2

A•
3

A•
2

A1

B•
0

∅

B0

A•
1

Fig. 3 The dual A∗ of A

Clearly, the elements of A∗ are

Ai = ai↑, A•i = A\ai↑, Bi = {bi }, B•i = A\{bi }, i ∈ ω.

Hence, the dual of A is depicted in Fig. 3.
The elements of the bidual of A are easily computed:

eA(bn) = An+1↓ ∪ A•n↓ = B•n↓, n ∈ ω,

eA(an) = An+1↓ ∪ A•n↓ ∪ {Bn}, n ∈ ω.

Then Aδ\eA(A) = {∞} where

∞ =
⋃

{{A•n, Bn} | n ∈ ω}.

A simple computation shows that, up to identification of A with eA(A)

m(∞, am, bn) = m(∞, am, an) = m(∞, bm, bn) = am∨n, m, n ∈ ω.
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Let us illustrate the inclusion ι ⊆ δ. For any φ ∈ A∗, the subasis clopen subsets
{x | φ ∈ x} and {x | φ /∈ x} ofAδ

ι are respectively equal to O f and Og where f = {φ}
and g = {φ•} correspond to morphisms defined on the closed substructure {φ, φ•} of
A∗.

Now, let u : A→ 2 be the map defined by u(bi ) = 1 and u(ai ) = 0 for any i ∈ ω.
Clearly, the map u is not a median homomorphism (neither a ∧-homomorphism).
Let us denote by u′ the extension of u on Aδ that satisfies u′(∞) = 0. We prove
that u′ is (δ, ι)-continuous which implies that u is smooth by Proposition 5.3. We
have to prove that u′−1(0) = {∞, a0, a1, . . .} is a δ-open subset of Aδ . Consider
K = {∅, B0, B1, B2, . . .} = ⋂

i∈ω eA(ai ). It follows from the continuity of • that
K ∪ K • is a closed substructure of A∗. Hence, the map f : K ∪ K • → 2 defined
by f (x) = 0 if and only if x ∈ K is a partial morphism on A∗. It is easily seen that
∞ ∈ O f ⊆ u′−1(0).

6 Extensions of functions in ordered setting

Given a map u : A → B, Definition 4.2 provides a relation (or a multi-map) ū ⊆
Aδ

δ × Bδ
ι that extends u. In the case of bounded (distributive) lattices A and B, the

classical technique (Gehrke and Harding 2001; Gehrke and Jónsson 2004) adopted to
extend u to the canonical extensions (i.e., profinite completions) of A and B provides
two functions: the lower extension uσ and the upper extension uπ . In this section, we
reconcile these two approaches and prove that in the context of bounded distributive
lattices, the multi-extension ũ enables us to recover uσ and uπ , but not conversely. Our
approach leads to more general results about varieties of algebras that are ι-locally
semilattices (Definition 6.2).

Notation 6.1 Let ≤ be a fixed total order on M . We denote by ι↑, respectively ι↓, the
topologies formed by the upsets, respectively the downsets, of (M,≤).

We can use the total order ≤ defined on M to construct an upper and a lower
extension of any map u : A→ B.

Definition 6.2 Let A,B ∈ A and u : A → B. We define the maps u� : Aδ → MB∗

and u� : Aδ → MB∗ by

u�(x) :=
∧

ũ(x), u�(x) :=
∨

ũ(x),

for every x ∈ Aδ . We call u� the upper extension of u, and u� the the lower extension
of u.

Lemma 6.3 If A,B ∈ A and u : A → B, then u�(x)(φ) = ∧

(̃φ ◦ u)(x) and

u�(x)(φ) =∨

(̃φ ◦ u)(x).

Proof The proof follows from Remark 4.6. ��
Theorem 6.5 gives sufficient conditions for u� and u� to be valued in Bδ .
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Definition 6.4 An algebra A ∈ A is a local meet-semilattice if for every b, c ∈ A
and every F � A∗, it holds (b ∧ c) �F∈ A �F . Local join-semilattices are defined
dually. A local lattice is an algebra of A that is both a local meet-semilattice and a
local join-semilattice.

Theorem 6.5 Let A,B ∈ A and u : A→ B.

(1) The map u� : Aδ → MB∗ is a (δ, ι↑)-continuous extension of u.
(2) The map u� : Aδ → MB∗ is a (δ, ι↓)-continuous extension of u.
(3) If B is a local meet-semilattice, then the map u� is valued in Bδ .
(4) If B is a local join-semilattice, then the map u� is valued in Bδ .
(5) If B is a local lattice, then u� and u� are valued in Bδ .

Proof (1) Let F � B∗ and α ∈ MF . We obtain by Lemma 6.3 that

(u�)−1([F | ≥ α]) =
⋂

{φ̃ ◦ u−1(�Uφ) | φ ∈ F},

where Uφ := α(φ)↑ for every φ ∈ F . Then, the continuity of u� follows from
Theorem 4.5. The fact that u� is an extension of u follows from Proposition 4.4.

(2) is obtained from (1) by duality.
(3) Let x be an element of Aδ and let us prove that u�(x) is in the closure of

B in MB∗
ι . We proceed as in the proof of Theorem 4.5 and for any F � B∗ we

choose a δ-neighborhood W of x such that ũ(x) �F= u(W ∩ A) �F . The family
u(W ∩ A) �F is finite, and since B is a local meet-semilattice, there is some c ∈ B
such thatu�(x) �F=∧

u(W∩A) �F= c �F .Wehave proved that any δ-neighborhood
of x meets B.

(4) is obtained from (3) by duality, and (5) follows from (3) and (4) . ��
Given a map u : L → L′ between two bounded distributive lattices L and L′, the

theory of canonical extension (Gehrke and Jónsson 2004) provides with the upper
extension uπ : Lδ → L′δ and the lower extension uσ : Lδ → L′δ . The following
corollary proves that they can be recovered from the multi-extension ũ of u.

Corollary 6.6 If L and L′ are two bounded distributive lattices and u : L→ L′, then
for every x ∈ L it holds uσ = u� and uπ = u�.

Proof The proof follows from the application of Theorem 6.5 to the variety A of
bounded distributive lattices with M = {0, 1} ordered in the natural way. ��
Example 6.7 Let L be the bounded distributive lattice made of ω and the finite sub-
sets of ω with inclusion order. The Priestley dual L∗ = ω ∪ {∞} is the one
point Alexandroff compactification of the antichain ω, with ∞ as top element.
Hence, Lδ = 2ω ∪ {!} is the power set of L∗\{∞} with an additional top element
! = L∗.

123



644 Beitr Algebra Geom (2020) 61:627–647

(1) We easily build functions u : L → 2 that are smooth without being homo-
morphisms. Indeed let u be the non trivial permutation of 2 and φ ∈ L∗. Then
u ◦ φ : L→ 2 is a smooth function that does not belong to L∗. Other examples
are given by the maps uA : L→ 2 (for A ⊆ ω) that are defined by uA(x) = 0 if
and only if x ⊆ A. If A is infinite and co-infinite then uA is smooth but not strong.

(2) The function u : L→ 2 defined by u(X) = |X | mod 2 if X �= ω and u(ω) = 1
is not smooth. Indeed, if X is an infinite proper subset of ω then ũ(X) = {0, 1} =
[u�(x), u�(x)].

(3) The function u : L→ 22 defined by

u(X) = (|X | mod 2, (|X | + 1) mod 2), X �= ω,

u(ω) = (1, 1),

is not smooth. Moreover, contrary to example (2), the set ũ(x) is not determined
by u�(x) and u�(x). Indeed, if X is an infinite proper subset of ω then ũ(X) =
{(0, 1), (1, 0)} while u�(x) = (0, 0) and u�(x) = (1, 1).

(4) For k ≥ 2 let uk : L → L be the function defined by uk(X) = (1 + |X |
mod k)× X for any X �= ω and uk(ω) = ω. Then uk is not smooth. Indeed, if X
is a proper infinite subset of ω then ũk(X) = {X , 2× X , . . . , k × X}. Moreover,
we have ũl ◦ uk = ũl ◦ ũk if and only if l and k are coprime.

7 Concluding remarks and further research

In this paper, we have considered the question of extending functions between algebras
to their profinite completions in the setting of finitely generated quasivarieties. Our
answer is only partly satisfactory as we provide an extension which is a multi-map
rather than a function. This multi-extension has strong continuity properties and there
are interesting cases in which it turns out to be a function. Moreover, the construction
of the multi-extension shed lights (Corollary 6.6) on the existence of two canonical
extensions in the bounded distributive lattice setting.

We now identify some topics of further research.

(1) Topology δ (Definition 3.1) is one of the possible topologies in which A can be
defined as the algebra of isolated points ofX b(A∗, M

˜

) and is duality dependent. A
general study of the topologies that enjoy this property would lead to other multi-
extensions which could be ‘closer’ to a function than the relation ũ considered in
this work.

(2) Sufficient conditions for ũ to be smooth are needed.
(3) Canonical extensions have proved to be a useful tool to look for Kripke complete

modal logics. Fields of applications of the techniques developed in this paper
should be found outside the lattice-based setting

(4) Median algebras and median semilattices are equivalent. Natural extensions of
median algebras and canonical extensions of their median semilattices (Gouveia
and Priestley 2014) should be compared. This constitutes a topic of current inves-
tigation.
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Appendix A: Profinite completions of Boolean products

The generalization of Theorem 3.7 to Boolean products depends on the possibility to
express emptiness in the dual space in terms of formulas in the algebra, as seen in the
next result. Recall the following notation: if a ∈ A and m ∈ M we denote by [a : m]
the set {ψ ∈ A(A,M) | ψ(a) = m}. The family {[a : m] | a ∈ A,m ∈ M} is a basis
of clopen subsets of A∗.

The following theorem generalizes the developments in Hansoul and Vrancken-
Mawet (1984) about Boolean products of bounded distributive lattices.

Theorem A.1 Assume that M
˜

yields a logarithmic duality forA and thatM is of finite
type. Let A be a Boolean product of the family (Ai )i∈I of algebras of A. If for every
n ∈ N and every m1, . . . ,mn ∈ M there is an open formula φ(x1, . . . , xn) in the
language ofM such that for every i ∈ I and every a1, . . . , an ∈ Ai , it holds

A∗i =
n

⋃

λ=1
[aλ : mλ] ⇐⇒ Ai |� φ(a1, . . . , an),

then Aδ is Aι-isomorphic to
∏

i∈I Aδ
i .

Proof Let f : A ↪→ ∏

i∈I Ai be a Boolean representation of the family (Ai )i∈I of
algebras ofA. For every i ∈ I we denote by ρi the embedding (πi )

∗ : A∗i ↪→�{A∗i |
i ∈ I } where πi denotes the projection map from

∏

i∈I Ai onto its i-th factor Ai , i.e.,
ρi is the map defined by ρi (ψ) = ψ ◦ πi . Let X be the set

⋃{ρi (A∗i ) | i ∈ I }. Since
M
˜

yields a logarithmic duality for A, it is not difficult to see that
⋃{ρi (A∗i ) | i ∈ J }

is isomorphic to �{A∗i | i ∈ J } for every finite subset J of I . It follows that X is a
(not necessarily closed) substructure of �{A∗i | i ∈ I } (such a verification involves
only finitely many terms ρi (A∗i )). In particular, X can be seen as

X = �{(A∗i )� | i ∈ I }. (14)

We are going to prove that X can be equipped with a Boolean topology τ to obtain a
topological structure that is isomorphic to A∗ and that is embeddable into �{A∗i | i ∈
I }.

We define the topology τ on X as the topology generated by the sets

[a : m] =
⋃

{[πi ( f (a)) : m] | i ∈ I } , a ∈ A,m ∈M.

The topology τ is clearly finer than the topology induced on X by �{A∗i | i ∈ I }. Let
us show that 〈X , τ 〉 is Boolean. It suffices to prove that it is compact. Assume that
X =⋃{[aλ : mλ] | λ ∈ L} for some aλ ∈ A andmλ ∈M. For every i ∈ I , the family
{[πi ( f (aλ)) : mλ] | λ ∈ L} is an open covering of ρi (A∗i ) and there is a finite subset
Li of L such that

ρi (A
∗
i ) =

⋃

{[πi ( f (aλ)) : mλ] | λ ∈ Li } . (15)
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By hypothesis, for every i ∈ I there is an open formula formula φini with ni variables
(where ni denotes |Li |) such that identity (15) is equivalent to

Ai |� φini

(

(πi (aλ))λ∈Li

)

. (16)

Now, for every i ∈ I let �i be defined by

�i =
{

j ∈ I | A j |� φin((π j ( f (aλ)))λ∈Li )
}

.

The family {�i | i ∈ I } is an open covering of I . By compactness, there is a finite
subset J of I such that

I =
⋃

{� j | j ∈ J }. (17)

By combining (16) and (17), we obtain,

X =
⋃

{
⋃

{

[aλ : mλ] | λ ∈ L j

}

| j ∈ J
}

,

which is a finite open covering of X extracted from {[aλ : mλ] | λ ∈ L}.
Let us denote by g the restriction of f ∗ to X . Hence, for any ρi (ψ) ∈ ρi (Ai ), we

have g(ρi (ψ)) = ψ ◦ πi ◦ f . We aim to prove that g is an X -isomorphism between
〈X , τ 〉 and A∗.

First we prove that g is a X �-embedding. We have to prove that if r represents
an n-ary relation or the graph of a (partial) operation in the language of M

˜

and if
ψ1, . . . , ψn ∈ X , we have the following equivalence

(ψ1, . . . , ψn) ∈ r X ⇔ (g(ψ1), . . . , g(ψn)) ∈ rA
∗
. (18)

Let J be a finite subset of I such that {ψ1, . . . , ψn} ⊆ ⋃{ρ j (A∗j ) | j ∈ J }. Let us
denote by Y the latter set. We have already noted that Y , considered as a substructure
of �{A∗i | i ∈ I } is isomorphic to �{A∗j | j ∈ J }. Since f : A ↪→ ∏

i∈I Ai is a
Boolean representation of A, the map f J : A → ∏

j∈J A j : a 	→ (π j (a)) j∈J is
onto. Hence, the dual map f ∗J : Y → A∗ is an embedding and is clearly equal to the
restriction of g to Y . Then, it follows successively

(ψ1, . . . , ψn) ∈ r X ⇔ (ψ1, . . . , ψn) ∈ rY

⇔ ( f ∗J (ψ1), . . . , f ∗J (ψn)) ∈ rA
∗

⇔ (g(ψ1), . . . , g(ψn)) ∈ rA
∗
,

which establishes equivalence (18), as required.
Finally, since g is the restriction on X of a continuous map, it is a continuous map

for the induced topology on X . From the fact that τ is finer than the induced topology
we eventually conclude that g : 〈X , τ 〉 → A∗ is an X -embedding. We deduce that
〈X , τ 〉 ∈ X .
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For the last part of the proof, we show that the evaluation map

h : A→ X (X , M
˜

) : a 	→ h(a) : ρi (ψ) 	→ ψ(πi ( f (a)))

is an isomorphism. It is clearly a homomorphism. Moreover, if a, b ∈ A and a �= b
then there is an i ∈ I such that πi ( f (a)) �= πi ( f (b)), i.e., such that eAi (πi ( f (a))) �=
eAi (πi ( f (b))). Let ψ ∈ A∗i with eAi (πi ( f (a)))(ψ) �= eAi (πi ( f (b)))(ψ). It means
that ψ(πi ( f (a))) �= ψ(πi ( f (b))) which proves that h is one-to-one. Moreover, since
h∗ = g and since g is an embedding,wededuce thath is onto and so, is an isomorphism.

Hence, it follows successively that

Aδ � X �(A∗, M
˜

) � X �(X , M
˜

) � X �(�i∈I (A∗i )�, M
˜

),

where we have used (14) to obtain the latter isomorphism. Then, we obtain

X �

(

�i∈I (A∗i )�, M
˜

)

�
∏

i∈I
X �

(

A∗i , M
˜

)

�
∏

i∈I
Aδ
i

where the first isomorphism is obtained by partnership duality (Davey et al. 2012,
Theorem 2.4) and is also an Aι-isomorphism. ��
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