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Abstract
Let R be a commutative unital ring and a ∈ R. We introduce and study properties of a
functor a�a(−), called the locally nilradical on the category of R-modules. a�a(−)

is a generalisation of both the torsion functor (also called section functor) and Baer’s
lower nilradical for modules. Several local–global properties of the functor a�a(−)

are established. As an application, results about reduced R-modules are obtained and
hitherto unknown ring theoretic radicals as well as structural theorems are deduced.

Keywords Locally nilradical · Baer’s lower nilradical · Torsion functor · Reduced
modules · Reduced rings · Local cohomology
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1 Introduction

Radicals are a good tool to study the structure of rings and modules over rings.
There are several radicals in the literature about rings and modules which include
among others; Baer’s lower nilradical (also called the prime radical), Köthe’s upper
nilradical, Andrunakievich’s generalised nilradical (also called the completely prime
radical), Jacobson radical and Brown–McCoy radical. In this article, we introduce
and study a radical called the locally nilradical for modules over commutative rings.
Radical theory also exists for abelian categories, and it is what is termed as torsion
theory.

Throughout this paper, all rings R are commutative and unital. The category of all
left R-modules is denoted by R-Mod. If M ∈ R-Mod, then

√
(0 : M) denotes the

radical ideal of (0 : M), i.e.,
√

(0 : M) = {
r ∈ R | rk ∈ (0 : M) for some k ∈ Z

+}
.
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Let M be an R-module and a an ideal of R. The a-torsion (also called the section)
functor is defined by:

�a : R-Mod → R-Mod

M �→ �a(M),

where�a(M) is the submodule ofM givenby�a(M) := {
m ∈ M | akm = 0 for some

k ∈ Z
+}

. On modules defined over Noetherian rings, this functor is left exact and
a radical, see Rohrer (2018). Its right derived functor Hi

a(−) is what is called
the local cohomology functor with respect to a. For more information about local
cohomology, see Brodmann and Sharp (2013). If R is a ring, a ∈ R and a an
ideal of R generated by a, then it is easy to see that �a(M) = �a(M), where
�a(M) := {

m ∈ M | akm = 0 for some k ∈ Z
+}

.

By generalising the torsion functor, we define a new functor:

a�a : R-Mod → R-Mod

M �→ a�a(M),

called the locally nilradical which associates to every R-module M a submodule
a�a(M) for every a ∈ R, where a�a(M) := {

am | akm = 0, m ∈ M, for some
k ∈ Z

+}
, i.e., left multiplication by a of the submodule �a(M).

a�a(M) is contained in the envelope EM (0) of M which has been considered in the
literature as a module analogue of the set of nilpotent elements of a ring. Secondly, we
observe that if M is the R-module R, then a�a(−) associates to R a nil ideal a�a(R)

of R. For if x ∈ a�a(R), then x = ar and akr = 0 for some k ∈ Z
+. It follows that

xk = (ar)k = akrk = 0. So, x is nilpotent and a�a(R) is nil. We use the adjective
“locally” because a�a(−) gives the local behaviour for a given element a ∈ R as
opposed to the global picture which is for all a ∈ R given by the nilradicalN (R). To
be precise, we show that

⋃
a∈R a�a(R) = N (R).

This paper is devoted to studying properties of the functor a�a(−). We list some
of them below.

• a�a(−) is a radical on the category R-Mod (Proposition 3.1).
• For a Noetherian local ring R of characteristic p, the Frobenius functor FR(−)

is exact on R-Mod if and only if for any a ∈ R, the functor a�a(−) is trivial on
R-Mod (Theorem 3.1).

• For any ring R, and a ∈ R, a�a(R)[x] = a�a(R[x]) (Theorem 3.2).
• For any R-module M,

⋃
a∈R a�a(M) = EM (0) where EM (0) is the envelope of

the zero submodule of M, (Proposition 4.1) and
⋃

a∈R a�a(R) = N (R) (Corol-
lary 4.1).

• For any R-module M,
√

(0 : M)M = ∑
a∈√

(0:M) a�a(M) (Theorem 5.2).
• If M is a finitely generated multiplication R-module, then

∑
a∈√

(0:M) a�a(M) =
β(M), where β(M) is the prime radical of M (Corollary 5.4).

• If M is a reduced R-module and a is the ideal of R generated by a ∈ R, then
for any a ∈ R, the i-th local cohomology of M with respect to a is given by
Hi
a(M) ∼= ExtiR(R/a, M), (Theorem 6.1).
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For more information about radical theory of rings, see Gardner and Wiegandt
(2004); while for torsion theory, see Bican et al. (1982), Stenstroem (2012) among
others.

2 Reducedmodules

Lee and Zhou (2004) introduced reduced modules. It is clear that an R-module M is
reduced if and only if for all a ∈ R, a�a(M) = 0. The functor a�a(−) therefore can
be seen as a measure of how far a module is from being reduced.

Definition 2.1 Let R be a ring, M an R-module and a ∈ R. M is a-reduced if for all
m ∈ M ,

a2m = 0 implies that am = 0.

Definition 2.2 An R-module M is reduced if it is a-reduced for all a ∈ R.

It then follows that an R-module is (globally) reduced if and only if it is locally
reduced.

Proposition 2.1 Every free module defined over a reduced ring is reduced.

Proof It follows from Lee and Zhou (2004, Example 1.3). ��
Corollary 2.1 Any vector space is a reduced module.

Corollary 2.2 A projective module defined over a reduced ring is reduced.

For an R-module M, a ∈ R and k ∈ Z
+, we write (0 :M ak) to denote the

submodule of M given by
{
m ∈ M | akm = 0

}
.

Proposition 2.2 Let M be an R-module, a ∈ R and a the ideal of R generated by a.
The following statements are equivalent:

1. M is a-reduced,
2. a�a(M) = 0,
3. (0 :M a) = (0 :M ak) for all k ∈ Z

+,
4. lim−→

k
HomR(R/ak, M) ∼= HomR(R/a, M),

5. �a(M) ∼= HomR(R/a, M),
6. 0 → �a(M) → M → aM → 0 is a short exact sequence.

Proof 1 ⇒ 2 Let n ∈ a�a(M). Then n = am for some m ∈ �a(M). So, there exists
k ∈ Z

+ such that akm = 0. From 1, we have am = 0. Thus, n = 0 and
a�a(M) = 0.

2 ⇒ 3 In general, (0 :M a) ⊆ (0 :M ak). Now, let m ∈ (0 :M ak), i.e., akm = 0.
It follows that m ∈ �a(M). So, by 2, am ∈ a�a(M) = 0 which implies that
m ∈ (0 :M a).
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3 ⇒ 4 It is known that HomR(R/ak, M) ∼= (0 :M ak) and lim−→
k

HomR(R/ak, M)

∼= ⋃
k∈Z+(0 :M ak), see (Brodmann and Sharp 2013, page 6). Since by 3,

(0 :M ak) = (0 :M a) for all k ∈ Z
+, we have lim−→

k
HomR(R/ak, M) ∼=

HomR(R/a, M).

4 ⇒ 5 Since �a(M) ∼= lim−→
k

HomR(R/ak, M), 4 implies that �a(M) ∼= HomR

(R/a, M).

5 ⇒ 6 The R-module epimorphism M → aM defined bym �→ am has kernel (0 :M
a). So, 0 → (0 :M a) → M → aM → 0 is a short exact sequence. From 5,
�a(M) ∼= HomR(R/a, M) ∼= (0 :M a). So, 0 → �a(M) → M → aM → 0
is a short exact sequence.

6 ⇒ 1 Let a ∈ R and m ∈ M such that a2m = 0. Then m ∈ �a(M). From 6, �a(M)

is the kernel of the epimorphism M → aM given bym �→ am. It follows that
am = 0 which establishes 1. ��

Proposition 2.3 Let M be an R-module and a an ideal of R generated by a. The
following statements are equivalent:

1. M is reduced;
2. a�a(M) = 0 for all a ∈ R;
3. (0 :M a) = (0 :M ak) for all a ∈ R, k ∈ Z

+;
4. lim−→

k
HomR(R/ak, M) ∼= HomR(R/a, M) for all a ∈ R;

5. �a(M) ∼= HomR(R/a, M) for all a ∈ R;
6. 0 → �a(M) → M → aM → 0 is a short exact sequence for all a ∈ R.

Proof This follows from Proposition 2.2 and the fact that an R-module is reduced if
and only if it is a-reduced for all a ∈ R. ��

Proposition 2.2 (resp. Proposition 2.3) shows that being a-reduced (resp. reduced)
is a categorical property, i.e., it can be expressed entirely in terms of objects and
morphisms. Therefore, if R and S are rings and F : R-Mod → S-Mod is a category
equivalence, then an R-module M is a-reduced (resp. reduced) if and only if so is the
S-module F(M).

We now give a new characterisation of reduced rings.

Corollary 2.3 Let R be a ring and a an ideal of R generated by a. The following
statements are equivalent:

1. R is reduced;
2. a�a(R) = 0 for all a ∈ R;
3. (0 :R a) = (0 :R ak) for all a ∈ R, k ∈ Z

+;
4. lim−→

k
HomR(R/ak, R) ∼= HomR(R/a, R) for all a ∈ R;

5. �a(R) ∼= HomR(R/a, R) for all a ∈ R;
6. 0 → �a(R) → R → aR → 0 is a short exact sequence for all a ∈ R.

Proof This follows from Proposition 2.3 and the fact that a ring R is reduced if and
only if the R-module R is reduced. ��
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For a given ring R and a ∈ R, the submodule a�a(M) is a measure of how far the
R-module M is from being a-reduced.

Example 2.1 Let p be a prime number, k ∈ Z
+ and Zpk a group of integers modulo

pk . Zpk is a Z-module and �p(Zpk ) = Zpk . It follows that for k = 1, �p(Zp) = Zp

and hence p�p(Zp) = 0, i.e., every Z-module Zp is p-reduced.

Proposition 2.4 If {Mi }i∈I is a family of R-modules and M = ∏
i∈I Mi , then

M is a reduced (resp. a-reduced) R-module if and only if each Mi is a reduced
(resp. a-reduced) R-module.

Proof Follows from (Lee and Zhou 2004, Example 1.3). ��
Proposition 2.5 For any R-module M and a ∈ R, the R-module M/a�a(M) is a-
reduced.

Proof Suppose that M/a�a(M) is not a-reduced, i.e., there exists m ∈ M and k ∈
Z

+ such that akm ∈ a�a(M) but am /∈ a�a(M). akm ∈ a�a(M) implies that
ak−1m ∈ �a(M). So, as(ak−1m) = 0 for some s ∈ Z

+ and as+k−1m = 0. However,
am /∈ a�a(M) implies that m /∈ �a(M) and as such alm �= 0 for all l ∈ Z

+, which
is a contradiction since as+k−1m = 0. ��
Corollary 2.4 For any R-module M and a ∈ R,

a�a(M/a�a(M)) = 0.

Proof By Proposition 2.5, the R-module M/a�a(M) is a-reduced. The desired result
follows from Proposition 2.2. ��

3 Properties of the locally nilradical

A functor γ : R-Mod → R-Mod is a preradical if for every R-homomorphism
f : M → N , f (γ (M)) ⊆ γ (N ). γ is a radical if it is a preradical and for all M ∈ R-
Mod,γ (M/γ (M)) = 0.Aradicalγ ishereditary or left exact if for every submodule N
of a module M ∈ R-Mod, γ (N ) = N ∩γ (M). Equivalently, if for any exact sequence
0 → N → M → K of R-modules, the sequence 0 → γ (N ) → γ (M) → γ (K ) is
also exact.

Proposition 3.1 For any ring R and a ∈ R, the functor

a�a : R-Mod → R-Mod

M �→ a�a(M)

is a radical.

Proof Let f : M → N be an R-module homomorphism. Let x ∈ f (a�a(M)). Then
x = a f (m) for some m ∈ �a(M). This implies that akm = 0 for some k ∈ Z

+. So,
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ak f (m) = f (akm) = f (0) = 0. This shows that f (m) ∈ �a(N ) and x = a f (m) ∈
a�a(N ). Hence, f (a�a(M)) ⊆ a�a(N ). This shows that the functor a�a(−) is a
preradical. Corollary 2.4 shows that a�a(−) is a radical. ��

The radical a�a(−) is in general not left exact. Consider M := Z8 and N := 2Z8.

By Example 2.1, if a = 2 ∈ Z, then 2�2(M) = 2Z8 and 2�2(N ) = 4Z8 � 2Z8 =
N ∩ 2�2(M). However, on the subcategory of reduced R-modules, a�a(−) is a left
exact radical.

A submodule N of an R-module M is characteristic if for all automorphisms f of
M , f (N ) ⊆ N .

Proposition 3.2 Let R be a ring, a ∈ R and M an R-module. The following statements
hold.

1. a�a(R) is an ideal of R.

2. For each M ∈ R-Mod, a�a(M) is a characteristic submodule of M and

a�a(R)M ⊆ a�a(M).

3. If M is projective, then a�a(M) = a�a(R)M .

Proof Since a�a(−) is a (pre)radical, the proof follows from Bican et al. (1982,
Proposition 1.1.3). ��

From Proposition 3.2, we can recover Corollary 2.2, i.e., a projective module M
over a reduced ring R is reduced. For if R is reduced, then so is the module R R. As
such, a�a(R) = 0 for all a ∈ R. By Proposition 3.2, a�a(M) = 0 for all a ∈ R and
therefore by Proposition 2.3, M is reduced.

Proposition 3.3 Let M be an R-module, a ∈ R and N a submodule of M .

1. a�a(N ) ⊆ N ∩ a�a(M) and (a�a(M) + N )/N ⊆ a�a(M/N ).

2. If a�a(N ) = N , then N ⊆ a�a(M).

3. If a�a(M/N ) = 0, then a�a(M) ⊆ N .

Proof It follows from Bican et al. (1982, Proposition 1.1.1) since a�a(−) is a
(pre)radical. ��
Proposition 3.4 Let {Mi }i∈I be a family of R-modules. Then

a�a

(
⊕

i∈I
Mi

)

=
⊕

i∈I
a�a(Mi )

and

a�a

(
∏

i∈I
Mi

)

⊆
∏

i∈I
a�a(Mi ).
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Proof It follows from Bican et al. (1982, Proposition 1.1.2). ��
The radical a�a(M) is not idempotent. Take for instance M := Z4 as a Z-module.

2�2(Z4) = 2Z4 but 2�2(2�2(Z4)) = 2�2(2Z4) = 0. So 2�2(2�2(Z4)) �= 2�2(Z4).

Let R be a Noetherian ring of prime characteristic p and f : R → R the Frobenius
ring homomorphism, i.e., f (r) = r p, for r ∈ R. Let R f be the ring with the R-R
bimodule structure given by r .s := rs and s.r := s f (r) for r ∈ R and s ∈ R f .

FR(−) := R f ⊗R − is a right exact functor on the category R-Mod and is called the
Frobenius functor on R; see Marley (2014).

Theorem 3.1 Let R be a Noetherian local ring of characteristic p. The following
statements are equivalent:

1. FR(−) is exact on R-Mod,
2. a�a(−) is a zero functor on R-Mod for all a ∈ R,
3. R is a regular ring,
4. every R-module is reduced.

Proof By Kunz (1969), the functor FR(−) is exact on R-Mod if and only if R is a
regular ring. However, by Rege and Buhphang (2008, Theorem 2.16), R is a regular
ring if and only if every R-module is reduced, i.e., if and only if a�a(−) is the zero
functor on R-Mod for all a ∈ R. ��

Theorem 3.1 gives a subcategory of R-Mod onwhich the Frobenius functor is exact,
i.e., the subcategory of all reduced R-modules when R is a Noetherian local ring of
characteristic p.This highlights the importance of the subcategory of reducedmodules
over aNoetherian local ring of characteristic p.They are doing to the Frobenius functor
what a projectivemodule (resp. injectivemodule andflatmodule)M does to the functor
HomR(M,−), (resp. HomR(−, M) and−⊗

R M), i.e., transforming them into exact
functors.

Since for a commutative ring R, N (R) is the prime radical of R, N (R)[x] =
N (R[x]), see Lam (2013, Theorem 10.19). Theorem 3.2 gives the local behavior of
this.

Theorem 3.2 For any ring R and a ∈ R,

a�a(R)[x] = a�a(R[x]).

Proof Let f (x) ∈ a�a(R)[x]. Then f (x) = ∑n
i=0 ri x

i with ri ∈ a�a(R). This
implies that for each ri , i ∈ {0, 1, 2, . . . , n}, there exists si ∈ �a(R) and ki ∈ Z

+
such that ri = asi and aki si = 0. f (x) = ∑n

i=0(asi )x
i = a

∑n
i=0 si x

i . To show
that f (x) ∈ a�a(R[x]), it is enough to show that g(x) = ∑n

i=0 si x
i ∈ �a(R[x])

since f (x) = ag(x). Let k := max{ki }ni=0. Then akg(x) = ∑n
i=0 a

ksi xi = 0.
Hence g(x) ∈ �a(R[x]) as required. This proves that a�a(R)[x] ⊆ a�a(R[x]).
Now, suppose that f (x) ∈ a�a(R[x]). Then f (x) = ag(x) and there exists k ∈
Z

+ such that akg(x) = 0. If g(x) = r0+· · ·+rnxn, then f (x) = ar0+· · ·+arnxn .
We show that each ari ∈ a�a(R) for i ∈ {0, 1, . . . , n}. If ari = 0, ari ∈ a�a(R).

Suppose that ari �= 0. Then akri = 0 for all i ∈ {0, 1, . . . , n} since akg(x) = 0.
Then, each ri ∈ �a(R) and ari ∈ a�a(R) for all i ∈ {0, 1, · · · , n}. So, f (x) ∈
a�a(R)[x] and a�a(R[x]) ⊆ a�a(R)[x]. ��
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N (R) = 0, (i.e., R is reduced) if and only if a�a(R) = 0 (i.e., R is a-reduced)
for each a ∈ R. N (R)[x] = N (R[x]) and a�a(R)[x] = a�a(R[x]) for all a ∈ R.
However,N (−) is hereditary, see Gardner and Wiegandt (2004, Example 3.2.12) but
the “local” radical a�a(−) is not hereditary.

A proper submodule N of an R-module M is prime if for all a ∈ R and m ∈ M ,
am ∈ N implies that either m ∈ N or aM ⊆ N . A module is prime if its zero
submodule is prime.Aprimemodule is reduced.Letβ(M)denote the intersectionof all
prime submodules ofM .Wecallβ(M) the prime radical ofM . Since a�a(R) ⊆ N (R)

for any ring R and a ∈ R; and a�a(M) ⊆ β(M) for any R-module M and a ∈ R, the
locally nilradical can also be seen as a generalisation of the Baer’s lower nilradical for
modules.

Let R be a ring and a ∈ R. By Bican et al. (1982, Proposition 1.1.4), Ta :=
{M ∈ R-Mod | a�a(M) = M} is a torsion class and Fa := {M ∈ R-Mod | a�a(M)

= 0} is a pretorsion-free class. In general, a-reduced modules are not closed under
extension. Z4 is not a 2-reduced Z-module. However, its submodule 2Z4 and its
quotient Z4/2Z4 are 2-reduced. This shows that in general, a-reduced modules form
a pretorsion-free class but not a torsion-free class of a torsion theory.

4 Stratifications

Let N be a submodule of an R-module M . The envelope EM (N ) of N is the set

EM (N ) :=
{
am | akm ∈ N , a ∈ R, m ∈ M, for some k ∈ Z

+}
.

The set EM (N )was used byMcCasland andMoore (1991), Jenkins and Smith (1992),
Azizi (2009) and Azizi (2007) among others while studying modules and rings that
satisfy the radical formula. EM (0) was considered as the module analogue of N (R),

the collection of all nilpotent elements of the ring R. For any ring R, ER(0) = N (R).

Proposition 4.1 (Stratification of the envelope) For any R-module M,

EM (0) =
⋃

a∈R

a�a(M).

Proof If m ∈ ⋃
a∈R a�a(M), then m = an for some n ∈ �a(M). This implies that

akn = 0 for some k ∈ Z
+. By definition of EM (0), m ∈ EM (0). Conversely, if

m ∈ EM (0), then m = an with akn = 0 for some n ∈ M, a ∈ R and k ∈ Z
+. So,

n ∈ �a(M) which implies that m ∈ a�a(M). Thus, m ∈ ⋃
a∈R a�a(M). ��

Corollary 4.1 (Stratification of the nilradical) For any ring R, ifN (R) is the collection
of all nilpotent elements of R, then

N (R) =
⋃

a∈R

a�a(R) = ER(0).
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Recall that, for an R-module M , where R is a reduced ring, the torsion submodule
t(M) of M is the submodule

t(M) := {m ∈ M | am = 0 for some 0 �= a ∈ R} .

Proposition 4.2 (Stratification of the torsion submodule) For any reduced module M
defined over a reduced ring R,

t(M) =
⋃

0 �=a∈R

�a(M).

Proof IfM is a reduced R-module and0 �= a ∈ R, then�a(M) = {m ∈ M | am = 0} .

So �a(M) ⊆ t(M). The reverse inclusion follows from the definitions of both �a(M)

as well as t(M). ��

5 Comparison with other radicals

A proper submodule N of an R-module M is a-semiprime (resp. semiprime) if the
R-module M/N is a-reduced (resp. reduced). We denote by Rad(M) (resp. S(M),
Sa(M)) the Jacobson radical (resp. semiprime radical, a-semiprime radical) of M , i.e.,
the intersection of all maximal (resp. semiprime, a-semiprime) submodules of M .

Proposition 5.1 For any R-module M and a ∈ R, we have the following inclusions
of radical submodules of M:

⋂

a∈R

a�a(M) ⊆ a�a(M) ⊆ Sa(M) ⊆ S(M) ⊆ β(M) ⊆ Rad(M).

Proof
⋂

a∈R a�a(M) ⊆ a�a(M) is trivial. If a submodule N of an R-module M is
a-semiprime, then by definition, the module M/N is a-reduced. By Proposition 2.2,
a�a(M/N ) = 0. From Proposition 3.3(3), we get a�a(M) ⊆ N , i.e., every a-
semiprime submodule of M contains the submodule a�a(M) of M . It follows that the
intersection of all a-semiprime submodules of M contains a�a(M), i.e., a�a(M) ⊆
Sa(M). Since a semiprime submodule of an R-module M is a-semiprime (i.e., M/N
reduced implies M/N a-reduced), we have Sa(M) ⊆ S(M). S(M) ⊆ β(M) is due
to the fact that prime submodules are semiprime and β(M) ⊆ Rad(M) follows from
the fact that maximal submodules are prime. ��
Corollary 5.1 For any ring R,

⋂

a∈R

a�a(R) ⊆ a�a(R) ⊆ Sa(R) ⊆ S(R) = N (R) ⊆ Rad(R).

From Proposition 5.1 (resp. Corollary 5.1), we can see that the radical submodule
a�a(M) (resp. ideal a�a(R)) is very small in comparison with other radical submod-
ules of M (resp. ideals of R). In addition, a�a(R) is a proper ideal of R since it is nil
and therefore the unity of R cannot belong to it.
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Theorem 5.2 For any R-module M,

√
(0 : M)M =

∑

a∈√
(0:M)

a�a(M).

Proof Let m ∈ √
(0 : M)M . m = ∑n

i=1 rimi where ri ∈ √
(0 : M), mi ∈ M and

n ∈ Z
+. So, rkii M = 0 for all i ∈ {1, 2, . . . , n} and for some ki ∈ Z

+. It fol-

lows that rkii mi = 0 for all i ∈ {1, 2, . . . , n}. Hence, rimi ∈ ri�ri (M). Therefore
m = ∑n

i=1 rimi ∈ ∑n
i=1 ri�ri (M) ⊆ ∑

a∈√
(0:M) a�a(M) and hence

√
(0 : M)M ⊆

∑
a∈√

(0:M) a�a(M). Now, for any a ∈ √
(0 : M), a�a(M) ⊆ √

(0 : M)M . So,
∑

a∈√
(0:M) a�a(M) ⊆ √

(0 : M)M which gives the reverse inclusion. ��
Corollary 5.3 If M is an R-module such that (0 : M) is a radical ideal of R, then

∑

a∈√
(0:M)

a�a(M) = 0.

In particular, if a ∈ √
(0 : M), then M is a-reduced.

Proof ByTheorem5.2,
√

(0 : M)M = ∑
a∈√

(0:M) a�a(M).Since (0 : M) is a radical
ideal of R,

√
(0 : M) = (0 : M). It follows that

√
(0 : M)M = (0 : M)M = 0 which

leads to the desired result. ��
Corollary 5.4 If the R-module M is a finitely generated multiplication module and
β(M) is the prime radical of M, then

∑

a∈√
(0:M)

a�a(M) = β(M).

Proof By McCasland and Moore (1986, Theorem 4),
√

(0 : M)M = β(M).

However, by Theorem 5.2,
√

(0 : M)M = ∑
a∈√

(0:M) a�a(M). It follows that∑
a∈√

(0:M) a�a(M) = β(M) as required. ��

6 Computation of local cohomology

In Theorem 6.1, we show that reduced modules simplify computations of local coho-
mology; the usual direct limits involved in the definition of local cohomology are
dropped.

Theorem 6.1 Let R be a Noetherian ring, M be an R-module and a an ideal of R
generated by a ∈ R. Each of the following statements holds.

1. If M is a-reduced, then the i-th local cohomology module Hi
a(M) is given by

Hi
a(M) ∼= ExtiR(R/a, M).
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2. If M is a-reduced and R/a is a projective R-module, then for all i ≥ 1

Hi
a(M) = 0.

3. If M is reduced, then for all a ∈ R,

Hi
a(M) ∼= ExtiR(R/a, M).

Proof By Proposition 2.2, if M is an a-reduced R-module, then �a(M) ∼=
HomR(R/a, M). The i-th local cohomology of M which is the right derived functor
of �a(M) is the R-module Hi

a(M) ∼= ExtiR(R/a, M). If the R-module R/a is projec-
tive, then it follows by general theory that the module Hi

a(M) vanishes for all i ≥ 1.
3 is due to the fact that, if M is reduced, then it is a-reduced for all a ∈ R. ��
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