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Abstract
Concepts of order play an important role in many branches of mathematics. We start
the article with an analysis of the notion of cyclic order in algebraic structures, which
includes a characterization of cyclically ordered groups by cyclic cones and the intro-
duction of the notion of a cyclically ordered field. We then study the role of cyclic
order in the foundations of geometry. In Euclidean and in absolute geometry, order
structures are introduced by linear orders (see Hilbert in Grundlagen der Geome-
trie, Teubner, Stuttgart, 1972; Coxeter in Introduction to geometry, Wiley, New York,
1961; Sperner in Beziehungen zwischen geometrischer und algebraischer Anordnung.
Sitzungsberichte der Heidelberger Akademie der Wissenschaften, 1949; Bachmann
in Aufbau der Geometrie aus dem Spiegelungsbegriff, Springer, Heidelberg, 1973; H
Struve and R Struve in J Geom 105:419–447, 2014; R Struve in J Geom 106:551–570,
2015). This excludes elliptic geometry. We show that the notion of cyclic order (on
pencils of lines) allows the introduction of order structures in a unified way (including
the elliptic case) and corresponds on the algebraic side to a linear order of the associated
coordinate field. In addition we prove that the three classical geometries (Euclidean,
hyperbolic, and elliptic) over fields K of characteristic �= 2 are orderable if and only
if a separation relation on rows of collinear points and a separation relation on pencils
of concurrent lines can be defined which are ‘compatible’. The article closes with a
geometric interpretation of cyclically ordered fields as Gaußian coordinate fields of
Euclidean Hilbert planes.
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1 Introduction

“A discussion of order ... has become essential to any understanding of the foundations
of mathematics” observed Russell in The principles of Mathematics (Russell 1903,
p. 199), since they allow an explication of infinity, continuity and other fundamental
concepts of Arithmetic, Analysis and Geometry.

According to Russell (1903, p. 200) there are two types of order: a linear order
which can be described by a ternary betweenness relation, and a cyclic order, which can
be described by a quaternary separation relation. A betweenness relation corresponds
to a pair (<,>) of dual binary relations (which are asymmetric, transitive and total)
and a separation relation corresponds to a pair of dual ternary relations (�,�∗), which
are cyclic, asymmetric, transitive and total.1

From a geometric point of view, linear and cyclic order are fundamental ideas of our
intuition of space (in Euclidean geometry the points on a line are linearly ordered and
the lines through a point are cyclically ordered)2 but not easily captured by rigorous
mathematical concepts, or, as Coxeter puts it: “The intuitive idea of the two opposite
directions along a line, or a round circle, is so familiar that we are apt to overlook the
niceties of its theoretical basis” (see Coxeter 1947, p. 31).

In the foundations of geometry cyclic order is studied in projective and elliptic
geometry (see Lenz 1965; Prieß-Crampe 1983) but can hardly be found outside of this
context.3 In Hilbert’s Grundlagen der Geometrie of 1899 and in the Foundations of
Geometry of Borsuk and Szmielew (1960), for example, the notion of cyclic order is
not introduced at all. One reasonmay be the widely held view that a separation relation
can be “reduced” to a betweennesss relation so that the former notion is “somewhat
superficial” (in Russell’s words).

The aim of this article is to analyze the notions of linear and cyclic order in algebraic
and geometric structures in detail, to discuss their relationship and to show that the
notion of cyclic order is in no way superficial, but plays a significant role in the
foundations of geometry.

In Sect. 2, we introduce the terminology of the theory of order relations, which is
used in this article, and recall some basic results. We prove that the theory of linear
orders and the theory of cyclic orders on a set M are not definitionally equivalent.
Instead, a cyclic order on a set M corresponds to a pair of linear orders on comple-
mentary subsets ofM (see Theorem 2.8).

In Sect. 3, we study ordered groups. Ordered groups can be characterized in purely
group-theoretic terms. A group G is linearly orderable if there exists a (linear) cone
of G, that is, a subset of G which satisfies three simple group-theoretic properties (see
Blyth 2005).

1 The first axiomatization of the notion of cyclic order and a detailed study of the relationship between
different types of order relations are provided by Huntington (1916, 1924, 1935).
2 We refer for aspects of this kind to the phenomenological discussion of Freudenthal (Bachmann and
Behnke 1974, Chap. 1).
3 For this observation we refer to Pambuccian’s review (2011) of the axiomatics of ordered geometry and
to the compendium of Karzel and Kroll (1988) about the history of geometry since Hilbert.

123



Beitr Algebra Geom (2020) 61:649–669 651

For cyclically ordered groups4 we focus on abelian groups G which contain an
involution. The motivating examples are, in the algebraic context, the multiplicative
group of a field of characteristic �= 2 and, in the geometric context, the group of
rotations around a point O of a Euclidean plane. We introduce the notion of a cyclic
cone and prove that (a)G is cyclically orderable if and only if there exists a cyclic cone
and (b) the associated first-order theories are definitionally equivalent (see Theorem
3.12).

As an algebraic structure with two operations we study in Sect. 4 ordered fields. In
the literature fields are called ‘ordered’ if they are endowed with a linear order relation
(which is compatible with the field operations). The field C of complex numbers has a
rich order structure but is not an ordered field. To capture order structures of this kind
we introduce the notion of a cyclically ordered field (see Definition 4.3). They have
an intuitive geometric interpretation: a field C is cyclically orderable if generalized
polar coordinates can be introduced, i.e., if (C, ·) is the direct product of a cyclically
orderable subgroup (U , ·) and the positive cone (R+, ·) of a subfield R of C .5 The
degree of the field extension [C : R] is called the ‘degree’ of the cyclic order. Every
linearly orderable field is cyclically orderable, but the converse statement does not
hold (see Theorem 4.6).

In Sect. 5, we study ordered geometric structures. In the literature the order
structures of the three classical geometries (Euclidean, hyperbolic, and elliptic) are
introduced in different ways, either by a linear order (in the Euclidean and hyperbolic
case) or by a cyclic order (in the elliptic case; seeHilbert 1971; Karzel andKroll 1988).
We show that the notion of cyclic order allows to introduce these order structures in
a unified way, namely by a separation relation on the rows of collinear points and
a separation relation on the pencils of concurrent lines which are ‘compatible’ (see
Theorem 5.3).

Correspondingly in plane absolute geometry (the common substratumof Euclidean,
hyperbolic and elliptic geometry) there is no unified notion of an order structure.6 We
close this gap and show in Theorem 5.7 that (a) an order structure can be introduced by
a separation relation on the pencils of lines which is compatible with the orthogonal-
ity relation and invariant under perspectivities and (b) this geometric order structure
corresponds to a linear order of the associated coordinate field (these results extend
the correspondence between geometric and algebraic order structures, which is well-
known from affine and projective geometry).7

We close this article with a geometric interpretation of cyclically ordered fields: a
field F with −1 ∈ F2 is cyclically orderable (by a cyclic order of degree 2) if and
only if F is the Gaußian coordinate field of a Euclidean Hilbert plane (see Theorem
5.8).

4 The notion of a cyclically ordered group is a generalization of the notion of a linearly ordered group:
every linearly ordered group can be cyclically ordered, but the converse does not hold (e.g., the complex
numbers of absolute value one, equipped with the natural cyclic order, cannot be linearly ordered).
5 For an example letC be the field of complex numbers, R the field of real numbers andU the multiplicative
group of complex numbers of value 1.
6 Ordered absolute geometry is restricted to the non-elliptic case (see Pejas 1961; Ewald 2013; Kunze
1981, H Struve and R Struve 2014, R Struve 2015).
7 See (Karzel and Kroll 1988; Pambuccian 2011).
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2 Order relations

In this section, we introduce the terminology of the theory of order relations, which
we use, and recall some basic results. As a reference we refer to Novak (1982, 1984).

Anorder relation<on a setM is a binary relationwhich is irreflexive and transitive.
If any two distinct elements x, y ∈ M are comparable then < is a total linear order
and we call (M,<) a linearly ordered set. The order relation of a linearly ordered set
M is non-empty ifM contains at least two elements. The restriction of < to a subset
N ofM is an order onN . The dual relation <∗ of an order < onM is also an order
onM.

If (M,<M) and (N ,<N ) are linearly ordered sets withM∩N = ∅ then the set
M ∪ N with the binary relation < defined by x < y if either x ∈ M and y ∈ N or
x <M y or x <N y is a linearly ordered set, which is called the linear sum8 of M
and N (denoted by M ⊕ N ).

Definition 2.1 A subset I of a linearly ordered set (M,<) is a interval of (M,<)

if x < z < y with x, y ∈ I implies z ∈ I (for all z ∈ M). A non-empty subset
〈a, b〉< := {x ∈ M : a < x < b} is called an open interval of (M,<). The
associated closed and half-closed intervals are denoted by [a, b]< := {a, b}∪ 〈a, b〉<
and [a, b〉< := 〈a, b〉< ∪ {a} and 〈a, b]< := 〈a, b〉< ∪ {b}.
Theorem 2.2 Let (M,<) be a linearly ordered set. A subset I ⊆ M is an interval of
M if and only if there exist subsets N1,N2 ⊆ M withM = N1 ⊕ I ⊕ N2.

Proof See Novak (1984, Theorem 1.3). ��
A cyclic order relation � on a set M is a ternary relation which is

(1) cyclic: If �(x, y, z) then �(y, z, x).
(2) asymmetric: If �(x, y, z) then not �(z, y, x).
(3) transitive: If �(x, y, z) and �(y, u, z) then �(x, y, u).

If for any distinct elements x, y, z either �(x, y, z) or �(z, y, x), then � is a total
cyclic order and (M,�) is called a cyclically ordered set. The order relation of a
cyclically ordered set M is non-empty if M contains at least three elements.

A cyclic order relation is irreflexive, i.e., if �(x, y, z) then x �= y �= z �= x (see
Novak 1982, Lemma 1.4).

The restriction of� to a subsetN ofM is a cyclic order onN . The dual relation�∗
of a cyclic order relation �, which is defined by �∗(x, y, z) if and only if �(z, y, x),
is also a cyclic order on M (see Novak 1982, Remark 1.6).

We use the convention that �(a, b, c, d) is an abbreviation for the conjunction
[�(a, b, c) and �(b, c, d)].

Definition 2.3 Let (M,�) be a cyclically ordered set. A non-empty subset 〈a, b〉�
:= {x ∈ M : �(a, x, b)} is called an open cyclic interval of (M,�). The associ-
ated closed and half-closed intervals are denoted by [a, b]� := 〈a, b〉� ∪ {a, b} and
[a, b〉� := 〈a, b〉� ∪ {a} and 〈a, b]� := 〈a, b〉� ∪ {b}.
8 or ordinal sum (see Novak 1984)
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There are close relationships between linear and cyclic orders on a setM.
An order relation < on M induces a ternary relation � on M by

�(x, y, z) :⇔ [x < y < z] or [y < z < x] or [z < x < y] (2.1)

Theorem 2.4 Let < be an order relation on a set M and � the associated ternary
relation (2.1). If (M,<) is linearly ordered then (M,�) is cyclically ordered. The
relation � is the unique cyclic order on M such that x < y < z implies �(x, y, z)
(the natural cyclic order which is associated to <).

Proof See Novak (1982, Theorem 3.5, Lemma 3.7; 1984, Theorem 2.4). ��
Conversely, a cyclic order relation � on a setM induces for every element e ∈ M

a binary relation <e on M by

x <e y :⇔ [e = x �= y] or [�(e, x, y)] (2.2)

Theorem 2.5 Let � be a non-empty cyclic order relation on a setM and e ∈ M and
<e the associated binary relation (2.2). If (M,�) is cyclically ordered then (M,<e)

is linearly ordered with the least element e.

Proof See Novak (1982, Theorem 3.1 and Lemma 3.4). ��
The theory of linear orders on a set M and the theory of cyclic orders on M are

closely related by the mappings (2.1) and (2.2) which induce functors between the
associated categories of models.

Theorem 2.6 Let (M,�) be a cyclically ordered set with a non-empty order relation
and e ∈ M. If (M,<e) is the linearly ordered set, which is associated to e by
Theorem 2.5, and (M,�e) the cyclically ordered set, which is associated to (M,<e)

by Theorem 2.4, then (M,�) = (M,�e).

Proof See Novak (1982, Lemma 3.11). ��
However, the theories of linear and of cyclic order on a setM are not definitionally

equivalent (according to Padoa’s method since every cyclically ordered set allows, by
Theorem 2.6, the definition of linear orders with distinct least elements).

Definition 2.7 Let (M,<M) and (N ,<N ) be disjoint linearly ordered sets and� the
natural cyclic order (2.1), which is associated to the linear sum of M and N . Then
(M∪N ,�) is a cyclically ordered set which we call the cyclic sum of (M,<M) and
(N ,<N ), in symbols M � N .

Obviously, the cyclic sum of two linearly ordered sets M and N is a cyclically
ordered set and M � N = N � M. According to the next theorem every cyclically
ordered set can be represented as the cyclic sum of two linearly ordered sets.
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Theorem 2.8 Let (M,�) be a cyclically ordered set and <a and <b the linear orders
onM, which are induced by two distinct elements a, b ∈ M according to (2.2). Then
[a, b〉<a and [b, a〉<b are linearly ordered sets with the cyclic sum (M,�).

Proof The theorem is an immediate consequence of Theorem 2.5 and Definition 2.7.
��

3 Ordered groups

In this section, we introduce the terminology of ordered groups and summarize
some basic results (see Fuchs 1963; Blyth 2005; Świerczkowski 1959; Jakubíc and
Pringerová 1988). Please note that in this article ordered groups will be defined as
totally ordered groups.

(G, ·,<) is a linearly ordered group if (G, ·) is a group and (G,<) a linearly ordered
set with a compatible linear order, i.e., if α, β, γ ∈ G and α < β then γα < γβ and
αγ < βγ .

If (G, ·,<) is a linearly ordered group then G+ = {α ∈ G : 1 < α} is called the
positive cone and G− := (G+)−1 = {α ∈ G : α−1 ∈ G+} = {α ∈ G : α < 1} the
negative cone. According to Fuchs (1963) and Blyth (2005) the following holds:

(1) G = G+ ∪ G− ∪ {1}
(2) G+ ∩ G− = ∅

(3) If α, β ∈ G+ then αβ ∈ G+.
(4) If α ∈ G+ and β ∈ G then β−1αβ ∈ G+.

We call a subset G+ of a group G a linear cone if the conditions (1)–(4) are
satisfied. If G+ is a linear cone of G then G− is also a linear cone of G which we call
the associated inverse cone.

According to (2), (3) and (4), a linear cone is an invariant subset ofG which contains
with two elements α, β their product αβ but no elements δ, ε with δε = 1. If G is an
abelian group then G+ is a cone if (1), (2) and (3) are satisfied. Condition (2) implies
that no element of a linearly ordered group is an involution.

Ordered groups can be characterized in purely group-theoretic terms: a group (G, ·)
is orderable if and only if there exists a linear cone G+ ⊆ G. In this case α < β is
defined by α−1β ∈ G+ (for all α, β ∈ G).

Now let (G, ·) be a group and � a cyclic order on G. We call � compatible with
(G, ·), if α, β, γ, δ ∈ G and �(α, β, γ ) imply �(δα, δβ, δγ ) and �(αδ, βδ, γ δ).

Definition 3.1 (G, ·,�) is a cyclically ordered group if (G, ·) is a group and � a
compatible total cyclic order on G.

Remark 3.2 The cyclic groups of order 1 and 2 are cyclically ordered groups and the
only ones with an empty order relation.

The notion of a cyclically ordered group is a generalization of the notion of a linearly
ordered group according to the next theorem.
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Theorem 3.3 Let (G, ·,<) be a linearly ordered group and � the cyclic order which
is induced on G by (2.1). Then (G, ·,�) is a cyclically ordered group and if <� is the
order relation on G which is given by

1 <� α :⇔ �(α−1, 1, α) (3.1)

then (G, ·,<) = (G, ·,<�).

Proof See (Jakubíc and Pringerová 1988, Lemma 3.1). ��
Every linearly ordered group can be cyclically ordered. The converse does not hold:

the multiplicative group C
1 of complex numbers of absolute value one, equipped with

the natural cyclic order, is a cyclically ordered groupwhich cannot be linearly ordered.
More generally, every cyclically ordered group with an involutory element cannot be
linearly ordered (since linearly ordered groups have no involution).

However, to every cyclically ordered group (G, ·,�) there exists a linearly ordered
group H , such that (G, ·,�) is isomorphic to some subgroup of the direct productC1×
H , equipped with the natural induced (lexicographic) cyclic order (a representation
theorem known as Świerszkowski’s Theorem; see Świerczkowski (1959) or Jakubíc
and Pringerová (1988, Lemma 2.6)).

Theorem 3.4 Let (G, ·,�) be a cyclically ordered group with identity 1. Then the
following holds for all α, β ∈ G with α �= β:

(1) If α2 = β2 = 1 then α = 1 or β = 1 (there is at most one involution)
(2) If �(1, α, β) then �(1, β−1, α−1).

Proof For a proof of (1) let α, β ∈ G with α2 = β2 = 1 and �(1, α, β). Then
�(1, α, β) implies �(α, 1, αβ) and �(β, αβ, 1). According to the transitivity law
�(α, 1, αβ) and�(1, β, αβ) imply�(α, 1, β). which is a contradiction to the assump-
tion �(1, α, β).

(2) holds according to Jakubíc and Pringerová (1988, Lemma 2.6). ��
According to Theorem 3.4 a cyclically ordered group has either no involution or

exactly one involution. We now focus our investigations on the geometric context and
study abelian groups which contain an involution. The motivating examples are the
groups of rotations around a point O of the classical Euclidean and non-Euclidean
geometries, which contain the reflection in O as an involutory element.

Definition 3.5 Let (G, ·) be an abelian group with an involution O . If G+ ⊆ G and
G− := {α−1 : α ∈ G+} and {O}G+ := {Oα ∈ G : α ∈ G+}) then G+ is called a
cyclic cone if the following properties hold:

(1) G = G+ ∪ {O}G+ ∪ {1, O}
(2) G+ ∩ G− = ∅

(3) If α, β, γ, α−1β, β−1γ ∈ G+ then α−1γ ∈ G+.

Remark 3.6 The conditions (1) and (2) of the definition of a cyclic cone correspond to
the conditions (1) and (2) of the definition of a linear cone, especially since {O}G+ =
G− (according to Theorem 3.7).Condition (3) is well-known from the theory of linear
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cones: if G+ is a linear cone of an abelian group G and if the associated linear order
relation is defined, as usual, by α < β if α−1β ∈ G+ (for all α, β ∈ G) then condition
(3) states the transitivity of the <-relation: if α, β, γ ∈ G+ and α < β and β < γ

then α < γ .

The following theorem lists basic properties of a cyclic cone which are conse-
quences of the conditions (1) and (2) of Definition 3.5.

Theorem 3.7 Let (G, ·) be an abelian group with an involution O and G+ ⊆ G a
cyclic cone and G− := {α−1 : α ∈ G+}. Then the following hold:

(1) G = G+ ∪ G− ∪ {1, O} (disjoint union)
(2) G− = {O}G+

Proof We prove the theorem in several steps.
(a) G+ ∩ G− = ∅

This holds by Definition 3.5, (2).
(b) 1, O /∈ G+ and 1, O /∈ {O}G+
It is 1, O /∈ G+, according to Definition 3.5, (2), and this implies 1, O /∈ {O}G+.
(c) G− ⊆ {O}G+
This is a consequence of Definition 3.5, (2) and (1).
(d) G− ∩ {O}G+ = ∅

For a proof of (d) suppose α, β ∈ G+ and α = Oβ. Then α−1 = Oβ−1 and
according to (c) it is β−1, Oβ−1 ∈ {O}G+. Hence β, β−1 ∈ G+ which is contradic-
tion to 3.5, (2).

(e) {O}G+ ⊆ G−
This holds according to (d) and Definition 3.5, (1) and (2).
Statement (2) of the theorem is a consequence of (c) and (e). Statement (1) of the

theorem is implied by (2) and Definition 3.5, (1) and (a) and (b). ��
In analogy to linear cones the following theorem holds for cyclic cones.

Theorem 3.8 Let G be an abelian group with an involution O. If G+ is a cyclic cone
of G then G− := (G+)−1 is also a cyclic cone.

Proof We show that the conditions (1), (2) and (3) of Definition 3.5 of a cyclic cone
hold. According to our assumptions G+ satisfies (1), (2) and (3) and by Theorem 3.7
it is G− = {O}G+.

Condition (1) holds since G = G+ ∪ {O}G+ ∪ {1, O} implies G = {O}G+ ∪
{O} · {O}G+ ∪ {1, O}. Condition (2) holds since G+ ∩ G− = ∅ implies G− ∩
G+ = ∅. For a proof of condition (3) let α, β, γ, α−1β, β−1γ ∈ G−. Then
α−1, β−1, γ −1, αβ−1, βγ −1 ∈ G+ and since (3) holds with respect to G+ it is
αγ −1 ∈ G+ and α−1γ ∈ G−. ��
Theorem 3.9 Let (G, ·) be an abelian group with an involution O and G+ ⊆ G a
cyclic cone. If for α, β ∈ G the binary relation α < β is defined by α−1β ∈ G+ and
if [1, O) := {α ∈ G : 1 < α and α < O} ∪ {1} and [O, 1) := {α ∈ G : O < α and
α < 1} ∪ {O} then the following holds:
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(a) [1, O) = G+ ∪ {1}
(b) [O, 1) = {O}G+ ∪ {O}
(c) ([1, O),<) and ([O, 1),<) are linearly ordered sets.
(d) [1, O) ∪ [O, 1) is a (set-theoretic) partition of G.
(e) (G, ·,�) is a cyclically ordered group if � denotes the order relation of the cyclic

sum of ([1, O),<) and ([O, 1),<).
(f) α ∈ G+ if and only if �(1, α, O).
(g) α ∈ G− if and only if �(O, α, 1).

Proof (a) If α �= 1 then α ∈ [1, O) if 1 < α and α < O . But 1 < α is equivalent
with α ∈ G+ and α < O is equivalent with α−1O ∈ G+ and α−1 ∈ {O}G+ and
α−1 ∈ G− (according to Theorem 3.7, (2)) and α ∈ G+.

(b) If α �= O then α ∈ [O, 1) if O < α and α < 1. But O < α is equivalent with
Oα ∈ G+ and α ∈ {O}G+ and the statement α < 1 is equivalent with α−1 ∈ G+
and α ∈ G− and α ∈ {O}G+ (according to Theorem 3.7, (2)).

(c) The relation< on [1, O) is irreflexive according to the definition of<, transitive
according to Definition 3.5, (3) and total by Definition 3.5, (1).

(d) is an immediate consequence of (a) and (b) and Definition 3.5, (1).
(e) (G, ·,�) is a cyclically ordered set according to Theorem 2.8. The cyclic order

is compatible with the group operation since the relation < is compatible with the
group operation: if α < β then α−1β ∈ G+ and (αδ)−1 · βδ = α−1β ∈ G+ and
hence αδ < βδ for all δ ∈ G. Since G is an abelian group it is δα < δβ.

(f), (g) are immediate consequences of the definitions of [1, O) and [O, 1). ��
Theorem 3.9 induces a mapping which associates to every cyclic cone G+ of G a

cyclic order on G, in other words, a functor F from the class of models of (G, ·,G+)

into the class of models of (G, ·,�). Conversely, there exists a functor G from the
class of models of (G, ·,�) into the class of models of (G, ·,G+), according to the
next theorem.

Theorem 3.10 Let (G, ·,�) be a cyclically ordered abelian group with an involution
O. Then G+ = {α ∈ G : �(1, α, O)} is a cyclic cone which, in turn, induces a cyclic
order �∗ on G (see Theorem 3.9, (e)) with (G, ·,�) = (G, ·,�∗).

Proof Let (G, ·,�) be a cyclically ordered abelian group with an involution O and
G+ = {α ∈ G : �(1, α, O)} and G− := (G+)−1. It is G− = {β : β−1 ∈ G+} = {β :
�(1, β−1, O} = {β : �(1, O, β} = {β : �(O, β, 1)} according to Theorem 3.4, (2).

For a proof, that G+ is a cyclic cone, we show in a first step G− = {O}G+. If
α ∈ G− then �(1, O, α) and (since � is a compatible order relation) �(O, 1, Oα)

and (since � is cyclic) �(1, Oα, O). Hence Oα ∈ G+ and since α = O · Oα it is
G− ⊆ {O}G+.

If, conversely, α ∈ G+ then �(1, α, O) and �(1, O, α−1) (according to The-
orem 3.4, (2)) and, since � is a compatible order relation, �(O, 1, Oα−1). Since
� is cyclic this implies �(1, Oα−1, O) and Oα−1 ∈ G+ and Oα ∈ G− (since
(Oα)−1 = Oα−1 ∈ G+). Hence {O}G+ ⊆ G− and G− = {O}G+.

It remains to show that the defining properties (1), (2) and (3) of a cyclic cone are
satisfied (see Definition 3.5). It is {1, O} � G+ ∪ G−. Hence G+ ∩ G− = ∅ and
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condition (2) holds. Since � is a total cyclic order on G it is G = G+ ∪ G− ∪ {1, O}
and condition (1) holds.

For a proof of condition (3) we first show that �(1, α, β) if and only if
�(1, α−1β, O). If �(1, α, β) then �(1, β−1, α−1) (according to Theorem 3.4, (2))
and �(β, 1, α−1β) (since � is a compatible order relation) and hence �(1, α−1β, β).
Since the relation� is transitive,�(1, α−1β, β) and�(1, β, O) imply�(1, α−1β, O).

If, conversely, �(1, α−1β, O) then �(α, β, Oα) (since � is a compatible order
relation). Now, α ∈ G+ implies�(1, α, 0) and�(O, Oα, 1) and�(1, O, Oα). Since,
in addition, �(1, α, O) it is �(1, α, Oα) (by the transitivity of �). �(1, α, Oα) and
�(α, β, Oα) imply �(1, α, β) (by the law of transitivity).

Let�∗ be the cyclic order onG which is associated toG+ according toTheorem3.9.
By Theorem 3.9, (f) and (g) it is (G, ·,�) = (G, ·,�∗). ��
Theorem 3.11 Let (G, ·) be an abelian group with an involution O and G+ ⊆ G a
cyclic cone. G+ induces a compatible total cyclic order � on G (see Theorem 3.9). If
G+

� denotes the associated cyclic cone (see Theorem 3.10) then G+ = G+
�.

Proof Let (G, ·) be an abelian group with an involution O and G+ ⊆ G a cyclic
cone, � the associated cyclic order on G (see Theorem 3.9) and G+

� = {α ∈ G :
�(1, α, O)} the cone which, in turn, is associated to � (see Theorem 3.10). Then
α ∈ G+ if and only if �(1, α, O) (by Theorem 3.9, (f)) and hence G+ = G+

� (by
Theorem 3.10). ��

The results of the last two theorems can be summarized in terms of the functors
F and G, which were introduced above. If M is a model of the theory of cyclically
ordered abelian groups with an involution O and if N is a model of the theory of
cyclic cones of abelian groups with an involution O thenMGF = M andN FG = N .
Hence the following theorem holds.

Theorem 3.12 The first-order theory of cyclically ordered abelian groups (which con-
tain an involution) and the first-order theory of cyclic cones of abelian groups (which
contain an involution) are definitionally equivalent.9

4 Cyclically ordered fields

An ordered field is a field (K ,+, ·) with a compatible linear order, i.e., if x, y, z ∈ K
and x < y then x + z < y + z and if 0 < x and 0 < y then 0 < xy. Every ordered
field is of characteristic 0.

If K is an ordered field then (K ,+,<) is a linearly ordered abelian group with the
positive cone P = {x ∈ K : 0 < x} and (P, ·) is a linearly ordered subgroup of index
2 of the multiplicative group K̇ of K .10 A subset P of a field K with these properties
is called a positive cone of K (see Karzel and Kroll 1988). A field K is orderable if
and only if there exists a positive cone of K . An alternative characterization is given
in the following theorem.

9 For the terminology we refer to H Struve and R Struve (2019a, 2019b).
10 (K̇ , ·) is not linearly orderable, since −1 ∈ K̇ is an involution, but cyclically orderable with the cyclic
cone {x ∈ K : −1 < x < 0} ∪ {y ∈ K : 1 < y}.
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Theorem 4.1 A commutative field (K ,+, ·) of characteristic �= 2 is orderable if and
only if there exists a homomorphism ϕ from (K̇ , ·) onto the cyclic group ({1,−1}, ·)
of order 2 whose kernel is a linear cone of (K ,+).

Proof Let (K ,+, ·) be a commutative field of characteristic �= 2 and P the kernel of
a homomorphism ϕ from (K̇ , ·) onto a cyclic group of order 2. If P is a linear cone of
(K ,+) then (K ,+) is a linearly orderable group. Since the kernel of ϕ is a group it
is P · P ⊆ P and hence K an orderable field. The inverse statement is an immediate
consequence of the definition of an ordered field. ��

The field C of complex numbers cannot be equipped with an order relation. How-
ever,C can be endowedwith an order structure in the followingway. Themultiplicative
group (Ċ, ·) of complex numbers is the direct product of the group (C1, ·) of com-
plex numbers of absolute value 1 and the group (R+, ·) of positive real numbers (in
other words: complex numbers allow the introduction of polar coordinates). Since
(C1, ·) is a cyclically ordered group (if endowed with the natural cyclic order relation)
and (R+, ·) a linearly ordered group (if endowed with the natural linear order of real
numbers) their direct product (Ċ, ·) is a cyclically ordered group (according to the
representation theorem of Świerczkowski 1959). This is the natural order structure on
the multiplicative group of complex numbers.

Since C is a vector space of dimension 2 over R, the linear order on (R,+) induces
a linear order on (C,+)11 which, in turn, induces a cyclic order on (C,+) (see Theo-
rem 3.3). This is the natural order structure on the additive group of complex numbers.

The order structures of (Ċ, ·) and (C,+) are ‘compatible’ in the following sense:
the kernel R

+ of the homomorphism from (Ċ, ·) onto (C1, ·) is a linear cone of the
additive group (R,+) of the subfield R of C.

The compatability condition can be expressed in amore general form if the notion of
a partially ordered group is introduced. (G, ·,<) is a partially linearly ordered group
if < is a partial linear order on G, which is compatible with the group operation. This
is equivalent with the existence of a non-empty invariant subset P ofG with P ·P ⊆ P
and P ∩ P−1 = ∅ (with P−1 := {α−1 : α ∈ P}). The subset P is called a cone of
the partial order < of G.

If G is an abelian group then every partial order of G is a total order of a subgroup
of G, as the next theorem shows.

Theorem 4.2 Let P be a cone of a partial linear order < of an abelian group (G, ·).
Then (P ∪ P−1 ∪ {1}, ·,<) is a totally ordered subgroup of G.

Proof If P is a cone of a partial linear order< ofG then P · P ⊆ P and P∩ P−1 = ∅.
Since G is an abelian group this implies that (P ∪ P−1 ∪ {1}, ·) is a group. Obviously
P is a linear cone of this group and < a total order. ��

The field of complex numbers is the motivating example for our notion of a cycli-
cally ordered field.

11 The lexicographical order with the linear cone {x + iy ∈ C : y > 0 or (y = 0 and x > 0)}, or, in polar
coordinates, the set of complex numbers with an angular coordinate α satisfying 0 ≤ α < π .
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Definition 4.3 A commutative field (C,+, ·) of characteristic �= 2 is cyclically order-
able if there exists a homomorphismϕ from (Ċ, ·) onto a cyclically orderable subgroup
of (Ċ, ·) whose kernel is the cone of a partial linear order of (C,+).

Remark 4.4 Acyclically ordered field is a pair (C, ϕ) of a fieldC and a homomorphism
ϕ which satisfies the conditions of Definition 4.3. According to Sperner (1949) a half-
ordered field is a pair (C, ϕ) with a field C and a homomorphism ϕ from (Ċ, ·) onto
the cyclic subgroup ({1,−1}, ·) of Ċ of order 2. However, the notion of a cyclically
ordered field is not a generalization of half-ordered fields, since every finite field of
characteristic �= 2 can be endowed with a half-order, but not with a cyclic order (since
cyclically ordered fields are of characteristic 0; see Theorem 4.5).

For the sake of a precise terminology we now call ‘ordered fields’ (which satisfy
the definition at the beginning of this section) linearly ordered fields.

Theorem 4.5 Let (C,+, ·) be a cyclically orderable field and P the kernel of the
associated homomorphism from (Ċ, ·) onto a cyclically orderable subgroup of (Ċ, ·).
Then P is the positive cone of a linearly orderable field (R,+, ·) and (Ċ, ·) is a
cyclically orderable group. The fields R and C are of characteristic 0.

Proof Let (C,+, ·) be a field and ϕ a homomorphism from (Ċ, ·) onto a cyclically
orderable subgroup C∗ of (Ċ, ·) whose kernel P is a cone of a partial linear order of
(C,+). Theorem 4.2 implies that P is the cone of a totally ordered subgroup (R,+)

of (C,+) with R := P ∪ P−1 ∪ {1}. Since P is a subgroup of (Ċ, ·), it is P · P ⊆ P
and hence R · R ⊆ R. Thus (R,+, ·) is a linearly orderable field with positive cone
P . This implies that (P, ·) is a linearly orderable subgroup of index 2 of (R, ·) and
that R and C are fields of characteristic 0.

The mapping ϕ is an epimorphism from the abelian group Ċ onto the subgroup C∗
of Ċ . Hence (Ċ, ·) is the direct product of the kernel of ϕ and the image of ϕ, that
is, of (P, ·) and (C∗, ·). Since (C∗, ·) is cyclically and (P, ·) linearly orderable, their
direct product (Ċ, ·) is a cyclically orderable group (according to the representation
theorem of Świerczkowski (1959)). ��
According to Theorem 4.5, to every cyclically ordered field C there is associated a
subfield R which is linearly orderable. The degree [C : R] of the field extension is the
dimension of the vector space C over R and the index of the abelian subgroup (R,+)

of (C,+) (cp. Theorem 4.2).We call this value the degree of a cyclic order on a fieldC .
The field of complex numbers can be endowed with a cyclic order of degree 2 with

the field of real numbers as associated subfield. This situation will be of particular
interest in plane geometry (see Sect. 5.3). In the general algebraic context we make
no assumptions about the degree of a cyclic order.

Theorem 4.6 Every linearly ordered field is cyclically orderable. The converse state-
ment does not hold.

Proof Let (K ,+, ·) be a linearly ordered field. According to Theorem 4.1 there exists a
homomorphismϕ from (K̇ , ·)onto the cyclic group ({1,−1}, ·)of order 2whosekernel
is a linear cone of (K ,+). Since the cyclic group of order 2 is cyclically orderable
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(see Remark 3.2) this shows that K is a cyclically orderable field (according to
Definition 4.3). The field of complex numbers is cyclically but not linearly orderable.

��
We close this section with an intuitive geometric interpretations of cyclically

ordered fields: a field C is cyclically orderable if generalized polar coordinates can
be introduced, i.e., if (C, ·) is the direct product of a cyclically orderable subgroup
(U , ·) and the positive cone (R+, ·) of a subfield R of C .12

5 Ordered geometric structures

The study of the concept of order differs in various aspects between algebra and
geometry. We note that geometric structures are provided with an order structure by a
betweenness relation (which corresponds to a pair of linear order relations (≤,≥)) or
by a separation relation (which corresponds to a pair of cyclic order relations (�,�∗);
see Pambuccian 2011). Thus from a geometric point of view it seems preferable to
define a cyclic order structure on a group G by a separation relation, but this is neither
definitionally equivalent nor bi-interpretable with the algebraic notion of a cyclically
ordered group (see Definition 3.1) since a separation relation cannot distinguish
between the two associated cyclic orders. However, the following theorem holds.

Theorem 5.1 For a group (G, ·) with at least four elements are equivalent:
(a) G can be endowed with a separation relation //, which is compatible: if αβ//γ δ

then αε, βε//γ ε, δε and εα, εβ//εγ, εδ for all α, β, γ, δ, ε ∈ G.
(b) G can be endowed with a cyclic order �, which is compatible: if �(α, β, γ ) then

�(δα, δβ, δγ ) and �(αδ, βδ, γ δ) for all α, β, γ, δ ∈ G.

Proof (b)⇒ (a): Let (G, ·)be a groupwith at least four elementswhich can be endowed
with a cyclic order �. Then a separation relation can be defined by αγ//βδ :⇔
�(α, β, γ, δ) or �(α, δ, γ, β) (see Huntington 1935, Sect. 1.5). If � is compatible
with the group operation of G then // is also compatible.

(a) ⇒ (b): Let (G, ·) be a group with at least four elements which can be endowed
with a compatible separation relation //. Then // determines a pair (�,�∗) of cyclic
order relations which can be defined in terms of // as in Huntington (1935, Sect. 4.2).
If, in addition, // is compatible with the group operation of G then � and �∗ are also
compatible. ��

According Theorem 5.1, a cyclically ordered group can be given by a cyclic order
or by a separation relation. We will use this equivalence without further ado.

5.1 The order structure of the classical plane geometries

There are three classical plane geometries, namely the Euclidean, hyperbolic, and
elliptic planes over fields of characteristic �= 2 (see Bachmann 1973 for an axiomatic

12 For the classical example let C be the field of complex numbers, R the field of real numbers and U the
multiplicative group of complex numbers of value 1.
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foundation of these geometries). Their order structures are introduced in the literature
in different ways, either by a linear order (a betweenness relation) or—in the elliptic
case—by a cyclic order (a separation relation; see Hilbert 1971; Karzel and Kroll
1988; Pambuccian 2011).

We show that the notion of cyclic order allows the introduction of order structures
in a unified way.

Definition 5.2 A Euclidean, hyperbolic or elliptic plane is called orderable if the fol-
lowing holds:

(1) A separation relation // can be defined on every row13 of collinear points.
(2) A separation relation //∗ can be defined on every pencil of concurrent lines.
(3) The relations // and //∗ are compatible, i.e., if A, B,C, D are collinear points and

a, b, c, d concurrent lines and A |a and B |b and C |c and D |d then AB//CD if
and only if ab//∗cd.

Theorem 5.3 For a Euclidean, hyperbolic or elliptic plane E the following two con-
ditions are equivalent:

(a) The plane E is orderable in the sense of Definition 5.2.
(b) The coordinate field of E is orderable.

Proof Case 1:LetE be an elliptic plane (seeBachmann1973,Chap.VI). The incidence
structure of E is a projective plane with a field K of coordinates which is commutative
and of characteristic �= 2 (see Bachmann 1973, Sect. 16.3). Hence, according to
Prieß-Crampe (Prieß-Crampe 1983, Chap. V, Sects. 1, 2), the conditions (a) and (b)
of Theorem 5.3 are equivalent.

Case 2: Let E be a Euclidean plane (see Bachmann 1973, Chap. IV). The incidence
structure of E is an affine plane with a field K of coordinates which is commutative
and of characteristic �= 2. Hence, according to R Struve (2018, Theorem 4.5), the
conditions (a) and (b) are equivalent.

Case 3: Let E be a hyperbolic plane (see Bachmann 1973, Chap. V). Then E has
an orderable field K of coordinates which is commutative and of characteristic �= 2
(see Bachmann 1973, Sect. 15.1) and there exist separation relations // and //∗ which
satisfy the conditions (1), (2) and (3) of Definition 5.2 (see R Struve 2012 for a
reflection geometric definition of these relations). Hence for any hyperbolic plane the
statements (a) and (b) of Theorem 5.3 are (trivially) equivalent. ��

5.2 Ordered absolute geometry

The term ‘absolute geometry’ was coined by Bolyai to characterize the part of
Euclidean geometry that does not depend on the parallel postulate. This implies that
a theorem is not only valid in Euclidean geometry but also in hyperbolic geometry
(the non-Euclidean geometry of Bolyai, Gauß and Lobatschewsky) and in elliptic
geometry.

13 The set of points on a line a is called a row of collinear points. The set of lines through a point A is
called a pencil of concurrent lines.
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Bachmann (1973) defines a common substratum of Euclidean, hyperbolic, and
elliptic geometry by a group-theoretic axiom system whose models are called Bach-
mann groups or—in the geometric interpretation—planes of absolute geometry. No
assumptions are made about order or continuity.

An order structure is introduced in an additional step either by a linear order relation
or—in the elliptic case—by a cyclic order relation (see Pejas 1961; Kunze 1981, H
Struve and R Struve 2014; R Struve 2015).

In this section we introduce an order structure for all planes of absolute geometry
in a unified way, based on the notion of cyclic order. We follow the group-theoretical
approach of Bachmann.

Basic assumption. Let G be a group which is generated by an invariant set S of
involutory elements.

Notation: The elements of S are called lines and will be denoted by lower case latin
letters. The involutory elements of S2 are called points and will be denoted by upper
case letters A, B, . . .. Let P be the set of points. The ‘stroke relation’ α | β is an
abbreviation for the statement that α, β and αβ are involutory elements. The statement
α | δ and β | δ is abbreviated by α, β | δ. A point A and a line b are incident if A |b.
Lines a, b ∈ S are orthogonal if a |b. Points A, B ∈ P are polar if A | B.

The mapping a → aα, A → Aα of S onto S and P onto P is called the motion
induced by α ∈ G (we write βα instead of α−1βα). A point M is a midpoint of A and
B if AM = B. Dually, a line m is a midline of a and b if am = b. If a and b have a
common point then a midline is called an angle bisector of a and b.

B1. For A, B there exists c with A, B |c.
B2. If A, B |c, d then A = B or c = d.
B3. If a, b, c |D then abc ∈ S.
B4. If a, b, c |d then abc ∈ S.
B5. There exists a, b, c with a |b and c � a and c � b and c � ba.

The axioms make the following statements: according to B1 and B2 any two points
have a unique joining line and according to B3 and B4 the theorem of three reflections
holds: if three lines have a common point or a common perpendicular, then the product
of the reflections in these lines is a line reflection. According to B5 there exist two
orthogonal lines a and b and a point C which is not incident with a or b.

If (G, S, P) satisfies theBasicAssumption and the axiomsB1–B5 then (G, S, P) is
aBachmanngroup and the associated geometric structure aplane of absolute geometry.
If there exist three mutual orthogonal lines then (G, S, P) is an elliptic Bachmann
group respectively an elliptic plane of absolute geometry (see Bachmann 1973). If
any two intersecting lines have an angle bisector and any two points have a midpoint
then (G, S, P) is a Bachmann group with free mobility.

Now we will introduce an order structure on pencil of lines and on rows of points.
Let S(O) denote the pencil of lines through a point O . By B3 it is S(O)3 ⊆ S(O) and
S(O) ∪ S(O)2 is a generalized dihedral group with the abelian subgroup D(O) :=
S(O)2 of rotations around O . The next theorem shows that a cyclic order on D(O)

induces a cyclic order on S(O) and vice versa.

Theorem 5.4 For a point O of a Bachmann group (G, S, P) are equivalent:
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(1) The group D(O) of rotations around O is cyclically orderable.
(2) The pencil S(O) of lines through O is orderable by a cyclic order relation � such

that �(a, b, c) implies �(auv, buv, cuv) for all lines a, b, c, u, v through O.
(3) The pencil S(O) of lines through O is orderable by a separation relation //

such that ab//cd implies (auv)(buv)//(cuv)(duv) for all lines a, b, c, d, u, v

through O.

Proof Let (G, S, P) be a Bachmann group and O ∈ P .
(1) ⇒ (2): Let (D(O),�) be a cyclically ordered group and g a fixed line through

O . The cyclic order on D(O) induces a cyclic order �∗ on S(O) by �∗(a, b, c) if
�(ga, gb, gc) for a, b, c |O .

�(ga, gb, gc) implies�(ga ·uv, gb ·uv, gc ·uv) for u, v |O since� is compatible
with the group operation of D(O). Hence �∗(a, b, c) implies �∗(auv, buv, cuv) for
all lines a, b, c, u, v through O .

(2) ⇒ (1): Let S(O) be a pencil of lines through O which is orderable by a cyclic
order �∗ such that �∗(a, b, c) implies �∗(auv, buv, cuv) for all lines a, b, c, u, v

through O .
The cyclic order on S(O) induces a cyclic order � on D(O) = {ga : a | O} by

�(ga, gb, gc) if �∗(a, b, c). It remains to show that the relation � is compatible with
the group operation of D(O), that is, if�(ga, gb, gc) then�(ga ·uv, gb ·uv, gc ·uv)

for all uv ∈ D(O). This holds since�(ga, gb, gc) implies�∗(a, b, c) and—by (2)—
�(auv, buv, cuv) and �(ga · uv, gb · uv, gc · uv).

(2) ⇔ (3): This is an immediate consequence of the mutual definability of a cyclic
order relation � on a group G and a separation relation // on G (see Theorem 5.1 and
Huntington (1935, Sects. 1.5, 4.2)). ��

Hence on a pencil of lines the notion of cyclic order can be introduced in purely
group-theoretical terms.

Definition 5.5 A pencil of lines through a point O is called cyclically orderable if the
group of rotations around O is cyclically orderable (in other words, if the group of
rotations around O contains a cyclic cone).

We now show that the notion of cyclic order allows the introduction of an order
structure in absolute geometry in a unified way (including the elliptic case).

Definition 5.6 Aplane of absolute geometry is called orderable if the following holds:

• O1. A separation relation // can be defined on every pencil of lines.
• O2. If a, b, c, d and a′, b′, c′, d ′ are concurrent lines, which are perspectively
related (i.e., there exist distinct collinear points A, B,C, D with A | a, a′ and
B |b, b′ and C |c, c′ and D |d, d ′) then ab//cd if and only if a′b′//c′d ′.

• O3. The relation // is compatible with the orthogonality relation: if a, b, c, d are
concurrent lines and a′, b′, c′, d ′ the perpendiculars from a point O to a, b, c, d,
respectively, then ab//cd if and only if a′b′//c′d ′.

Theorem 5.7 For a plane E of absolute geometry are equivalent:

(a) The plane E is orderable in the sense of Definition 5.6.
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(b) The coordinate field of E is linearly orderable.

Proof (a)⇒ (b): Let E be a plane of absolute geometry which is orderable in the sense
of Definition 5.6.

If E is an elliptic plane then the incidence structure of E is a projective plane and
the separation relation // on the pencils of lines induces a separation relation //∗ on
the row of points: if A, B,C, D are collinear points of E then AB separate CD (in
symbols AB //∗ CD) if there exist concurrent lines a, b, c, d of E with A |a and B |b
and C | c and D | d and ab//cd. According to condition O2 of Definition 5.6 the
relation //∗ is well-defined and compatible with //, i.e., if A, B,C, D are collinear
points and a, b, c, d concurrent lines of E and A |a and B |b and C |c and D |d then
AB //∗ CD if and only if ab // cd. Hence the conditions of Definition 5.2 are satisfied
and the field of coordinates of E is orderable by Theorem 5.3.

Now let E be a non-elliptic plane. According to the main theorem of Bachmann
(1973, Sects. 6, 11) E can be extended to a Pappian Fanoian projective plane (the
projective ideal plane) by introducing ideal points and ideal lines. The ideal points are
the pencils of lines S(ab) = {c : abc ∈ S}with a �= b. The set of lines through a point
E is called a proper pencil (or a proper ideal point). The proper pencils correspond in
a one-to-one way to the points of E .

Ideal lines are defined by means of contractions with center O (see Bachmann
1973, p. 307). A contraction is a mapping from S into S which is induced by the
product of two semi-rotations χuv and χvu around O (with lines u, v | O and u � v)
and maps a line a onto the axis of the glide reflections auv resp. avu. The line aχuv

can constructively be obtained by dropping perpendiculars and constructing fourth
reflection lines: a) drop the perpendicular g from O to the line a with foot F ; b)
construct the fourth reflection line guv; c) drop the perpendicular from F to guv (this
line is aχuv). A contraction maps a line, which is orthogonal to a line e through O ,
onto a line which is orthogonal to e (according to Bachmann 1973, p. 307).

For contractions the following holds (see Bachmann 1973, p. 307):

(†) A contraction maps a proper pencil into a proper pencil.
(‡) For any improper pencil which is not a pencil of perpendiculars of a line through

O there exists a contraction with center O which takes the improper pencil into
a proper one.

Ideal lines are sets of ideal points. A set of pencils that can be transformed by a
contraction with center O into the set of pencils which have a common line g is called
an ideal line. An ideal line whose pencils have a common line a is a proper (ideal)
line.

The set of pencils, whose lines have a common perpendicular through O , is called
the line at infinity of the projective ideal plane. Let A denote the affine specialization
with respect to this line at infinity. E can be represented as a subplane of A which
contains with a point of A all lines of A which are incident with this point.

A contraction of E with center O induces a dilatation of A with center O , i.e., a
collineation with fixed point O which maps every line of A onto a parallel line (see
Bachmann 1973, p. 307; Bachmann and Behnke 1974, p. 79). We denote the group of
dilatations of A which is generated by the set of contractions of E with center O by
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D(O). The groupD(O) is a subgroup of the full group of dilatations ofAwith center
O . According to (†) and (‡) any finite set of collinear points of A can be mapped by
an element ofD(O) onto a set of collinear points of E and any finite set of concurrent
lines of A can be mapped by an element of D(O) onto a set of concurrent lines of E .

A dilatation κ ofAwith center O preserves the separation relation // on the pencils
of lines of E : let a, b, c, d ∈ S and E ∈ P and a, b, c, d | E and E �= O and
ab//cd. A contraction is the product of two semi-rotations around O . A semi-rotation
χ around O maps the proper pencil of lines through E onto a proper pencil of lines
through a point Eχ and operates on a, b, c, d by a) dropping perpendiculars from O
to a, b, c, d (which preserves the separation relation // by O3); b) the construction of
fourth reflection lines of lines through O (which preserves the separation relation //

by Definition 5.5, Theorem 5.4); c) by dropping perpendiculars from Eχ to the lines
through O , which are constructed in b) (which preserves the separation relation // by
O3).

We now show that the ideal affine plane A is orderable and this implies—as is
well-known—that the field of coordinates is orderable.

We start with an extension of the separation relation // of E to A and define for
lines a, b, c, d of A that a, b separate c, d (in symbols ab ‖ cd) if a, b, c, d are con-
current lines and if there exists a dilatation of D(O) which maps a, b, c, d onto lines
a′, b′, c′, d ′ of E with a′b′//c′d ′.

We note that if a, b, c, d are concurrent lines of A and δ, κ ∈ D(O) dilatations,
which map a, b, c, d onto concurrent lines aδ, bδ, cδ, dδ and aκ, bκ, cκ, dκ of E then
the dilatation δ−1κ ofAmaps the lines aδ, bδ, cδ, dδ onto aκ, bκ, cκ, dκ , respectively.
Hence aδ, bδ//cδ, dδ is equivalent with aκ, bκ//cκ, dκ (since contractions preserve
the relation //). This implies that the extension of the separation relation // to A is
also a separation relation.

Hence the Pappian affine plane A can be endowed with a separation relation ‖ on
the pencils of lines which induces a separation relation ‖∗ on the rows of points: if
A, B,C, D are collinear points ofA then AB separate CD (in symbols AB ‖∗ CD) if
there exist concurrent lines a, b, c, d of A with A |a and B |b and C |c and D |d and
ab‖cd. The relation is well-defined since ‖∗ is defined by ‖ which, in turn, is defined
by the relation // of E which satisfies O2. According to O2 the relations ‖ and ‖∗ are
compatible, i.e., if A, B,C, D are collinear points and a, b, c, d concurrent lines of
A and A |a and B |b and C | c and D |d then AB ‖∗ CD if and only if ab ‖ cd. This
implies according to R Struve (2018, Theorem 4.5) that the field of coordinates of A
is orderable.

(b) ⇒ (a): Let E be a plane of absolute geometry and PE the associated projective-
metric ideal plane over a field K and a symmetric bilinear form f . A motion of E
can be extended to a projective collineation of PE . The group of motions of E can be
represented as a subgroup of the orthogonal group O3(K , f ) (see Bachmann (1973,
Sects. 6.9, 6.10).

If K is a (linearly) orderable field then PE is an orderable projective plane, i.e.,
PE can be provided with an order structure by a separation relation on the rows of
points which is invariant with respect to perspectivities (see Prieß-Crampe (1983,
Chap. V, Sect. 1)). This implies that the dual projective plane is also orderable (see
Prieß-Crampe 1983, p. 175). Hence PE can be endowed with a separation relation //
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on the pencils of lines which is invariant with respect to perspectivities and satisfies
O1 and O2. The restriction of // to E is a separation relation on E which satisfies O1
and O2. It remains to show that also O3 is satisfied.

For a proof let a, b, c, d be lines through a point E and a′, b′, c′, d ′ the perpendic-
ulars from a point O to a, b, c, d, respectively. The permutation of the pencil of lines
through E , which associates to every line the orthogonal line through E , is a product
of perspectivities (see Bachmann 1973, Sect. 5.6) and hence preserves the separation
relation // of PE . Thus if a∗, b∗, c∗, d∗ are the lines through E which are orthogonal
to a, b, c, d, respectively, then ab//cd if and only if a∗b∗//c∗d∗. The quadruples of
concurrent lines a∗, b∗, c∗, d∗ and a′, b′, c′, d ′ are perspectively related: if A, B,C, D
are the poles of a, b, c, d (i.e., the unique points which are incident with all lines which
are orthogonal to a, b, c, d, respectively) then A |a∗, a′ and B |b∗, b′ andC |c∗, c′ and
D |d∗, d ′. ByO2 it is a∗b∗//c∗d∗ if and only if a′b′//c′d ′. Hence ab//cd is equivalent
with a′b′//c′d ′. The restriction of // to E is a separation relation on E which satisfies
O1, O2 and O3. ��

5.3 Cartesian and Gaußian coordinate planes

Let E be a Euclidean plane of absolute geometry (see Bachmann (1973) or, equiva-
lently, the axiomatic characterization of Euclidean planes without order or continuity
by Schnabel (1981)).

In the analytic geometry of Descartes the points of a line of E (of a ‘coordinate
axis’) are interpreted as the elements of a Cartesian coordinate field. In the Cartesian
coordinate plane over a field K of characteristic �= 2 points of the plane are pairs
(x, y) of elements from K , lines are triples [u, v, w], point-line incidence is given by
ux + vy + w = 0, whereas the orthogonality of the lines [u, v, w] and [u′, v′, w′] is
given by kuu′ + vv′ = 0 (in terms of a constant k, with −k not a square in K ). The
Cartesian interpretation of a field corresponds thus to the classical interpretation of
real numbers as elements of a ‘number line’.

In the associated Gaußian coordinate plane the set of all points of the plane is
interpreted as a Gaußian coordinate field F (F is isomorphic to K [x]/(x2 + k); an
element z ∈ F can be represented in the form z = x + yε with x, y ∈ K and
ε2 = −k; themapping κ , which associates to x+yε the element x−yε is an involutory
automorphism of F which leaves the elements of K fixed; ‖z‖ := zzκ is called the
norm of z which satisfies ‖zz′‖ = ‖z‖‖z′‖). Points of the Gaußian coordinate plane
are the elements from F , lines are the sets uK +v with u, v ∈ F and u �= 0, point-line
incidence is given by the ε−relation and the orthogonality of the lines uK + v and
u′K + v′ is given by uu′κ + u′uκ = 0.14

A Euclidean plane is a Hilbert plane if the plane axioms of incidence, order and
congruence of Hilbert’s Grundlagen der Geometrie are satisfied.

Theorem 5.8 For a field F with −1 ∈ F2 are equivalent:

(a) F is cyclically orderable by a cyclic order of degree 2.

14 For this ‘complex representation’ of singular geometries (i.e., in any quadrangle with three right angles
the fourth angle is a right one) see Schnabel (1981) and Bachmann (1989, Sect. 7).
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(b) F is the Gaußian coordinate field of a Euclidean Hilbert plane.

Proof (a) ⇒ (b): Let F be a field with −1 ∈ F2 which is endowed with a cyclic order
of degree 2. Then F is a quadratic field extension of a linearly orderable field K (see
Theorem 4.5). Hence K is formally real and −1 /∈ K 2 and F = K (i) with i = √−1
(since {i, 1} is a basis of the vector space F over K ). We show that K is a Pythagorean
field.

Let K+ = {x ∈ K : x > 0} and ϕ an epimorphism from (Ḟ, ·) onto a cyclically
orderable subgroup (U , ·)with kernel ker(ϕ) = K+. Then (Ḟ, ·) is the direct product
of the kernel of ϕ and the image of ϕ, that is, Ḟ = K+ ⊗ U . If z = au is the unique
representation of an element z ∈ Ḟ with a ∈ K+ and u ∈ U then zκ = aκuκ = auκ

is the unique representation of zκ . Hence u ∈ U implies uκ , u−1 ∈ U and since
‖u‖u−1 = uκ it is ‖u‖ ∈ K+ ∩ U and ‖u‖ = 1. Hence ‖z‖ = ‖au‖ = ‖a‖‖u‖ =
a2‖u‖ = a2 is a square and since ‖z‖ = ‖x + yi‖ = x2 + y2 with x, y ∈ K this
shows that K is a Pythagorean field.

This implies (according to Pejas (1961) and Bachmann (1973, Sect. 20.13)) that the
Cartesian coordinate plane over K with the orthogonality constant k = 1 is a Hilbert
plane and F the associated Gaußian coordinate field.

(b) ⇒ (a): Let E be a Euclidean Hilbert plane with the Cartesian coordinate field
K , the orthogonality constant k and the Gaußian coordinate field F . Since every right
angle of E has an angle bisector, we can assume k = 1 and F = K (i) with i := √−1.
According to Pejas (1961) and Bachmann (1973, Sect. 20.13) K is a linearly orderable
Pythagorean field.

Let O denote the origin of the Gaußian coordinate plane (i.e., the neutral element
of the additive group of F), and let UF = {x + yi ∈ F : x2 + y2 = 1} be the unit
circle with center O (the set of elements of (F, ·) with norm 1).

Then it is well-known that the pencil of lines through O is cyclically orderable
(in the sense of Definition 5.5), that every line through O has a common point with
the unit circle UF and that (UF , ·) is a cyclically orderable subgroup of (F, ·) (see
Hessenberg and Diller 1967; Bachmann 1973; Lenz 1967, Sect. 2). As for the field
C = R(i) of complex numbers one verifies that the mapping ϕ from (F, ·) onto
(UF , ·), which associates to x + yi the element (x + yi)/

√
x2 + y2 of norm 1, is a

group homomorphism with kernel P = {x ∈ K : x > 0}. Since P is the positive cone
of the additive group of K this shows that F can be endowed with a cyclic order of
degree 2. ��

References

Bachmann, F.: Aufbau der Geometrie aus dem Spiegelungsbegriff, 2nd edn. Springer, Heidelberg (1973)
Bachmann, F.: Ebene Spiegelungsgeometrie. BI-Verlag, Mannheim (1989)
Bachmann, F., Behnke, H.: Fundamentals of Mathematics, Vol. II, Geometry. MIT Press, London (1974)
Blyth, T.S.: Lattices and Ordered Algebraic Structures. Springer, London (2005)
Borsuk, K., Szmielew, W.: Foundations of Geometry. North-Holland, Amsterdam (1960)
Coxeter, H.S.M.: Non-Euclidean Geometry. University of Toronto Press, Toronto (1947)
Coxeter, H.S.M.: Introduction to Geometry. Wiley, New York (1961)
Ewald, G.: Geometry: An Introduction. ISHI, New York (2013)
Fuchs, L.: Partially Ordered Algebraic Systems. Pergamon Press, New York (1963)

123



Beitr Algebra Geom (2020) 61:649–669 669

Hessenberg, G., Diller, J.: Grundlagen der Geometrie. de Gruyter, Berlin (1967)
Hilbert, D.: Grundlagen der Geometrie, 11th edn. Teubner, Stuttgart (1972). (translated by L. Unger, Open

Court, La Salle, Ill., under the title: Foundations of Geometry (1971))
Huntington, E.V.: A set of independent postulates for cyclic order. Proc. Natl. Acad. Sci. USA 2, 630–631

(1916)
Huntington, E.V.: Sets of completely independent postulates for cyclic order. Proc. Natl. Acad. Sci. USA

10, 74–78 (1924)
Huntington, E.V.: Inter-relations among the four principal types of order. Trans. Am. Math. Soc. 38, 1–9

(1935)
Jakubíc, J., Pringerová, G.: Representations of cyclically ordered groups. Časop. Pěstov Matem. 113, 184–
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