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Abstract
In this paper, we investigate some geometric properties of Clairaut submersions whose
total space is a locally product Riemannian manifold.
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1 Introduction

Given a C®°-submersion F from a (semi)-Riemannian manifold (N, gx) onto a
(semi)-Riemannian manifold (B, gg), according to the circumstances on the map
F:(N,gn) — (B, gp), we get the following:

Riemannian submersion (Falcitelli et al. 2004; O’Neill 1966; Gray 1967),
almost Hermitian submersion (Watson 1976), paracontact paracomplex submersios
(Giindiizalp and Sahin 2014), quaternionic submersion (Ianus et al. 2008), slant sub-
mersion (Akyol and Giindiizalp 2016; Giindiizalp 2013b; Giindiizalp and Akyol 2018;
Sahin 2011), anti-invariant submersion (Beri et al. 2016; Sahin 2010), Clairaut sub-
mersion (Bishop 1972; Giindiizalp 2019; Tastan and Gerdan 2017; Lee et al. 2015;
Allison 1996), conformal anti-invariant submersion (Akyol 2017; Akyol and Sahin
2016), etc.

In the present paper, we take into account Clairaut anti-invariant submersions from
a locally product Riemannian manifold onto a Riemannian manifold. In Sect. 2, we
recall some concepts, which are needed in the following section. In Sect. 3, we first
obtain necessary and sufficient conditions for a curve on the manifold N of anti-
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invariant submersions to be geodesic. Then we present a new characterization for
Clairaut anti-invariant submersions. Also, we present an example.

2 Preliminaries
2.1 Riemannian submersions

A C®-submersion F : N — B between two Riemannian manifolds (N, gy) and
(B, gp) is called a Riemannian submersion if it satisfies conditions:

(i) the fibres F~1(b), b € B, are r-dimensional Riemannian submanifolds of N,
where r = dim(N) — dim(B).

(ii) F, preserves the lengths of horizontal vectors.
The vectors tangent to the fibres are called vertical and those normal to the fibres
are called horizontal. We denote by (ker F) the vertical distribution, by (ker Fot
the horizontal distribution and by v and % the vertical and horizontal projection.
A horizontal vector field X1 on N is said to be fundamental if X is F-related to
a vector field X, on B.

A Riemannian submersion F : N — B defines two (1, 2) tensor fields 7 and A
on N, by the formulas:

Tx, X2 = hVyx,vX2 + vVyx, hX> (1)
and
Ax, X2 =vVipx, hXo + hVpx,vXo 2)

for any X1, X2 € x(N) (see Falcitelli et al. 2004). Using (1) and (2), one can get

Vu, Uz = Ty, Uy + Vi, Ua; 3)
Vu, X1 =Ty, X1 + h(Vy, X1); 4
Vx, Uy = Ax, U1 +v(Vx, Uy), S
Vx, X2 = Ax, X2 + h(Vx, X2), (6)

for any X1, X» € I'((ker F,)%), Uy, Uy € T'(ker F,). In addition, if X is basic then
h(Vy, X1) = h(Vx,Up) = Ax, Uj.
The fundamental tensor fields 7, A satisfy:

Ty, Uy =Ty, U1, Ui, Up € T'(ker Fy); (N

1
Ax Xa = —Ax, X1 = Jv[X1, Xal, X1, Xa € C((ker F)™b). (8)
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2.2 Anti-invariant submersions

Let N be a n-dimensional smooth manifold. If it is endowed with a structure (P, gn),
where P is a (1, 1) tensor, and gy is a Riemannian metric, satisfying

P2X; = X1, gn(PXi, X2) = gn(X1, PX2), )

forany X1, Xo € x(N),itis called an almost product Riemannian manifold. An almost
product Riemannian manifold N is called a locally product Riemannian manifold if

VP =0, (10)

where V is the Riemannian connection on N (Yano and Kon 1984).

Definition 2.1 (Giindiizalp 2013a) Let (N, gn, P) be an almost product Riemannian
manifold and (B, gp) a Riemannian manifold. Suppose that there exists a Riemannian
submersion F : N — B such that ker F, is anti-invariant with respect to P, i.e.,
P(kerF,) C (kerF,)T. At that time, we call F is an anti-invariant Riemannian
submersion.

In this case, the horizontal distribution (ker Fy)+ decomposed as
(ker F,)" = P(ker F.) &, (11)

where 7 is the complementary orthogonal distribution of P (ker Py) in (ker F,)+ and
it is invariant with respect to P.
For any X € F(kerF*)J-, we write

PX,=DX| + EXq, (12)

where DX and E X are vertical and horizontal components of PX;. If n = 0, at
that time an anti-invariant submersion is called a Lagrangian submersion.

3 Clairaut anti-invariant submersions

Let M be a revolution surface in R with rotation axis d. Vx € M, we state by r(x) the
distance from x to d. Given a geodesic c : / C R — M on M, let ¢(s) be the angle
between c(s) and the meridian curve through c(s),s € J. A well-known Clairaut’s
theorem tells that for any geodesic ¢ on M the product r sin ¢ is constant along c, i.e.,
it is independent of s. In the submersion theory, Bishop (1972) shows the concept of
Clairaut submersion in the following way.

Definition 3.1 (Bishop 1972) A Riemannian submersion F : (N, gy, P) — (B, gp)
is called a Clairaut submersion if there exists a positive function » on N such that, for
any geodesic c on N, the function (r o ¢) sin ¢ is constant, where, for any s, ¢(s) is the
angle between ¢(s) and the horizontal space at c(s). Moreover, he gave a necessary
and sufficient condition for a Riemannian submersion to be a Clairaut submersion.
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Theorem 3.1 (Bishop 1972) Let F : (N, gn, P) — (B, gp) be Riemannian submer-
sion with connected fibres. Then, F is a Clairaut submersion with r = €8 if and only if
each fibre is completely umbilical and has the mean curvature vector field H = —V g,
where V g is the gradient of the function g with respect to gy .

Proposition 3.1 Let F be an anti-invariant submersion from a locally product Rieman-
nian manifold (N, gn, P) onto a Riemannian manifold (B, gp). Ifc:J C R - N
is a regular curve and U1 (s) and X(s) are the vertical and horizontal parts of the
tangent vector field c(s) = W of c(s), respectively, then c is a geodesic if and only if

along ¢
vVeDXy + Ax, PUy + Ty, PU + (Ax, + Ty )EX1 =0, (13)

and
hV¢EX| +hV:PU + (Ax, + Ty,)DX1 = 0. (14)

Proof From (10), we obtain
Veé = P(VePE). (15)

Since ¢ = U; + X, we can write
Veé = P(Vy,4x, P(UL + X1)). (16)
By direct computations, we get
Ve¢ = P(Vy, PUL + Vy, PX1 + Vx, PU1 + Vx, PX1).
Using (12), we get
Vee = P(Vy, PUL 4+ Vy, (DX + EX ) + Vx, PU; + Vx, (DX + EX7)).
Using (3)—(6), we have

Ve = P(W(VePUL + VeEX ) + (Ax, + Ty) (DX + EXy)
+vVeDX| + Ax, PU| + Ty, PUy).

Taking the vertical and horizontal pieces of this equation. we have
vVeDXy + Ax, PUy + Ty, PUy + (Ax, + Ty, )EX| = vPVec (17

and
hV¢EX| + hVePU + (Ax, + Ty, )DX1 = hPV¢c. (18)

From (17) and (18), it is simple to see that c is a geodesic if and only if (13) and (14)
hold. O
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Theorem 3.2 Let F be an anti-invariant submersion from a locally product Rieman-
nian manifold (N, gn, P) onto a Riemannian manifold (B, gp). At that time F is a
Clairaut submersion with r = €8 if and only if along c the following equation holds

gn(hVeEX | + (Ax, + Tu)DXy, PUy) = gn(Vg, X1 U112, (19)

where Uy (s) and X1 (s) are the vertical and horizontal parts of the tangent vector field
¢(s) of the geodesic c(s) on N, severally.

Proof Let c(s) be a geodesic with speed /b on N, at that time, we get
b= lleE)].
Thence, we conclude that
gN(X1(5). X1(9)) = beos ¢(s),  gn(U1(s), U1(s)) = bsin® p(s),  (20)

where @(s) is the angle between ¢(s) and the horizontal space at c(s). Differentiating
the second expression in (20), we get

d d
75 8N W1), Ui () = 28N (Vi) Ui (s), U1 (s)) = 2b cos o (s) sin w(S)f(S)-

(21)
Thus, using (9) and (10), we obtain
. do
gn (V) PUL(s), PU1(s)) = bcos ¢(s) sin w(S)E(S)' (22)
By (14), we arrive at along c,
. dy
—gN(hV¢EX | + (Ax, + Ty, )DX,, PU;) = bcos g s1n(p$. (23)
Moreover, F is a Clairaut anti-invariant submersion with r = ¢ if and only if
d d d
a(eg sing) =0 & e <d_§ sing + COS@%) =0.
Striking recent equation with non-zero element b sin ¢, we obtain
d d
—gb sin’ ¢ + b cos ¢ sin <p—¢ =0. 24)
ds ds
From (23) and (24), we have
d
gn(hV:EX| + (Ax, + Ty,)DX1, PUy) = d_f(c(s))||U1||2~ (25)
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Since Z—f(c(s)) = ¢lg] = gn(Vg,¢) = gn(Vg, X1), the claim (19) follows
from (25). |

Theorem 3.3 Let F be a Clairaut anti-invariant submersion from a locally product
Riemannian manifold (N, gn, P) onto a Riemannian manifold (B, gp) withr = e8.
At that time, we get

Apus PX1 = X1(9)Us (26)

for X1 € nand Uz € ker F, such that PU5 is basic.

Proof From Theorem 3.1, we obtain
Ty, U, = —gn (U1, U2) Vg, (27)

where Uy, U, € ker F,. If we crash this equation by PU3, Uz € ker F, such that PU3
is fundamental and from (3), we get

en(Vy, Uz, PU3) = —gn (U1, Ux)gn (Vg, PU3).
Thus, we have
en(Vy, PU3, Up) = gn (U1, Ux)gn(Vg, PU3),

since gy (Ua, PU3) = 0.
By (10), we get

gn(PVy, Uz, Uz) = gn(Ur, U2)gn (Vg, PU3).
Using (9), we arrive at
gn(Vu, U3, PUz) = gn(Ur, U2)gn (Vg, PU3).
Again, using (3), we obtain
gn(Ty,Us, PU2) = gn (Ui, U2)gn (Vg, PU3).
Thus, by (27),
—gn W1, U3)gn(Vg, PU2) = gn (Ui, U2)gn(Vg, PU3) (28)
If take U1 = Us and exchange U; with U3 in (28), we provide
— |U21%gn (Vg, PUY) = gn (U1, U2)gn(Vg, PU). (29)
Using (28) with U; = U3 and (29), we get

g3, (Uy, Un)

—en(Vg, PU) = ———0F
1T 111U 12

gn(Vg, PU}). 30)
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On the other hand, using (10), we obtain

gn(Vuy, PU3, PX1) = gn(PVy,Us, PX1)
for any X € n. Thus, using (9), we get

gn(Vy, PU3, PX1) = gn(Vy, U3, X1).
Using (3) and (27), we obtain
en(Vy, PU3, PX1) = —gn(Uz, U3z)gn(Vg, X1). (31)

Since PUjs is fundamental and from A Vy, PUs = Apy,Us, we have

gn(hVy, PUs, PX1) = gn(Apy; Uz, PX1). (32)
Using (31),(32) and the anti-symmetry of .4, we find

en(Apus PX1, Un) = gn(Vg, X1)gn (Us, U2). (33)

Since Apy; PX1, Uy and Us are vertical and Vg is horizontal, we derive (26).
Now, if Vg € Pker Fx, then from (30) and the equality situation of Schwarz
inequality, we get the following. O

Corollary 3.1 Let F be a Clairaut anti-invariant submersion from a locally product
Riemannian manifold (N, gn, P) onto a Riemannian manifold (B, gg) with r = €8.
If Vg € Pker Fx, at that time, either g is constant on Pker Fx or the fibres of F are
I-dimensional.

Furthermore, while the function g is constant, Vg = 0. Hence, by Theorem 3.1
and Corollary 3.1, we get that:

Corollary 3.2 Let F be a Clairaut anti-invariant submersion from a locally product
Riemannian manifold (N, gn, P) onto a Riemannian manifold (B, gg) withr = e8
and Vg € Pker Fx. If dim(ker Fx) > 1, at that time, the fibres of F are completely
geodesic if and only if Apy, PX1 = 0 for Us € ker F, such that PUj is fundamental
and X1 € n.

In addition, if the anti-invariant submersion F in Theorem 3.3 is Lagrangian, at
that time, Apy, PX| = 0 always zero, since 7 = {0}. Hence, we obtain that:

Corollary 3.3 Let F be a Clairaut Lagrangian submersion from a locally product
Riemannian manifold (N, gn, P) onto a Riemannian manifold (B, gg) withr = e$.
Then either the fibres of F are one dimensional or they are totally geodesic.

Now, we present example of a Clairaut submersion.
Example 3.1 Let N be a Euclidean 3-space defined by N = {(x1,x2,x3) € R> :
(x1,x2) # (0,0) and x3 # 0}.
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We consider the product structure (P, gy) on N given by gy = e2%3 (dx1)2 +
€23 (dx2)? 4 (dx3)? and P(a, b, c) = (a, —b, ¢).
. . —x3_0 —x3_0 0
A P-basis can be given by {e; = ¢ X3W’ er=¢e )‘3E, e3 = E}'
Let B be {(t, x3) € R%}. We select the metric gg on B, gg = €23 (dt)? + (dx3)%.
Now, we defined amap F : (N, P, gny) — (B, gp) by

X1+ x2
F(xi,x2,x3) = ( 7 ,X3>.

At that time, by direct calculations, we get

el —en
ker F, = span {Ul =
V2

and

0
(kerF*)J‘ = span {X] = 1t e X } .

= 2=

V2 9x3
Then, it is simple to see that F is a Riemannian submersion. Furthermore PU| =
Xiimplies that P (ker F,) C (ker F)t. Consequently, F is anti-invariant Riemannian
submersion. Furthermore, the fibres of F' are frankly completely umbilical, from they

are 1-dimensional. In this place, we will find thata g € C°°(N) filling Ty, Uy = —Vg.
The Riemannian connection V of the metric tensor gy is given by

2gN(Vy, Uz, Us) = U1gn (U2, U3) + Ugn (Uy, U3) — Usgn (Uz, Uy)
—gn([Uz, Usl, Uy) — gn([U1, Usl, Up) + gn (U3, [Ur, U2)),

for any Uy, Ua, U3 € x(N). Using the above formula for the Riemannian metric gy,
we can simply calculate that

Vel =Ve,er = ——
e 2 9x3

and
Vee2 = Veer = 0.
Hence, we get

1
Vi, Uy = E(qul — Ve e2 — Vee1 + Ve,e)
0

3)63 '
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By (3), we have

ad
Ty, Uy = _3_)63.

Moreover, for any g € C°°(N) the gradient of g with respect to gy is given by

3
ij0g 0 dg 0 dg d dg 0d
Vo= YA L e B D a8 0 B

Nox; ax; 9x1 0x1 dx2 x| 0x3 dx3

At that time, it is simple to see that Vg = 8x for the function g = x3 and 7y, Uy =
—Vg = —x3. In addition to, for all U; € F(kerF ), we obtain

Tu,Us = —|Us|*Vg.

Hence, by Theorem 3.1, the submersion F is Clairaut.
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