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Abstract
In this paper, we investigate some geometric properties of Clairaut submersions whose
total space is a locally product Riemannian manifold.
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1 Introduction

Given a C∞-submersion F from a (semi)-Riemannian manifold (N , gN ) onto a
(semi)-Riemannian manifold (B, gB), according to the circumstances on the map
F : (N , gN ) → (B, gB), we get the following:

Riemannian submersion (Falcitelli et al. 2004; O’Neill 1966; Gray 1967),
almost Hermitian submersion (Watson 1976), paracontact paracomplex submersios
(Gündüzalp and S. ahin 2014), quaternionic submersion (Ianus et al. 2008), slant sub-
mersion (Akyol and Gündüzalp 2016; Gündüzalp 2013b; Gündüzalp and Akyol 2018;
S. ahin 2011), anti-invariant submersion (Beri et al. 2016; S. ahin 2010), Clairaut sub-
mersion (Bishop 1972; Gündüzalp 2019; Tas.tan and Gerdan 2017; Lee et al. 2015;
Allison 1996), conformal anti-invariant submersion (Akyol 2017; Akyol and S. ahin
2016), etc.

In the present paper, we take into account Clairaut anti-invariant submersions from
a locally product Riemannian manifold onto a Riemannian manifold. In Sect. 2, we
recall some concepts, which are needed in the following section. In Sect. 3, we first
obtain necessary and sufficient conditions for a curve on the manifold N of anti-
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invariant submersions to be geodesic. Then we present a new characterization for
Clairaut anti-invariant submersions. Also, we present an example.

2 Preliminaries

2.1 Riemannian submersions

A C∞-submersion F : N → B between two Riemannian manifolds (N , gN ) and
(B, gB) is called a Riemannian submersion if it satisfies conditions:

(i) the fibres F−1(b), b ∈ B, are r -dimensional Riemannian submanifolds of N ,

where r = dim(N ) − dim(B).

(ii) F∗ preserves the lengths of horizontal vectors.
The vectors tangent to the fibres are called vertical and those normal to the fibres
are called horizontal. We denote by (ker F∗) the vertical distribution, by (ker F∗)⊥
the horizontal distribution and by v and h the vertical and horizontal projection.
A horizontal vector field X1 on N is said to be fundamental if X1 is F-related to
a vector field X∗1 on B.

A Riemannian submersion F : N → B defines two (1, 2) tensor fields T and A
on N , by the formulas:

TX1X2 = h∇vX1vX2 + v∇vX1hX2 (1)

and

AX1X2 = v∇hX1hX2 + h∇hX1vX2 (2)

for any X1, X2 ∈ χ(N ) (see Falcitelli et al. 2004). Using (1) and (2), one can get

∇U1U2 = TU1U2 + ∇̂U1U2; (3)

∇U1X1 = TU1X1 + h(∇U1X1); (4)

∇X1U1 = AX1U1 + v(∇X1U1), (5)

∇X1X2 = AX1X2 + h(∇X1X2), (6)

for any X1, X2 ∈ �((ker F∗)⊥), U1,U2 ∈ �(ker F∗). In addition, if X1 is basic then
h(∇U1X1) = h(∇X1U1) = AX1U1.

The fundamental tensor fields T ,A satisfy:

TU1U2 = TU2U1, U1,U2 ∈ �(ker F∗); (7)

AX1X2 = −AX2X1 = 1

2
v[X1, X2], X1, X2 ∈ �((ker F∗)⊥). (8)
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2.2 Anti-invariant submersions

Let N be a n-dimensional smooth manifold. If it is endowed with a structure (P, gN ),

where P is a (1, 1) tensor, and gN is a Riemannian metric, satisfying

P2X1 = X1, gN (PX1, X2) = gN (X1, PX2), (9)

for any X1, X2 ∈ χ(N ), it is called an almost productRiemannianmanifold.An almost
product Riemannian manifold N is called a locally product Riemannian manifold if

∇P = 0, (10)

where ∇ is the Riemannian connection on N (Yano and Kon 1984).

Definition 2.1 (Gündüzalp 2013a) Let (N , gN , P) be an almost product Riemannian
manifold and (B, gB) a Riemannian manifold. Suppose that there exists a Riemannian
submersion F : N → B such that ker F∗ is anti-invariant with respect to P, i.e.,
P(ker F∗) ⊆ (ker F∗)⊥. At that time, we call F is an anti-invariant Riemannian
submersion.

In this case, the horizontal distribution (ker F∗)⊥ decomposed as

(ker F∗)⊥ = P(ker F∗) ⊕ η, (11)

where η is the complementary orthogonal distribution of P(ker P∗) in (ker F∗)⊥ and
it is invariant with respect to P.

For any X1 ∈ �(ker F∗)⊥, we write

PX1 = DX1 + EX1, (12)

where DX1 and EX1 are vertical and horizontal components of PX1. If η = 0, at
that time an anti-invariant submersion is called a Lagrangian submersion.

3 Clairaut anti-invariant submersions

Let M be a revolution surface in R3 with rotation axis d. ∀x ∈ M , we state by r(x) the
distance from x to d. Given a geodesic c : J ⊂ R → M on M, let ϕ(s) be the angle
between c(s) and the meridian curve through c(s), s ∈ J . A well-known Clairaut’s
theorem tells that for any geodesic c on M the product r sin ϕ is constant along c, i.e.,
it is independent of s. In the submersion theory, Bishop (1972) shows the concept of
Clairaut submersion in the following way.

Definition 3.1 (Bishop 1972) A Riemannian submersion F : (N , gN , P) → (B, gB)

is called a Clairaut submersion if there exists a positive function r on N such that, for
any geodesic c on N , the function (r ◦c) sin ϕ is constant, where, for any s, ϕ(s) is the
angle between ċ(s) and the horizontal space at c(s). Moreover, he gave a necessary
and sufficient condition for a Riemannian submersion to be a Clairaut submersion.
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Theorem 3.1 (Bishop 1972) Let F : (N , gN , P) → (B, gB) be Riemannian submer-
sion with connected fibres. Then, F is a Clairaut submersion with r = eg if and only if
each fibre is completely umbilical and has the mean curvature vector field H = −∇g,
where ∇g is the gradient of the function g with respect to gN .

Proposition 3.1 Let F be an anti-invariant submersion from a locally product Rieman-
nian manifold (N , gN , P) onto a Riemannian manifold (B, gB). If c : J ⊂ R → N
is a regular curve and U1(s) and X1(s) are the vertical and horizontal parts of the
tangent vector field ċ(s) = W of c(s), respectively, then c is a geodesic if and only if
along c

v∇ċDX1 + AX1 PU1 + TU1 PU1 + (AX1 + TU1)EX1 = 0, (13)

and
h∇ċ E X1 + h∇ċ PU1 + (AX1 + TU1)DX1 = 0. (14)

Proof From (10), we obtain
∇ċ ċ = P(∇ċ Pċ). (15)

Since ċ = U1 + X1, we can write

∇ċ ċ = P(∇U1+X1 P(U1 + X1)). (16)

By direct computations, we get

∇ċ ċ = P(∇U1 PU1 + ∇U1 PX1 + ∇X1 PU1 + ∇X1 PX1).

Using (12), we get

∇ċ ċ = P(∇U1 PU1 + ∇U1(DX1 + EX1) + ∇X1 PU1 + ∇X1(DX1 + EX1)).

Using (3)–(6), we have

∇ċ ċ = P(h(∇ċ PU1 + ∇ċ E X1) + (AX1 + TU1)(DX1 + EX1)

+v∇ċ DX1 + AX1 PU1 + TU1 PU1).

Taking the vertical and horizontal pieces of this equation. we have

v∇ċDX1 + AX1 PU1 + TU1 PU1 + (AX1 + TU1)EX1 = vP∇ċ ċ (17)

and
h∇ċ E X1 + h∇ċ PU1 + (AX1 + TU1)DX1 = hP∇ċ ċ. (18)

From (17) and (18), it is simple to see that c is a geodesic if and only if (13) and (14)
hold. �
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Theorem 3.2 Let F be an anti-invariant submersion from a locally product Rieman-
nian manifold (N , gN , P) onto a Riemannian manifold (B, gB). At that time F is a
Clairaut submersion with r = eg if and only if along c the following equation holds

gN (h∇ċ E X1 + (AX1 + TU1)DX1, PU1) = gN (∇g, X1)‖U1‖2, (19)

where U1(s) and X1(s) are the vertical and horizontal parts of the tangent vector field
ċ(s) of the geodesic c(s) on N, severally.

Proof Let c(s) be a geodesic with speed
√
b on N , at that time, we get

b = ‖ċ(s)‖2.

Thence, we conclude that

gN (X1(s), X1(s)) = b cos2 ϕ(s), gN (U1(s),U1(s)) = b sin2 ϕ(s), (20)

where ϕ(s) is the angle between ċ(s) and the horizontal space at c(s). Differentiating
the second expression in (20), we get

d

ds
gN (U1(s),U1(s)) = 2gN (∇ċ(s)U1(s),U1(s)) = 2b cosϕ(s) sin ϕ(s)

dϕ

ds
(s).

(21)
Thus, using (9) and (10), we obtain

gN (h∇ċ(s)PU1(s), PU1(s)) = b cosϕ(s) sin ϕ(s)
dϕ

ds
(s). (22)

By (14), we arrive at along c,

− gN (h∇ċ E X1 + (AX1 + TU1)DX1, PU1) = b cosϕ sin ϕ
dϕ

ds
. (23)

Moreover, F is a Clairaut anti-invariant submersion with r = eg if and only if

d

ds
(eg sin ϕ) = 0 ⇔ eg

(
dg

ds
sin ϕ + cosϕ

dϕ

ds

)
= 0.

Striking recent equation with non-zero element b sin ϕ, we obtain

dg

ds
b sin2 ϕ + b cosϕ sin ϕ

dϕ

ds
= 0. (24)

From (23) and (24), we have

gN (h∇ċ E X1 + (AX1 + TU1)DX1, PU1) = dg

ds
(c(s))‖U1‖2. (25)
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Since dg
ds (c(s)) = ċ[g] = gN (∇g, ċ) = gN (∇g, X1), the claim (19) follows

from (25). �
Theorem 3.3 Let F be a Clairaut anti-invariant submersion from a locally product
Riemannian manifold (N , gN , P) onto a Riemannian manifold (B, gB) with r = eg.
At that time, we get

APU3 PX1 = X1(g)U3 (26)

for X1 ∈ η and U3 ∈ ker F� such that PU3 is basic.

Proof From Theorem 3.1, we obtain

TU1U2 = −gN (U1,U2)∇g, (27)

whereU1,U2 ∈ ker F�. If we crash this equation by PU3,U3 ∈ ker F� such that PU3
is fundamental and from (3), we get

gN (∇U1U2, PU3) = −gN (U1,U2)gN (∇g, PU3).

Thus, we have

gN (∇U1 PU3,U2) = gN (U1,U2)gN (∇g, PU3),

since gN (U2, PU3) = 0.
By (10), we get

gN (P∇U1U3,U2) = gN (U1,U2)gN (∇g, PU3).

Using (9), we arrive at

gN (∇U1U3, PU2) = gN (U1,U2)gN (∇g, PU3).

Again, using (3), we obtain

gN (TU1U3, PU2) = gN (U1,U2)gN (∇g, PU3).

Thus, by (27),

− gN (U1,U3)gN (∇g, PU2) = gN (U1,U2)gN (∇g, PU3) (28)

If take U1 = U3 and exchange U1 with U2 in (28), we provide

− ‖U2‖2gN (∇g, PU1) = gN (U1,U2)gN (∇g, PU2). (29)

Using (28) with U1 = U3 and (29), we get

− gN (∇g, PU1) = g2N (U1,U2)

‖U2‖2‖U1‖2 gN (∇g, PU1). (30)
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On the other hand, using (10), we obtain

gN (∇U2 PU3, PX1) = gN (P∇U2U3, PX1)

for any X1 ∈ η. Thus, using (9), we get

gN (∇U2 PU3, PX1) = gN (∇U2U3, X1).

Using (3) and (27), we obtain

gN (∇U2 PU3, PX1) = −gN (U2,U3)gN (∇g, X1). (31)

Since PU3 is fundamental and from h∇U2 PU3 = APU3U2, we have

gN (h∇U2 PU3, PX1) = gN (APU3U2, PX1). (32)

Using (31),(32) and the anti-symmetry of A, we find

gN (APU3 PX1,U2) = gN (∇g, X1)gN (U3,U2). (33)

Since APU3 PX1, U2 and U3 are vertical and ∇g is horizontal, we derive (26).
Now, if ∇g ∈ Pker F�, then from (30) and the equality situation of Schwarz

inequality, we get the following. �
Corollary 3.1 Let F be a Clairaut anti-invariant submersion from a locally product
Riemannian manifold (N , gN , P) onto a Riemannian manifold (B, gB) with r = eg.
If ∇g ∈ Pker F�, at that time, either g is constant on Pker F� or the fibres of F are
1-dimensional.

Furthermore, while the function g is constant, ∇g ≡ 0. Hence, by Theorem 3.1
and Corollary 3.1, we get that:

Corollary 3.2 Let F be a Clairaut anti-invariant submersion from a locally product
Riemannian manifold (N , gN , P) onto a Riemannian manifold (B, gB) with r = eg

and ∇g ∈ Pker F�. If dim(ker F∗) > 1, at that time, the fibres of F are completely
geodesic if and only if APU3 PX1 = 0 for U3 ∈ ker F∗ such that PU3 is fundamental
and X1 ∈ η.

In addition, if the anti-invariant submersion F in Theorem 3.3 is Lagrangian, at
that time, APU3 PX1 = 0 always zero, since η = {0}. Hence, we obtain that:

Corollary 3.3 Let F be a Clairaut Lagrangian submersion from a locally product
Riemannian manifold (N , gN , P) onto a Riemannian manifold (B, gB) with r = eg.
Then either the fibres of F are one dimensional or they are totally geodesic.

Now, we present example of a Clairaut submersion.

Example 3.1 Let N be a Euclidean 3-space defined by N = {(x1, x2, x3) ∈ R3 :
(x1, x2) �= (0, 0) and x3 �= 0}.
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We consider the product structure (P, gN ) on N given by gN = e2x3(dx1)2 +
e2x3(dx2)2 + (dx3)2 and P(a, b, c) = (a,−b, c).

A P-basis can be given by {e1 = e−x3 ∂
∂x1

, e2 = e−x3 ∂
∂x2

, e3 = ∂
∂x3

}.
Let B be {(t, x3) ∈ R2}. We select the metric gB on B, gB = e2x3(dt)2 + (dx3)2.

Now, we defined a map F : (N , P, gN ) → (B, gB) by

F(x1, x2, x3) =
(
x1 + x2√

2
, x3

)
.

At that time, by direct calculations, we get

ker F∗ = span

{
U1 = e1 − e2√

2

}

and

(ker F∗)⊥ = span

{
X1 = e1 + e2√

2
, X2 = ∂

∂x3

}
.

Then, it is simple to see that F is a Riemannian submersion. Furthermore PU1 =
X1implies that P(ker F∗) ⊂ (ker F∗)⊥.Consequently, F is anti-invariant Riemannian
submersion. Furthermore, the fibres of F are frankly completely umbilical, from they
are 1-dimensional. In this place, wewill find that a g ∈ C∞(N ) filling TU1U1 = −∇g.
The Riemannian connection ∇ of the metric tensor gN is given by

2gN (∇U1U2,U3) = U1gN (U2,U3) +U2gN (U1,U3) −U3gN (U2,U1)

−gN ([U2,U3],U1) − gN ([U1,U3],U2) + gN (U3, [U1,U2]),

for any U1,U2,U3 ∈ χ(N ). Using the above formula for the Riemannian metric gN ,

we can simply calculate that

∇e1e1 = ∇e2e2 = − ∂

∂x3

and

∇e1e2 = ∇e2e1 = 0.

Hence, we get

∇U1U1 = 1

2
(∇e1e1 − ∇e1e2 − ∇e2e1 + ∇e2e2)

= − ∂

∂x3
.
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By (3), we have

TU1U1 = − ∂

∂x3
.

Moreover, for any g ∈ C∞(N ) the gradient of g with respect to gN is given by

∇g =
3∑
i, j

gi jN
∂g

∂xi

∂

∂x j
= e−2x3 ∂g

∂x1

∂

∂x1
+ e−2x3 ∂g

∂x2

∂

∂x2
+ ∂g

∂x3

∂

∂x3
.

At that time, it is simple to see that ∇g = ∂
∂x3

for the function g = x3 and TU1U1 =
−∇g = −x3. In addition to, for all U2 ∈ �(ker F∗), we obtain

TU2U2 = −‖U2‖2∇g.

Hence, by Theorem 3.1, the submersion F is Clairaut.
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