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Abstract
We identify a family of torus representations such that the corresponding singular
symplectic quotients at the 0-level of the moment map are graded regularly symplec-
tomorphic to symplectic quotients associated to representations of the circle. For a
subfamily of these torus representations, we give an explicit description of each sym-
plectic quotient as a Poisson differential space with global chart as well as a complete
classification of the graded regular diffeomorphism and symplectomorphism classes.
Finally, we give explicit examples to indicate that symplectic quotients in this class
may have graded isomorphic algebras of real regular functions and graded Poisson
isomorphic complex symplectic quotients yet not be graded regularly diffeomorphic
nor graded regularly symplectomorphic.
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1 Introduction

LetG be a compact Lie group andG → U(V ) a finite dimensional unitary representa-
tionofG.HereU(V ) stands for the unitary groupofV , i.e., the groupof automorphisms
preserving the hermitian inner product 〈·, ·〉. To describe the orbit space V /G, i.e.,
the space of G-orbits in V , invariant theory is employed as follows. There exists a
system of fundamental real homogeneous polynomial invariants ϕ1, ϕ2, . . . , ϕm ; we
refer to the system ϕ1, ϕ2, . . . , ϕm as a Hilbert basis. This means that any real invari-
ant polynomial f ∈ R[V ]G can be written as a polynomial in the ϕ’s, i.e., there
exists a polynomial g ∈ R[x1, x2, . . . , xm] such that f = g(ϕ1, ϕ2, . . . , ϕm). More
generally, by a theorem of Schwarz (1975), for any smooth function f ∈ C∞(V )G

there exists g ∈ C∞(Rm) such that f = g(ϕ1, ϕ2, . . . , ϕm). The vector-valued map
ϕ = (ϕ1, ϕ2, . . . , ϕm) gives rise to an embedding ϕ of V /G into euclidean space R

m ,
which is called the Hilbert embedding. We denote its image by X := ϕ(V ). It turns
out that ϕ is actually a diffeomorphism onto X , i.e., the pullback ϕ∗ via ϕ induces an
isomorphism of algebras C∞(X) := {g : X → R | ∃G ∈ C∞(Rm) : g = G|X }
and C∞(V /G) := C∞(V )G . Moreover, the restriction of ϕ∗ to the subalgebra
R[X ] := {g : X → R | ∃G ∈ R[x1, x2, . . . , xm] : g = G|X } isomorphically
to R[V /G] := R[V ]G preserving the grading. Here we use the natural grading
deg(xi ) := deg(ϕi ). We say that ϕ∗ is a graded regular diffeomorphism. The algebra
R[X ] can be understood as the quotient of R[x1, x2, . . . , xm] by the kernel of the
restriction map, which we refer to as the ideal of off-shell relations. Its generators are
assumed to be homogeneous in the natural grading. The real variety underlying R[X ]
is the Zariski closure X of X inside R

m . The space X itself is not a real variety but
a semialgebraic set, meaning that it is defined by polynomial equations as well as
inequalities (Bochnak et al. 1998). How the inequalities cutting out X inside X are
obtained has been explained in Procesi and Schwarz (1985).

The hermitian vector space V is equipped with the symplectic form ω = Im〈·, ·〉.
Moreover, the action of G on V is Hamiltonian and admits a unique homogeneous
quadratic moment map J : V → g∗ where g∗ denotes the dual of the Lie algebra g of
G. The zero fiber Z := J−1(0) of J is referred to as the shell. It is a real subvariety
of V that is often singular, in which case it has a conical singularity at the origin. As
the moment map J is equivariant with respect to the coadjoint action of G on g∗, the
group G acts on Z . The space M0 := Z/G of G-orbits in Z is called the (linear)
symplectic quotient. By the work (Sjamaar and Lerman 1991) the smooth structure
C∞(M0) is given by the quotient C∞(V )G/IG

Z where IG
Z is the invariant part of the

vanishing ideal IZ := { f ∈ C∞(V ) | f|Z = 0}. Note that C∞(M0) is in a canonical
way a Poisson algebra containing the Poisson subalgebra R[M0] := R[V ]G/I GZ ,
where I GZ := IZ ∩ R[V ]G . The image Y := ϕ(Z) of Z under the Hilbert map is a
semialgebraic subset of X . Its Zariski closure Y is described by the generators of the
kernel in R[x1, x2, . . . , xm] of the algebra morphism xi 
→ ϕi |Z ∈ C∞(M0). We refer
to it as the ideal of on-shell relations. The inequalities that cut out Y from Y are the
same as those cutting out X from X .

Let us now assume that we have two symplectic quotients M0 and M ′
0 constructed

from the representations G → U(V ) and G ′ → U(V ′), respectively. By a symplecto-
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morphism between M0 and M ′
0 we mean a homeomorphism F : M0 → M ′

0 such that
the pullback F∗ is an isomorphism of Poisson algebras F∗ : C∞(M ′

0) → C∞(M0).
We say that F is regular if F∗(R[M ′

0]) ⊆ R[M0]. A regular symplectomorphism is
called graded regular if themap (F∗)|R[M ′

0] : R[M ′
0] → R[M0] preserves the grading.

By the Lifting Theorem of Farsi et al. (2013), an isomorphism f : R[M ′
0] → R[M0]

of Poisson algebras gives rise to a unique symplectomorphism if it is compatible with
the inequalities.

When G = T
� is a torus, a representation V of complex dimension n can be

described in terms of a weight matrix A ∈ Z
�×n ; we use M0(A) to denote the sym-

plectic quotient associated to the representation with weight matrix A. In Farsi et al.
(2013, Theorem 7), it is demonstrated that for a weight matrix of the form A = (D|C)

where D is an �×� diagonal matrix with strictly negative entries on the diagonal andC
is an �× 1 matrix with strictly positive entries, the corresponding symplectic quotient
by T

� is graded regularly symplectomorphic to the symplectic orbifold C/Zη where
η = η(A) is a quantity determined by the entries of A; see Definition 3. However,
based on the explicit description of the ring R[C]Zη of real regular functions on the
orbifold C/Zη given in the proof of (Farsi et al. 2013, Theorem 7), it is easy to see
that R[C]Zη1 and R[C]Zη2 are isomorphic as algebras over R if and only if η1 = η2.
Hence, an immediate corollary of Farsi et al. (2013, Theorem 7) is the following.

Corollary 1 For i = 1, 2, let Ai = (Di |Ci ) where each Di is an �i × �i diagonal
matrix with strictly negative entries on the diagonal and each Ci is an �i × 1 matrix
with strictly positive entries. Then the symplectic quotients M0(A1) and M0(A2) are
regularly diffeomorphic if and only if η(A1) = η(A2), in which case they are graded
regularly symplectomorphic.

More recently, it was shown in Herbig et al. (2015, Theorem 1.1) that for general
symplectic quotients, symplectomorphisms with symplectic orbifolds are rare, even
if the graded regular requirements are dropped; see also Herbig and Seaton (2015).
Hence, one cannot use isomorphisms with quotients by finite groups to approach a
more general classification of higher-dimensional symplectic quotients by tori.

In this paper, we give a generalization of Corollary 1 as a step towards a general
classification of linear symplectic quotients by tori into (graded) regular symplecto-
morphism classes. While Corollary 1 addresses a class of symplectic quotients by tori
that can be reduced to quotients by finite groups, we consider here a class of symplectic
quotients by tori that are graded regularly symplectomorphic to symplectic quotients
by the circle T

1. To state our main result, we say that a weight matrix A ∈ Z
�×(�+k) is

Type I Ik if it can be expressed in the form A = (D, c1n, . . . , ckn) with D a diagonal
matrix with strictly negative diagonal entries, n a column matrix with strictly positive
entries, and each cr ≥ 1. Our main result is that the symplectic quotient associated to
a Type IIk matrix of any size is graded regularly symplectomorphic to a symplectic
quotient byT

1. Specifically, we have the following; see Definition 3 for the definitions
of α and β.

Theorem 1 Let A ∈ Z
�×(�+k) be the Type IIk matrix corresponding to a faithful

T
�-representation V of dimension n = � + k. Then the symplectic quotient M0(A)
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is graded regularly symplectomorphic to the T
1-symplectic quotient M0(B) where

B = ( − α(A), c1β(A), . . . , ckβ(A)
) ∈ Z

1×(k+1).

Theorem 1 can be thought of as a dimension reduction formula, allowing one
to describe symplectic quotients by T

� associated to Type IIk weight matrices in
terms of much simpler quotients by T

1. In particular, it extends results concerning
T
1-symplectic quotients to this family of quotients by tori, e.g., the Hilbert series

computations of Herbig and Seaton (2014) or the representability results of Watts
(2016). The graded regular symplectomorphism given by Theorem 1 preserves sev-
eral structures, and hence can be thought of as a symplectomorphism of symplectic
stratified spaces, a graded isomorphism of the corresponding real algebraic varieties,
etc., and it induces a graded Poisson isomorphism of the corresponding complex sym-
plectic quotients, the complexifications treated as complex algebraic varieties with
symplectic singularities; see Herbig et al. (2020)

The proof of Theorem 1 is given in Sect. 3 by indicating a Seshadri section for
the action of the torus on the zero fiber of the moment map after complexifying and
applying a result of Popov (1992); see Definition 2 and Theorem 5. The first proof
we obtained of Theorem 1, however, was constructive for a smaller class of weight
matrices, so-called Type Ik (see Definition 3), and used explicit descriptions of the
corresponding symplectic quotients and algebras of real regular functions. Because
this description has proven useful and may be of independent interest, we give this
description and outline the constructive approach in Appendix A.

In the case of symplectic quotients of (real) dimension 2 considered in Corollary 1
(corresponding to Type I1 weight matrices), the graded regular symplectomorphism
class of M0(A) depends only on the constant η(A), which is given by the sum α(A)+
β(A) (see Definition 3). In the case of Type Ik weight matrices with k > 1, this is
no longer the case; we show in Sect. 4 that the graded regular symplectomorphism
classes of Type Ik symplectic quotients are classified by k, α(A), and β(A). For Type
IIk weight matrices, though the graded regular symplectomorphism class of M0(A)

is certainly not determined by k and η(A), the situation is more subtle, and such a
classification would require very different techniques. In Sect. 5, we indicate this with
examples of symplectic quotients associated to Type IIk weight matrices that fail to
be graded regularly symplectomorphic, though the corresponding complex algebraic
varieties are graded Poisson isomorphic, and hence the Hilbert series of real regular
functions coincide.

2 Background on torus representations

In this section,we give a brief overviewof the structures associated to (real linear) sym-
plectic quotients by tori, specializing the constructions described in the Introduction.
We refer the reader to Farsi et al. (2013), Herbig et al. (2009) for more details.

Let G = T
� and let V be a unitary G-module with dimC V = n. Choosing a basis

with respect to which the action of G is diagonal and letting z = (z1, . . . , zn) ∈ C
n

denote coordinates for V with respect to this basis, the action of G is given by
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t z := (
ta111 ta212 . . . ta�1

� z1, t
a12
1 ta222 . . . ta�2

� z2, . . . , t
a1n
1 ta2n2 . . . ta�n

� zn
)

where t = (t1, t2, . . . , t�) ∈ G and A = (ai j ) ∈ Z
�×n is the weight matrix of

the representation. Given a matrix A ∈ Z
�×n , we let VA denote the n-dimensional

representation of T
� whose weight matrix equals A and the corresponding basis for

VA. We let 〈·, ·〉 denote the standard hermitian scalar product on VA corresponding to
this basis.

Letting a j denote the j th column of A so that A = (a1 . . . an), it will be convenient
to set

t a j := t
a1 j
1 t

a2 j
2 . . . t

a� j
�

so that the action is given by

t z = (
t a1 z1, t a2 z2, . . . , t an zn

)
.

Row-reducing A over Z corresponds to changing coordinates (t1, . . . , t2) for G, so
we may assume that A is in reduced echelon form over Z. Similarly, permuting the
columns of A corresponds to reordering the basis for VA.

With respect to the symplectic form given by ω(z, z′) = Im〈z, z′〉, the action of
G on VA is Hamiltonian and admits a unique homogeneous quadratic moment map
JA : VA → g∗; we will write J = JA when there is no potential for confusion.
Identifying the Lie algebra t� of T

� with R
� using a basis for t� corresponding to the

coordinates (t1, . . . , t�) for T
� and the dual basis for (t�)∗, J = (J1, . . . , J�) can be

expressed in terms of the component functions

Ji : VA −→ R, Ji (z) := 1

2

n∑

j=1

ai j z j z j , j = 1, . . . , �. (1)

As the action of T
� on t� is trivial, each component Ji is T

�-invariant. Then the shell
Z = ZA := J−1(0) is the T

�-invariant real algebraic variety in VA corresponding to
this family of quadratics. The (real) symplectic quotient is M0 = M0(A) := ZA/T

�.
The algebra of smooth functions C∞(M0) is defined by C∞(M0) := C∞(V )G/IG

Z
where IZ is the vanishing ideal of Z in C∞(V ) and IG

Z := IZ ∩C∞(V )G . The algebra
C∞(M0) inherits a Poisson structure from C∞(V ), where the Poisson bracket is given
on coordinates by {zi , z j } = −2

√−1δi j , see Arms et al. (1990). Equipped with the
algebra C∞(M0) and its Poisson structure, M0 is a Poisson differential space, see Farsi
et al. (2013, Definition 5).

The algebra of real regular functions R[M0] on M0 is defined in terms of the
real polynomial invariants R[V ]G . Specifically, R[M0] := R[V ]G/I GZ where I GZ :=
IG
Z ∩R[V ]G . The ideal I GZ is homogeneouswith respect to the grading ofR[V ] by total

degree so thatR[M0] is a graded algebra; it is as well a Poisson subalgebra of C∞(M0).
We refer to elements of R[V ]G as off-shell invariants and the corresponding classes in
R[M0] as on-shell invariants. Note that for i = 1, . . . , n, the real polynomials zi zi are
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always invariant. We will take advantage of the complex coordinate system on V for
convenience, often expressingR[V ]G in terms of polynomials in the zi and zi . By this,
wemean that the real and imaginary parts of these polynomials are elements ofR[V ]G .
Note that the real invariants R[V ]G can be computed in terms of the complexification
V ⊗R C of V by Schwarz (1980, Proposition 5.8(1)), and V ⊗R C is isomorphic as a
T

�-module to V ⊕ V ∗.
Let GC := (C×)� denote the complexification of G, and then the action of G on V

extends to an action ofGC. The categorical quotient V //GC = Spec
(
C[V ]GC

)
, which

parameterizes the closed orbits in V , is an affine variety that is stratified by conju-
gacy classes of GC-isotropy groups (Luna 1973) and contains a unique open stratum
(V //GC)pr. Let π : V → V //GC denote the orbit map and Vpr = π−1

(
(V //GC)pr

)
.

We recall the following from Schwarz (1995, (0.3), (7.3), (9.5), and (9.6)(3))

Definition 1 The GC-module V is stable if V contains an open dense subset of closed
orbits and has finite principal isotropy groups (FPIG) if the isotropy groups of points
in Vpr with closed orbits are finite.

Assume V has FPIG and let k ≥ 0. We say V is k-principal if V�Vpr has complex
codimension at least k in V . Letting V(r) denote the set of points in V withGC isotropy
group of complex dimension r , V is k-modular if for r = 1, 2, . . . , dimC GC, V(r) has
codimension at least r +k in V . We say V is k-large if V is k-principal and k-modular.

Note that references differ about whether FPIG is assumed in the definitions of
k-principal or k-modular, though it is always assumed in the definition of k-large.
However, in the case considered here, stable implies FPIG.

Theorem 2 (Herbig et al. 2013, Theorem 3.2) If G = T
� is a torus and V is a faithful

GC-module, then V is stable if and only if it is 1-large.

Let VC = V ⊗R C denote the complexification of the underlying real vector space
of V , and then the GC-action extends to an action of VC; as a GC-module, VC is
isomorphic to V⊕V ∗. Letμ = μA = J⊗RC : VC → g∗

C
denote the complexification

of the moment map, where gC is the complexification of g and g∗
C
its dual, and let

(μ) be the ideal in C[VC] generated by the components of μ with respect to a choice
of basis for g∗

C
. Let N = NA denote the subscheme of VC corresponding to (μ),

called the complex shell. We recall the following, which holds for a general complex
reductive group H .

Theorem 3 (Herbig et al. 2013, Theorem 2.2(3)) If V is 1-large as an H-module, then
the complex shell N is reduced and irreducible.

Recall that a scheme is reduced if its local rings contain no nonzero nilpotent
elements and irreducible if it is not the union of two proper Zariski closed subsets.
Hence, Theorem 3 equivalently states that if V is 1-large, then (μ) is a prime ideal.

We will also make use of the following; see also Bulois (2018, Theorem 2.2).
A reduced and irreducible scheme is normal if its local rings are integrally closed
domains.

Theorem 4 (Herbig et al., Lemma 5.2) Suppose G = T
� is a torus. If V is a stable

and faithful GC-module, then both N and N//GC are normal.
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The categorical quotient N//GC in Theorem 4 is sometimes defined to be the com-
plex symplectic quotient. In the case of small representations, however, it may fail to be
the complexification of the real quotient and exhibit certain pathologies; see (Herbig
et al. Section 2) for a discussion and an alternate definition of the complex symplectic
quotient. In the case of 1-large representations, these technicalities can be avoided by
the following, which holds for an arbitrary compact Lie group H and is proven in
Herbig et al. with milder hypotheses.

Lemma 1 (Herbig et al., Lemma 2.8]) Let H be a compact Lie group and V a unitary
H-module. If V is 1-large as an HC-module, then

R[M0] ⊗R C � C[N ]HC .

The following definition and result, which holds for an arbitrary connected algebraic
group H , will play an important role in the proof of Theorem 1 in Sect. 3.

Definition 2 (Popov and Vinberg 1994, Section 3.8) Let H be a connected algebraic
group and let X be an irreducible H -variety. For Y ⊂ X , define NH (Y ) = {g ∈ H |
gY = Y }, the normalizer of Y . A subvariety Y ⊂ X is a Seshadri section if HY0 = X
for each irreducible component Y0 of Y and Hy ∩ Y = NH (Y )y for any y ∈ Y .

Theorem 5 (Popov 1992, Corollary, page 169; Popov and Vinberg 1994, Theo-
rem 3.14) Let H be a connected algebraic group and let X be an irreducible normal
H-variety. Suppose Y is a Seshadri section for the action of H on X such that
codimX (X�HY ) ≥ 2. Then Y is a Chevalley section, i.e., restriction of functions
to Y defines an isomorphism C[X ]H → C[Y ]NH (Y ).

In this paper, we are primarily interested in the symplectic quotients M0(A) associ-
ated to a class of matrices that generalize the orbifold cases treated in Farsi et al. (2013,
Theorem 7) and Corollary 1 and constitute a next step in the classification problem. To
simplify the descriptions of these matrices, we introduce the following (non-standard)
notation.

Definition 3 We say that an � × (� + k) weight matrix A is of Type Ik if it is of the

form A = (
D,

k
︷ ︸︸ ︷
n, . . . , n

)
where D = diag(−a1,−a2, . . . ,−a�) with each ai > 0

and n = (n1, n2, . . . , n�)
T with each ni > 0. We will say that A is Type IIk if

A = (D, c1n, . . . , ckn)with D and n as above and each cr ≥ 1. For a Type IIk weight
matrix, we define

α(A) := lcm(a1, . . . , a�), mi (A) := niα(A)

ai
for i = 1, . . . , �,

β(A) :=
�∑

i=1

mi (A), and η(A) := α(A) + β(A).

Wewill often abbreviate α(A),mi (A), β(A), and η(A) as α,mi , β, and η, respectively,
when A is clear from the context.
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For a weight matrix A of full rank, the representation VA being faithful is equivalent
to the nonzero � × � minors of A having no common factor, see Farsi et al. (2013). If
A is Type IIk , then these minors are of the form a1 . . . a� or a1 . . . a j−1crn ja j+1 . . . a�

for some r = 1, . . . , k, i.e., the product of the ai or the same product with one a j

replaced with crn j . The following is an immediate consequence.

Lemma 2 Let A be aType IIk weightmatrix and � > 1. Then VA is a faithfulT�-module
if and only if gcd(ai , a j ) = 1 for each 1 ≤ i < j ≤ n, and for each j = 1, . . . , �,
there is an r ≤ k such that gcd(a j , crn j ) = 1.

For a Type IIk weight matrix A, it is clear from the description of the moment map
in Eq. (1) that the shell J−1(0) contains points with all nonzero coordinates. Hence by
Herbig and Seaton (2015, Lemma 3 and Remark 2), if the GC-module VA is faithful,
then it is stable. It is easy to see that VA is faithful as a G-module if and only if it
is faithful as a GC-module. Combining this observation with Theorems 2, 3, and 4
yields the following.

Corollary 2 Suppose A is a Type IIk weight matrix such that VA is faithful as a T
�-

module. Then VA is stable and 1-large as a GC-module, and the complex shell NA is
reduced, irreducible, and normal.

If the hypotheses of Corollary 2 are satisfied, then by Herbig et al. (2013, Corollary
4.3), the ideal IZ is generated by the components Ji of the moment map. Because the
Ji are G-invariant in the case under consideration, we have

R[M0] = R[V ]G/(J1, . . . , J�).

In particular, given Eq. (1), the quotient map R[V ]G → R[M0] can be understood as
defining the invariants zi zi for i = 1, . . . , � in terms of the zi zi for i = �+1, . . . , �+k.
By Lemma 1, an analogous statement holds for C[N ]GC .

3 Proof of Theorem 1

In this section, we give the proof of our main result, Theorem 1, which is divided into
several auxiliary results. Throughout this section, we consider a Type IIk weightmatrix
A = (D, c1n, . . . , ckn) ∈ Z

�×(�+k) such that VA is a faithfulT�-module of dimension
n = � + k. In addition, we let B = ( − α(A), c1β(A), . . . , ckβ(A)

) ∈ Z
1×(k+1), see

Definition 3. We assume throughout this section that � > 1; when � = 1, A = B so
that Theorem 1 is trivial. Note that α(A) = α(B) and β(A) = β(B) so that we may
simply use α and β with no risk of confusion.

Our first result demonstrates that the T
1-representation VB is faithful.

Lemma 3 Let A = (D, c1n, . . . , ckn) ∈ Z
�×(�+k) be a Type IIk weight matrix. If VA

is a faithful T
�-module, then gcd(α, c1β, . . . , ckβ) = 1.

Proof Suppose VA is faithful, and let p be a prime that divides α and each crβ for
contradiction. As p divides α, it divides some a j ; assume p | a1 without loss of
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generality. By Lemma 2, it is not possible that p | cr for all r , so it must be that p | β.
Similarly, p � ai for each i �= 1. Then p | mi = niα/ai for i > 1, so the fact that
p | β = ∑

mi implies that p | m1. But as p does not divide any ai except a1, we have
gcd(p, α/a1) = 1. Hence p | n1. As p | a1 and p | n1, p divides the first row of A,
contradicting the fact that VA is a faithful T

�-module. ��
To explain the relationship between the representations VA and VB , let (u1, . . . , un)

denote coordinates for VA and define the homomorphism ψ : C
× → (C×)� by

ψ(t) = (tα/a1, . . . , tα/a� ). (2)

As gcd(α/a1, . . . , α/a�) = 1 by construction, ψ is injective and defines an action

of C
× on VA with weight matrix

(
�

︷ ︸︸ ︷−α, . . . ,−α, c1β, . . . , ckβ
)
. Hence, with respect

to the action of ψ(C×), any (complex) (k + 1)-dimensional subspace of VA defined
by imposing linear constraints on the first � coordinates is isomorphic to VB as a
C

×-module.
We now indicate how to symplectically embed VB as such a subspace of VA while

mapping the shell ZB into the shell ZA. A point (u1, . . . , un) ∈ VA is in the shell ZA

if and only if (|u1|2, . . . , |un|2) ∈ R
n≥0 is in the null space of the matrix A, see Eq. (1).

Using coordinates (z1, . . . , zk+1) for VB , define the linear map φ : VB → VA by

φ : (z1, . . . , zk+1) 
−→
(√

m1

β
z1,

√
m2

β
z1, . . . ,

√
m�

β
z1, z2, z3, . . . , zk+1

)
, (3)

and then the image of φ is defined by the constraints

ui =
√
mi

m1
u1, i = 2, . . . , �. (4)

We claim that φ preserves the symplectic forms, and the corresponding function
R
k+1
≥0 → R

n≥0 given by

(|z1|2, . . . , |zk+1|2) 
−→
(
m1

β
|z1|2, . . . , m�

β
|z1|2, |z2|2, . . . , |zk+1|2

)
(5)

maps the null space of B onto the null space of A.

Lemma 4 The function φ : VB → VA in Eq. (3) is a symplectic embedding that maps
the shell ZB = J−1

B (0) into the shell Z A = J−1
A (0).

Proof We compute

φ∗
n∑

i=1

dui ∧ dui =
�∑

i=1

mi

β
dz1 ∧ dz1 +

k+1∑

i=2

dzi ∧ dzi =
k+1∑

i=1

dzi ∧ dzi
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so that φ is a symplectic embedding. Let F denote the matrix of the linear exten-
sion R

k+1 → R
n of the map defined in Eq. (5), and then F has upper-left � × 1

block (m1/β, . . . ,m�/β)T , the k × k identity in the lower-right block, and is
zero elsewhere. Using the expression for the mi in Definition 3 and recalling that
B = ( − α(A), c1β(A), . . . , ckβ(A)

) ∈ Z
1×(k+1), one checks that

AF = 1

β
nB.

Hence, the null space of B is contained in the null space of AF . It follows that φ maps
ZB into ZA. ��

Moreover, using the homomorphism ψ defined in Eq. (2), we have the following.

Lemma 5 The normalizer of φ(VB) is given by N(C×)�
(
φ(VB)

) = ψ(C×), and hence
NT�

(
φ(VB)

) = ψ(T1).

Proof Let t = (t1, t2, . . . , t�) ∈ (C×)�, and then t preserves the constraints (4) if and
only if ta11 = taii for i = 2, . . . , �. Choosing t ∈ C

× such that tα/a1 = t1 and recalling
that gcd(α/a1, . . . , α/a�) = 1, it follows that t is of the form (tα/a1 , . . . , tα/a� ). ��

Complexifying the underlying real spaces, we consider the zi and wi := zi as
independent complex coordinates for VB ⊗R C and ui and vi := ui as independent
complex coordinates for VA ⊗R C. Recall that NA = (JA ⊗R C)−1(0) ⊂ VA ⊗R C

and NB = (JB ⊗R C)−1(0) ⊂ VB ⊗R C denotes the corresponding complex shells,
with NA defined by

− aiuivi + ni

k∑

j=1

c j u�+ jv�+ j = 0 for i = 1, . . . , �. (6)

and NB by

− αz1w1 + β

k∑

j=1

c j z j+1w j+1 = 0. (7)

We now demonstrate that the image of NB under φC = φ ⊗R C is a Seshadri
section for the action of (C×)� on NA, see Definition 2, satisfying the hypotheses of
Theorem 5.

Lemma 6 The image S := φC(NB) of the complex shell NB is a Seshadri section for
the action of (C×)� on the complex shell NA ⊂ VA ⊗R C. Moreover, the (complex)
codimension of NA�(C×)�S in NA is 2.

Proof First observe that in the coordinates (z,w) for VB ⊗R C, φC(z,w) =(
φ(z), φ(w)

)
. By Lemma 3 and Corollary 2, both NA and NB are reduced, irreducible,

and normal.
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Fix a point (u, v) ∈ NA, i.e., satisfying Eq. (6), and assume that each ui �= 0 for
i ≤ �. For i = 2, . . . , �, choose ti such that

t−ai
i =

√
mi

m1

u1
ui

. (8)

Letting t = (1, t2, . . . , t�) ∈ (C×)�, we claim that t(u, v) ∈ S. To see this, define

z1 := u1
√

β/m1, w1 =
√
m1β

αu1

k∑

j=1

c j u�+ jv�+ j ,

zi+1 = tcinui+�, wi+1 = t−cinvi+�, i = 1, . . . , k,

and then direct substitution of (z,w) into Eq. (7) demonstrates that (z,w) ∈ NB . By
Eq. (6), each vi with i = 1, . . . , � is given by

vi = ni
ai ui

k∑

j=1

c j u�+ jv�+ j = mi

αui

k∑

j=1

c j u�+ jv�+ j .

Using this fact, a simple computation confirms that

t(u, v) = (
φ(z), φ(w)

) ∈ S.

If (u, v) ∈ NA such that each vi �= 0 for i ≤ �, then choosing t such that

taii =
√
mi

m1

v1

vi
, i = 2, . . . , �,

a similar computation demonstrates that t(u, v) ∈ S as well.
Taking the closure to account for points with some ui = 0 and v j = 0 for i, j ≤ �,

we have

(C×)�S = NA.

In particular, note that NA�(C×)�S consists of those points in NA where some ui = 0
and some v j = 0 for i, j ≤ �; in particular NA�(C×)�S is closed and has codimension
2 in NA.

Now, the proof of Lemma 5 demonstrates that N(C×)� (S) = ψ(C×), where ψ

is defined in Eq. 2. Indeed, for φC(z,w) ∈ S, tφC(z,w) ∈ S if and only if t ∈
ψ(C×) is clear whenever z1 �= 0 or w1 �= 0. Hence, it remains only to show that
(C×)�φC(z,w)∩S = N(C×)� (S)φC(z,w) for a pointφC(z,w) ∈ Swith z1 = w1 = 0.
In this case, for arbitrary t ∈ (C×)�, we choose an s ∈ C

× such that sβ = tn and
compute
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ψ(s)φC(z,w) = (
0, . . . , 0, sc1

∑
i niα/ai z2, . . . , s

ck
∑

i niα/ai zk+1,

0, . . . , 0, s−c1
∑

i niα/ai w2, . . . , s
−ck

∑
i niα/ai wk+1

)

= (
0, . . . , 0, sc1β z2, . . . , s

ckβ zk+1,

0, . . . , 0, s−c1βw2, . . . , s
−ckβwk+1

) = tφC(z,w).

Hence for such a point, (C×)�φC(z,w) = N(C×)� (S)φC(z,w). ��
Combining Lemma 6 with Theorem 5 yields the following.

Corollary 3 The restriction of functions on NA to S defines an isomorphism
C[NA](C×)� → C[S]N(C×)�

(S).

As S is isomorphic to the shell NB via the embedding φC, which is equivariant
with respect to the actions of C

× and N(C×)� (S) identified via ψ , it follows that φ∗
C

induces an isomorphism φ∗
C

: C[S]N(C×)�
(S) → C[NB]C×

. As φC is a linear map, φ∗
C

preserves the grading. As the representations of (C×)� andC
× corresponding to A and

B, respectively, are 1-large by Corollary 2, we have by Lemma 1 that R[ZA]T� ⊗R

C � C[NA](C×)� and R[ZB]T1 ⊗R C � C[NB]C×
. That is, φ∗ induces a graded

isomorphism of the algebras of real regular functions R[M0(A)] → R[M0(B)]. By
Lemma 4, this isomorphism is Poisson.

Summarizing, we have the following.

Corollary 4 The restriction of functions to S and pulling back via φC are both graded
isomorphisms

C[NB]C× φ∗
C−→ C[S]N(C×)�

(S) −→ C[NA](C×)� ,

and the composition of these maps induces a graded Poisson isomorphism of the real
algebras

Ψ : R[M0(A)] −→ R[M0(B)].

By Lemmas 4 and 6 and Corollary 4, it follows that φ induces an isomorphism
between the Zariski closures of the real algebraic varieties defined by R[ZA]T�

and
R[ZB]T1

. To complete the proof of Theorem 1, it remains only to show that the
semialgebraic conditions are preserved, i.e., the map φ induces a homeomorphism
between the symplectic quotients.

Lemma 7 The map φ induces a homeomorphism M0(B) = ZB/T
1 → M0(A) =

ZA/T
�.

Proof It is clear from Lemma 5 that φ maps T
1-orbits into T

�-orbits injectively; in
particular, the only point in ZB with z1 = 0 is the origin. As φ(ZB) ⊂ (ZA) by
Lemma 4, it is sufficient to show that each element of ZA is in the orbit of an element
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of φ(ZB). So let u = (u1, . . . , un) ∈ ZA, and then for i = 1, . . . , �, the fact that
Ji (u) = 0 and the expression for Ji in Eq. (1) imply

|ui | =
√
a1ni
ai n1

|u1| =
√
mi

m1
|u1|.

With this, each ti for i = 2, . . . , � defined as in Eq. (8) is an element of T
1. Hence, we

may follow the proof of Lemma 6, defining t ∈ T
� and z ∈ VB in the same way, and

then the same computations verify that tu = φ(z) and z ∈ ZB . It follows that each
T

�-orbit in ZA intersects φ(ZB).
We leave it to the reader to show that the inverse homeomorphism is induced by

the linear map

(u1, u2, . . . , uk+�) 
→
(√

β

m1
u1, u�+1, . . . , uk+�

)

. ��

We illustrate Theorem 1 with the following.

Example 1 The weight matrix

A =
⎛

⎝
−3 0 0 1 2 3 3
0 −4 0 3 6 9 9
0 0 −5 2 4 6 6

⎞

⎠

is Type II4 with α = 60, n1 = 1, n2 = 3, n3 = 2, c1 = 1, c2 = 2, and c3 = c4 = 3.
Hence,m1 = 20,m2 = 45,m3 = 24, and β = 89, and the symplectic quotient M0(A)

is graded regularly symplectomorphic to that associated to (−60, 89, 178, 267, 267).

4 Classification for Type Ik matrices

In the case k = 1, Corollary 1 implies that twoweight matrices A1 and A2 yield graded
regularly symplectomorphic symplectic quotients if and only if η(A1) = η(A2), i.e., if
and only if α(A1)+β(A1) = α(A2)+β(A2). For k > 1, this is no longer the case, as
we demonstrate with the following. Recall that the Krull dimension of a commutative
ring R is the supremum of the lengths of ascending chains of prime ideals in R.

Lemma 8 Let A = ( − α,

k
︷ ︸︸ ︷
β, . . . , β

)
and B = ( − α′,

k′
︷ ︸︸ ︷
β ′, . . . , β ′ ) such that VA and

VB are faithful T
1-modules. If k ≥ 2 and the symplectic quotients M0(A) and M0(B)

are graded regularly diffeomorphic, then k = k′, α = α′ and β = β ′.

Proof First note that as VA and VB are faithful, gcd(α, β) = gcd(α′, β ′) = 1. The
existence of a graded regular diffeomorphism implies that R[M0(A)] is graded iso-
morphic toR[M0(B)]. As the Krull dimensions ofR[M0(A)] andR[M0(B)] are given
by 2k and 2k′, respectively, it follows that k = k′.
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Let Q(A) denote the subalgebra of R[M0(A)] that is generated by the quadratic
monomials of the form zi zi + I GZA

for i = 1 . . . , k + 1 and z1+i z1+ j + I GZA
for

1 ≤ i, j ≤ k, and define Q(B) identically as a subalgebra of R[M0(B)]. Note that
Q(A) and Q(B) are obviously graded isomorphic. The lowest-degree element of
R[M0(A)] that is not an element ofQ(A)has degreeα+β, and similarly forR[M0(B)],
so we can conclude that α + β = α′ + β ′. Finally, the number of monomials in
R[M0(A)] of degree α + β that are not elements of Q(A) is

(
α+k−1
k−1

)
, and hence

(
α+k−1
k−1

) = (
α′+k−1
k−1

)
, i.e., (α + k − 1)!/α! = (α′ + k − 1)!/α′!. As k > 1, it follows

that α = α′, and hence β = β ′. ��
Corollary 5 The graded regular symplectomorphism classes of symplectic quotients
associated to Type Ik weight matrices with k > 1 are classified by the triple
(k, α(A), β(A)). Moreover, these graded regular symplectomorphism classes coin-
cide with the graded regular diffeomorphism classes.

It is not clear whether an analog to Lemma 8 is true for Type IIk matrices, but
a proof using only the grading of R[M0] as in Lemma 8 is not possible. First note
that such a generalization would require restricting to specific representatives, e.g.,
requiring that gcd(c1, . . . , ck) = 1. Otherwise, it is possible that a 1 × (k + 1) Type
IIk matrix could be written in terms of α, β, and the ci in more than one way, e.g.,
(−1, 4, 12) could correspond to α = 1, β = 2, c1 = 2, and c2 = 6 or to α = 1,
β = 4, c1 = 1, and c2 = 3. However, even with such a restriction, it is possible that
R[M0(A)] and R[M0(B)] have the same Hilbert series yet fail to be graded regularly
symplectomorphic. We will illustrate this in the next section.

5 The Hilbert series does not classify symplectic quotients by tori

If R = ⊕∞
i=0Ri is a locally finite-dimensionalN-graded algebra over the fieldK, recall

that the Hilbert series of R is the generating function of the dimensions of the Ri as
K-vector spaces,

HilbR(t) =
∞∑

i=0

t i dimK Ri .

If R is finitely generated, then HilbR(t) is the Taylor series of a rational function that
converges for |t | < 1.

The graded regular symplectomorphisms given by Theorem 1were initially discov-
ered by computing Hilbert series of the algebras of regular functions on symplectic
quotients associated to large classes of weight matrices and looking for cases that
coincide. While the Hilbert series has been a valuable heuristic to indicate potential
graded regular symplectomorphisms and an important tool to distinguish between
non-graded regularly symplectomorphic cases, one would likely guess that there are
cases with the same Hilbert series that are not graded regularly symplectomorphic.
In this section, we give examples to indicate that this is the case: the Hilbert series is
not a fine enough invariant to distinguish graded regular symplectomorphism classes
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of symplectic quotients by tori. These examples further illustrate that two symplec-
tic quotients can have several isomorphic structures yet fail to be graded regularly
symplectomorphic.

Let A = (−2, 3, 6) and B = (−3, 2, 6). Note that these are both Type II2 weight
matrices; A corresponding to α = 2, β = 3, c1 = 1, and c2 = 2; and B corresponding
to α = 3, β = 2, c1 = 1, and c2 = 3). Because the Hilbert series of symplectic quo-
tients by T

1 only depends on the absolute value of the weights (see Herbig and Seaton
2014, p. 47), the Hilbert series of R[M0(A)] and R[M0(B)] coincide. In particular,
they are both given by

1 + t3 + 2t4 + t5 + t8

(1 − t5)(1 − t3)(1 − t2)3
.

The off-shell invariants R[VA]T1
are generated by

p0 = z1z1, p1 = z2z2, p2 = z3z3, p3 = z22z3, p4 = z3z2
2,

p5 = z31z3, p6 = z1
3z3, p7 = z31z

2
2, p8 = z1

3z2
2,

and the moment map determines p0 via 2p0 = 3p1 + 6p2. The off-shell invariants
R[VB]T1

are generated by

q0 = u1u1, q1 = u2u2, q2 = u3u3, q3 = u21u3, q4 = u1
2u3,

q5 = u32u3, q6 = u3u2
3, q7 = u21u

3
2, q8 = u1

2u2
3,

and the shell relation is given by 3q0 = 2q1 + 6q2.

Proposition 1 For the weight matrices A = (−2, 3, 6) and B = (−3, 2, 6), the fol-
lowing hold true.

(i.) The algebras R[M0(A)] ⊗R C and R[M0(B)] ⊗R C are graded Poisson iso-
morphic. Hence, the complex symplectic quotients are isomorphic as Poisson
varieties.

(ii.) The algebras R[M0(A)] and R[M0(B)] are graded isomorphic. However, no
graded isomorphismR[M0(A)] → R[M0(B)] preserves the inequalities describ-
ing the semialgebraic sets M0(A) and M0(B).

An immediate consequence of (ii.) is that the symplectic quotients M0(A) and
M0(B) are not graded regularly symplectomorphic.

Proof of Proposition 1(i.) As in the proof of Lemma 6, we complexify the underlying
real vector spaces to consider the zi ,wi := zi , ui , and vi := ui as independent complex
variables. Then an easy-to-identify isomorphism over C is induced by the linear map
φ : VA ⊗R C → VB ⊗R C given by

φ : (z1, z2, z3, w1, w2, w3) 
−→ (
√−1w2,

√−1w1, z3,
√−1z2,

√−1z1, w3).
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A simple computation demonstrates that φ is equivariant with respect to the two C
×-

actions, implying that the corresponding map φ∗ : C[VB ⊗R C]C× → C[VA ⊗R C]C×

is an isomorphism. Using coordinates (u1, u2, u3, v1, v2, v3) for VB ⊗R C, we have

φ∗(du1 ∧ dv1 + du2 ∧ dv2 + du3 ∧ dv3) = −dw2 ∧ dz2 − dw1 ∧ dz1 + dz3 ∧ dw3

= dz1 ∧ dw1 + dz2 ∧ dw2 + dz3 ∧ dw3

so that φ is a symplectic embedding.
Identifying the real and complex invariants via wi = zi and vi = wi , the map φ∗

is given on generators by

φ∗q0 = −z2w2 = −p1, φ∗q1 = −z1w1 = −p0,

φ∗q2 = z3w3 = p2, φ∗q3 = −z3w
2
2 = −p4,

φ∗q4 = −z22w3 = −p3, φ∗q5 = −√−1w3
1w3 = −√−1p6,

φ∗q6 = −√−1z31z3 = −√−1p5, φ∗q7 = √−1w3
1w

2
2 = √−1p8,

φ∗q8 = √−1z31z
2
2 = √−1p7,

so that φ∗ JB = JA. Hence φ∗ induces an isomorphism R[M0(B)] ⊗R C →
R[M0(A)] ⊗R C, completing the proof. ��

Clearly, the isomorphism φ∗ does not restrict to a map R[M0(B)] → R[M0(A)]
of the real algebras. Hence, to determine an isomorphism over R, we need a more
explicit description of R[M0(A)] and R[M0(B)].
Proof of Proposition 1(ii.) UsingMacaulay2 (Grayson andStillman 2012),we compute
the relations among the generators p1, p2, . . . , p8 of R[M0(A)] to be

2p0 − 3p1 − 6p2, p21 p2 − p4 p3, p4 p6 − p2 p8, p3 p5 − p2 p7,

p21 p6 − p3 p8, p21 p5 − p4 p7,

324p1 p
3
2 + 216p42 + 27p1 p4 p3 + 162p2 p4 p3 − 8p5 p6,

27p31 p3 + 324p1 p
2
2 p3 + 216p32 p3 + 162p4 p

2
3 − 8p6 p7,

27p31 p4 + 324p1 p
2
2 p4 + 216p32 p4 + 162p24 p3 − 8p5 p8,

432p52 − 81p21 p4 p3 − 432p1 p2 p4 p3 − 648p22 p4 p3 + 24p1 p5 p6 − 16p2 p5 p6,

27p51 + 162p21 p4 p3 + 324p1 p2 p4 p3 + 216p22 p4 p3 − 8p7 p8,

324p1 p
2
2 p3 p6 + 216p32 p3 p6 − 8p26 p7 + 27p1 p

2
3 p8 + 162p2 p

2
3 p8,

324p1 p
2
2 p4 p5 + 216p32 p4 p5 + 27p1 p

2
4 p7 + 162p2 p

2
4 p7 − 8p25 p8,

432p42 p3 p6 + 24p1 p
2
6 p7 − 16p2 p

2
6 p7 − 81p21 p

2
3 p8 − 432p1 p2 p

2
3 p8 − 648p22 p

2
3 p8,

432p42 p4 p5 − 81p21 p
2
4 p7 − 432p1 p2 p

2
4 p7 − 648p22 p

2
4 p7 + 24p1 p

2
5 p8 − 16p2 p

2
5 p8.

Similarly, the relations among the generators q1, q2, . . . , q8 of R[M0(B)] are given
by

3q0 − 2q1 − 6q2, 4q21q2 + 24q1q
2
2 + 36q32 − 9q3q4, q4q6 − q2q8,
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q3q5 − q2q7, 4q21q6 + 24q1q2q6 + 36q22q6 − 9q3q8,

4q21q5 + 24q1q2q5 + 36q22q5 − 9q4q7,

108q1q
3
2 + 216q42 + 9q1q3q4 − 54q2q3q4 − 4q5q6,

q31q4 − q5q8, q31q3 − q6q7,

108q52 − 9q21q3q4 + 18q1q2q3q4 − 27q22q3q4 + 4q1q5q6 + 16q2q5q6,

4q51 + 24q1q5q6 + 36q2q5q6 − 9q7q8,

108q1q
2
2q3q6 + 216q32q3q6 − 4q26q7 + 9q1q

2
3q8 − 54q2q

2
3q8,

108q1q
2
2q4q5 + 216q32q4q5 + 9q1q

2
4q7 − 54q2q

2
4q7 − 4q25q8,

108q42q3q6 + 4q1q
2
6q7 + 16q2q

2
6q7 − 9q21q

2
3q8 + 18q1q2q

2
3q8 − 27q22q

2
3q8,

108q42q4q5 − 9q21q
2
4q7 + 18q1q2q

2
4q7 − 27q22q

2
4q7 + 4q1q

2
5q8 + 16q2q

2
5q8.

Define the map Ψ : R[M0(A)] → R[M0(B)] by

Ψ (p1) = q1 + 3q2, Ψ (p2) = −3

2
q2, Ψ (p3) = q4,

Ψ (p4) = −27

8
q3, Ψ (p5) = q6, Ψ (p6) = −81

16
q5,

Ψ (p7) = −2

3
q8, Ψ (p8) = −729

64
q7.

A tedious though elementary computation demonstrates that Ψ maps the ideal of
relations of the pi into the ideal of relations of the qi , andΨ −1 similarly maps the ideal
of relations of the qi into the ideal of relations of the p j . Therefore,Ψ : R[M0(A)] →
R[M0(B)] is an isomorphism. Note that p2 = z3z3 ≥ 0, while Ψ (p2) = −3q2/2 ≤ 0
so that Ψ does not preserve the inequalities.

To show that any graded isomorphism R[M0(A)] → R[M0(B)] fails to preserve
the inequalities, suppose for contradiction that Φ : R[M0(A)] → R[M0(B)] is such
a graded isomorphism. LetQ(A) andQ(B) denote the subalgebras of R[M0(A)] and
R[M0(B)], respectively, that are generated by elements of degree at most four. Then
Φ restricts to an isomorphism Φ|Q(A) : Q(A) → Q(B).

Again usingMacaulay2 (Grayson and Stillman 2012), the algebraQ(A) generated
by p1, p2, . . . , p6 has relations generated by

R1 = p21 p2 − p3 p4, R2 = 27
(
4p32(3p1 + 2p2) + (p1 + 6p2)p3 p4

) − 8p5 p6,

R3 = −81p21 p3 p4 − 8(−54p52 + 54p1 p2 p3 p4 + 81p22 p3 p4 − 3p1 p5 p6 + 2p2 p5 p6),

R4 = 27p3 p4(p
3
1 + 12p1 p

2
2 + 8p32 + 6p3 p4) − 8p21 p5 p6,

and the algebra Q(B) generated by q1, q2, . . . , q6 has relations generated by

R′
1 = 4q2(q1 + 3q2)

2 − 9q3q4,

R′
2 = 108q32 (q1 + 2q2) + 9(q1 − 6q2)q3q4 − 4q5q6,

R′
3 = 108q52 − 9(q21 − 2q1q2 + 3q22 )q3q4 + 4(q1 + 4q2)q5q6,
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R′
4 = 9q31q3q4 − 4(q1 + 3q2)

2q5q6.

As Φ preserves the grading, it must be of the form

Φ(p1) = c11q1 + c12q2, Φ(p2) = c21q1 + c22q2, Φ(p3) = c33q3 + c34q4,

Φ(p4) = c43q3 + c44q4, Φ(p5) = c55q5 + c56q6, Φ(p6) = c65q5 + c66q6,

Φ(p7) = c77q7 + c78q8, Φ(p8) = c87q7 + c88q8. (9)

Using the fact that Φ preserves the grading and maps the ideal of relations for the pi
into the ideal of relations for the qi , we must have

Φ(R1) = k1R
′
1, and Φ(R2) = k2R

′
2 + k3q1R

′
1 + k4q2R

′
2

for some k1, k2, k3, k4 ∈ R. Computing the q31 , q
2
3 , and q

2
1q2 coefficients of each side

of the first equation and the q21q
2
2 , q

4
2 , q1q

3
2 , q2q3q4, and q1q3q4 coefficients of each

side of the second equation yields the system

Φ(R1) : q31 : c211c21 = 0,

q23 : c33c43 = 0,

q21q2 : c11(2c12c21 + c11c22) = 4k1,

Φ(R2) : q21q
2
2 : 81c21c22(3c12c21 + 3c11c22 + 4c21c22) = k2(6k3 + k4),

q1q
3
2 : 9c222(9c12c21 + 3c11c22 + 8c21c22) = k2(9 + 3k3 + 2k4),

q42 : 3c322(3c12 + 2c22) = k2(6 + k4),

q1q3q4 : 3(c11 + 6c21)(c34c43 + c33c44) = k2(1 − k3),

q2q3q4 : 3(c12 + 6c22)(c34c43 + c33c44) = −k2(6 + k4),

Every solution of this system not corresponding to Φ(pi ) = 0 for some i satisfies
c11 = −2c22/3, c12 = −2c22, and c21 = 0. Hence, though p1 ≥ 0 and p2 ≥ 0, either
c22 > 0 so that Φ(p1) = −2c22(q1/3+ q2) < 0 for any nonzero q1 or q2, or c22 < 0
so that Φ(p2) = c22q2 < 0 for any nonzero q2. In either case, Φ does not preserve
the inequalities describing the semilagebraic sets M0(A) and M0(B). ��

For another example, consider A′ = (−2, 1, 1) and B ′ = (−1, 2, 1). Both are
weight matrices of type Type II2; the former has α = 2, β = 1, c1 = 1 = c2, while
the latter has α = 1, β = 1, c1 = 2, and c2 = 1. As above,R[M0(A′)] andR[M0(B ′)]
have the same Hilbert series, given by

1 + 2t2 + 4t3 + 2t4 + t6

(1 − t3)2(1 − t2)2
.

The quadratic off-shell invariants of the action with weight matrix A′ are spanned by
z1z1, z2z2, z3z3, z2z3, and z3z2 with relation (z2z2)(z3z3) = (z2z3)(z3z2), and the
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moment map determines z1z1 in terms of z2z2, z3z3. For the action with weight matrix
B ′, the quadratic off-shell invariants are generated by u1u1, u2u2, u3u3, u1u3, and
u1u3 with relation (u1u3)(u1u3) = (u1u1)(u3u3), and the moment map expresses
u1u1 = 2u2u2 + u3u3. Considering only the Poisson brackets of the quadratics,
computations similar to those above demonstrate that any graded Poisson isomorphism
Φ : R[M0(B ′)] → R[M0(A′)] must map u3u3 
→ cz2z2 + (c− 1)z3z3 + √−1dz3z2
where c ∈ {0, 1} and d �= 0. For each z2, z3 ∈ C, there is a z1 ∈ C such that
(z1, z2, z3) ∈ ZA′ so that z3z2 is not bounded by inequalities. As u3u3, z2z2, z3z3 ≥ 0,
it follows that Φ cannot preserve the inequalities.

Finally, we consider a closely related example that is not of Type Ik nor IIk for any
k. Let

A′′ =
(−1 0 1 1

0 −1 1 1

)
and B ′′ =

(−1 0 1 1
0 −1 0 1

)
.

To see that the Hilbert series of R[M0(A′′)] and R[M0(B ′′)] coincide note that the
cotangent-lifted weight matrix corresponding to A′′,

(−1 0 1 1 | 1 0 −1 −1
0 −1 1 1 | 0 1 −1 −1

)
,

can be transformed into that of B ′′,
(−1 0 1 1 | 1 0 −1 −1

0 −1 0 1 | 0 1 0 −1

)

by transposing the column pairs (1, 4), (3, 7), (5, 8) and row-reducing over Z. The
common Hilbert series is given by

1 + 2t2 + 2t3 + 2t4 + t6

(1 − t3)2(1 − t2)2
.

The quadratic off-shell invariants associated to A′′ are z1z1, z2z2, z3z3, z4z4, z3z4, and
z4z3, the moment map expresses z1z1 and z2z2 in terms of z3z3 and z4z4, and we have
the relation (z3z4)(z4z3) = (z3z3)(z4z4). Similarly, the quadratic off-shell invariants
associated to B ′′ are z1z1, z2z2, z3z3, z4z4, z1z3, and z1z3, the moment map expresses
z1z1 and z2z2 in terms of z3z3 and z4z4, and we have the relation (z1z3)(z1z3) =
(z2z2+z3z3)(z3z3). Hence, computations identical to those for A′ and B ′ demonstrate
that the only Poisson isomorphisms between the algebrasR[M0(A′′)] andR[M0(B ′′)]
do not satisfy the semialgebraic conditions, and hence do not correspond to a graded
regular symplectomorphism.
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A Constructive approach to Theorem 1

We first obtained a proof of Theorem 1 for Type Ik matrices by determining an explicit
description of the symplectic quotient M0 and algebra R[M0] of regular functions.
This description may be of independent interest and illustrates the structure of these
spaces, sowe include it here. The proofs of these results are cumbersome computations
and hence only summarized.

Proposition 2 Let A = (
D,

k
︷ ︸︸ ︷
n, . . . , n

) ∈ Z
�×(�+k) be a type Ik weight matrix such

that VA is a faithful T
�-module. Then a generating set for the algebra R[VA]T�

of
invariants is given by

1. the � quadratic monomials ri := zi zi for i = 1, . . . , �,
2. the k2 quadratic monomials pi, j := z�+i z�+ j for 1 ≤ i, j ≤ k,
3. the

(
α+k−1
k−1

)
degree η monomials qs := ∏�

i=1 z
mi
i

∏k
i=1 z

si
�+i where s =

(s1, . . . , sk) and the si are any choice of nonnegative integers such that
∑k

i=1 si =
α, and

4. the α + k − 1 choose k − 1 degree η monomials qs for each choice of s.

For a generating set for R[M0(A)], the generators in (1) can be omitted using the
on-shell relations.

Proof A simple computation demonstrates that each of the monomials listed in Propo-
sition 2 is invariant. To prove the proposition, one first establishes the result when
k = 1 by induction on �; the base case is simple, and the inductive step is accom-
plished by comparing the invariants of A to those corresponding to submatrices formed
by removing a single row and the resulting column of zeros. For general k, consider
the map φ : R[z1, . . . , z�+k, z1, . . . , z�+k] → R[w1, . . . , w�+1, w1, . . . , w�+1] that
maps zi 
→ wi and zi 
→ wi for i ≤ �, z�+i 
→ w�+1, and z�+i 
→ w�+1. It is easy to
see that φ maps A-invariants onto (D,n)-invariants, and then the proof is completed
by considering the preimages of the (D,n)-invariants, a case with k = 1. ��

Proposition 3 Let A = (
D,

k
︷ ︸︸ ︷
n, . . . , n

) ∈ Z
�×(�+k) be a type Ik weight matrix such

that VA is a faithful T
�-module. The (off-shell) relations among the ri , pi, j , qs , and

qs are generated by the following.

1. pg,h pi, j − pg, j pi,h for 1 ≤ g, h, i, j ≤ k with g �= i and h �= j .
2. pg,hqs − pi,hqs′ where s

′
g = sg + 1, s′

i = si − 1, and s′
j = s j for j �= g, i . Note

that we must have si ≥ 1.
3. pg,hqs − pg,i qs′ where s

′
g = sg + 1, s′

i = si − 1, and s′
j = s j for j �= g, i . Note

that we must have si ≥ 1.
4. qsqs′ − qtqt ′ where s + s′ = t + t ′ and s �= t .
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5. qs qs′ − qt qt ′ where s + s′ = t + t ′ and s �= t .
6.

∏�
i=1 r

mi
i

∏α
j=1 pg j ,h j − qsqs′ where the vector (g1, . . . , gα) contains each value

g exactly sg times and the vector (h1, . . . , hα) contains each value h exactly s′
h

times.

On-shell, the monomials additionally satisfy the defining relations of the moment map,
−airi + ni

∑k
j=1 p j, j for i = 1, . . . , �.

Proof One verifies that each of these relations holds by direct computation using
the definitions of the monomials given in Proposition 2. The proof that all relations
are generated by these is by induction on k. For the case k = 1, there is only one
nontrivial relation, pα

1,1

∏�
i=1 r

mi
i − q(α)q(α); a simple yet tedious consideration of

cases demonstrates that this generates all relations. The induction step is demon-
strated by considering the preimages of invariants under themapC[z1, . . . , z�+k+1] →
C[z1, . . . , z�+k] given by (z1, . . . , z�+k+1) 
→ (z1, . . . , z�+k + z�+k+1). ��

One then verifies the following by direct computation.

Proposition 4 Let A = (
D,

k
︷ ︸︸ ︷
n, . . . , n

) ∈ Z
�×(�+k) be a type Ik weight matrix such that

VA is a faithful T
�-module. The Poisson brackets of the Hilbert basis elements given

in Proposition 2 are as follows. Note that the indices g, h, i, j need not be distinct
unless otherwise noted.

– {rg, rh} = {rg, ph,i } = {qs, qs′} = {qs, qs′} = 0.
– {ri , qs} = − 2√−1

miqs.

– {ri , qs} = 2√−1
miqs.

– {pg,h, pi, j } =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2√−1
pi,h, g = j and h �= i,

− 2√−1
pg, j , g �= j and h = i,

2√−1
(ph,h − pg,g) g = j and h = i, and g �= h

0, g �= j and h �= i or g = j = h = i .

.

– {pg,h, qs} =
{

− 2√−1
sgqs′ , sg > 0,

0, sg = 0,
where s′

g = sg − 1, s′
h = sh + 1, and s′

i = si for i �= g, h.

– {pg,h, qs} =
{

2√−1
sgqs′ , sg > 0,

0, sg = 0,
where s′

g = sg − 1, s′
h = sh + 1, and s′

i = si for i �= g, h.

– {qs, qs′} = 2√−1
qsqs′

(
∑�

i=1
m2
i

ri
+ ∑k

j=1
s j s′j
p j, j

)
, which we note is polynomial as

the ri and p j, j divide qsqs′ .

The above results give an explicit description of the Poisson algebra of regular
functions. It remains only to determine the semialgebraic description of the symplectic
quotient.
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Proposition 5 Let A = (
D,

k
︷ ︸︸ ︷
n, . . . , n

) ∈ Z
�×(�+k) be a type Ik weight matrix associ-

ated such that VA is a faithful T
�-module. Using the real Hilbert basis given by the

real and imaginary parts of the monomials listed in Proposition 2, the image of the
Hilbert embedding is described by the relations given in Proposition 3 as well as the
inequalities ri ≥ 0 for i = 1, . . . , � and p j, j ≥ 0 for j = 1, . . . , k.

Proof From the definition of the monomials, it is easy to see that these inequalities are
satisfied. For the converse, choose values of the ri , pi, j , and qs such that each ri ≥ 0,
each pi,i ≥ 0, and the remaining values are arbitrary elements of C such that the each
pi, j = p j,i and relations in Proposition 3 are satisfied. It is then easy to see that the
values |ri |, |pi, j | for i �= j , and |qs| are determined by the pi,i . Specifically, using the
relations of Proposition 3(1), we have

|pi, j | = √
pi,i p j, j ,

using the moment map, we have

|ri | = ni
ai

k∑

j=1

p j, j

and using the relations of Proposition 3(6), we have

qs =

√√√√√√
�∏

i=1

(
ni
ai

)mi

⎛

⎝
k∑

j=1

pi,i

⎞

⎠

∑�
i=1 mi

⎛

⎝
k∏

j=1

psii,i

⎞

⎠

α/2

.

Similarly, using the relations of Proposition 3(3), one checks that the arguments of the
qs where s has only one nonzero coordinate (which must be equal to α) determine the
arguments of the pi, j and the other qs′ . It follows that one can find a point (z1, . . . , zn)
mapped via the Hilbert embedding to these values of ri , pi, j , and qs by choosing the
modulus of each z�+i to be

√
pi,i , the modulus of each zi for i ≤ � to be determined

by the moment map, the argument of each zi for i ≤ � to be 0, and the argument of
each z�+i to be the argument of q(0,...,0,α,0,...,0) where α occurs in the i th position. ��

With this explicit description ofM0(A) andR[M0(A)] the following can be verified
by direct computation.

Theorem 6 Let A ∈ Z
�×(�+k) be a Type Ik matrix such that VA is a faithful T

�-
module, and let B = ( − α(A), β(A), . . . , β(A)

) ∈ Z
1×(k+1). Using coordinates

(w1, . . . , wk+1) for VB, define the map Φ : C[VA]T� → C[VB] by

ri 
−→ mi (A)

β(A)
w1w1, 1 ≤ i ≤ �,

pi j 
−→ wi+1wi+1, 1 ≤ i, j ≤ k,
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qs 
−→
√√√√β(A)−β(A)

�∏

j=1

m j (A)m j (A) w
β(A)
1

k∏

j=1

w
s j
j+1,

qs 
−→
√√√
√β(A)−β(A)

�∏

j=1

m j (A)m j (A) w1
β(A)

k∏

j=1

w j+1
s j .

Then Φ is a well-defined homomorphism Φ : C[VA]T� → C[VB]T1
inducing an

isomorphism R[M0(A)] → R[M0(B)] and a graded regular symplectomorphism
between M0(A) and M0(B).
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